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Abstract

This paper mainly designs artificial boundary conditions for “vortex in cell” method
in solving two-dimensional incompressible inviscid fluid under two conditions: one is with
periodical initial value in one direction and the other with compact supported initial value.
To mimic the vortex motion, Euler equation is transformed into vorticity-stream function
and the technique of vortex in cell is applied incorporating with the artificial boundary
conditions.
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1. Mathematical Model
The motion of two-dimensional incompressible inviscid fluid satisfies the following equations:

ou 1 >
E‘F(UV)U—F;VP—]C (11)

Vu =0, (1.2)

where u(u,v) is the velocity vector of a particle at & = (z,y) and time ¢t. P(Z,t) and p(Z,t)
denote the pressure and the density of the fluid respectively. p(z,t) is constant for incompress-

ible fluid. Fone f acts on a unit fluid. V is gradient operator. ’-’ stands for the inner product.
_ (0 _0\y; : P .
In (z,y)-plane VA = (35’ %) is rotation operator. Here we assume f = Vi, where ¢ is a

scalar function, and define vorticity w as w = —VAu = —g—z + % . Inserting VA into Euler
equation (1.1), one can obtain:

0

a_j +(u- V)w = 0. (1.3)

Let &y be an arbitrary point in the plane and define the stream function ¢ (&%) as

(%) = /I vdz + udy,

Zo

where the integration in (z,y) plane is independent of the integration path due to (??) and
Green formula. Applying VA and —VA to ¢(%) in succession, one can get the relationship of
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the stream function and vorticity, i. e., —A® = w. Thus the incompressible inviscid fluid in
vorticity-stream function is:

Oow ow Oow

E—FU% +’Ua—y:0 (14)
—AY = w (1.5)
oy
O
== (1.7)

2. Technique of “vortex in cell”

Christansen [?] is the first one to use the technique of vortex in cell to simulate the motion
of two-dimensional incompressible inviscid fluid. This paper adopts this method to simulate
vortices interaction in (z,y)-plane. We discrete the fluid vorticity w into sum of vortex points:

M
w(z,y) ~ Zpim — )8y — i),

where M is the total number of vortex points, p; is vorticity of the i-th point at (z;,y;). The
velocity w; = (uj,v;) of the i-th vortex point is given by

&ri o
5 = Wi (2.1)
Oyi o
5 = Ui (2.2)

Once we know the velocity (u;, v;) of the vortex point, then we can advance the vortex point by
using (??)-(??). Vortex in cell method solves the Poisson’s equation (??) on a uniform mesh
by the usual five-point scheme. Thus to mimic the motion of vortex points, it is necessary to
allocate the vortex point’s vorticity to mesh points first and then, after solving the Poisson’s
equation (??) on uniform mesh, to redistribute mesh point’s velocity to vortex points. Let s
be the area of an mesh and s1, ss, s3, sS4 be the four parts divided by a vortex point located in
the mesh showed by the following figure. Then the vortex point allocates its vorticity p; to the
four surrounding mesh points as follows:

4 3
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S3 Sa S1 S9
W1 = —Pi W2=—pP; W3=—"Pi Wi4=—PpP;
S S S S

All other vortex points located in the same mesh allocate their vorticity to the mesh points
similarly. On the other hand, mesh points distribute their velocity to the vortex point p; by
the technique of vortex in cell. That is, assume v;, | = 1,2,3,4 are the velocities of the four
surrounding points of a mesh , then the velocity w; of the vortex point p; located in the mesh
is defined by

53 S4 51 52
U; = —V; + —vVs+ —v3+ —V4.
S S S S
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In order to solve the Poisson’s equation (??) on uniform mesh by numerical method efficiently,
it is necessary to design an artificial boundary condition for the Poisson’s equation.

3. Artificial Boundary Condition for Periodical Initial Value

If the initial vortex function wo(z,y) is bounded, periodical in y and compact supported in
z, then the following infinite conditions are needed:

Jim 9(z,y,8) = Proo (3.1)

where ¢_o, and ¢4 o, are some constants. It is known that w(z,y,t) and ¢(x, y,t) are periodical
functions in y due to the uniqueness of the problem. Let L be period, then the solving region
can be reduced from the whole plane to a strip region Q¢ = R x [-L/2,L/2]. The periodical
condition gives a boundary condition at y = +L/2 as ¢(z,—L/2,t) = ¢(x,L/2,t). In order
to solve the Poisson’s equation in R x [—L/2, L /2] numerically, it is necessary to provide some
boundary conditions at x = —X; and ¢ = X,., where X; and X, are some positive constants.
The traditional method is to set ¥ (—X;,y,t) = _o and Y(X,,y,t) = 1o, which is less
precise. If more precise solution is needed, X; and X, must be set very large and this leads
to the large cost. In this paper we derive a semidiscrete boundary condition for the Poisson’s
equation by using the method of line. Here we notice that Han and Bao [?] was the first one to
apply the method of line to derive an artificial boundary condition for Poisson’s equation in an
infinity strip region. We first divide the region [-L/2, L/2] into 2n uniform meshes with mesh
size h = L/2n, and then discrete the Poisson Equation (??) in R x [-L/2, L/2] into

2y
9 ax(;:) +AU(z) =W(z), z€R (3.3)
where
Yo(z) wo ()
Y1 () w1 ()
¥(z) = . , W) =
Yon1 W2n—1
and
2 -1 0 0 0 -1
-1 2 -1 0 0 0
A= o -1 2 -1 0 0
-1 0 0 o -~ -1 2
Here A is a 2n x 2n matrix, ¢, (x) & ¥ (x, mh) and wy,(x) ~ w(xz,mh) form =0,1,...,2n— 1.
Let A= TAT !, where A is a diagonal matrix with diagonal elements Ao, A1, - - , A2 1 which

are the eigenvalues of matrix A and T' is a matrix composed of the column eigenvectors of A.
Then the differential system (??) can be written as

Let
e ’U()Emg goEx%
V(z) = T_I‘I’(J;) _ ’U1:CE Glz) = —T_IW(CU) _ gl-x
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and suppose that the support of w(-,y) is contained in (—R, R) for some positive R. Then the
above system can be transformed into the following forms:

326‘;(2”3) = AV(¢) + G(z) for z€[-R, R (3.5)
OV () =AV(z) for z€ (—o00,—R]U[R,+00) (3.6)

Oz

It is easy to show that matrix A has unique zero eigenvalue and all other eigenvalues are
positive and we denote A\g = 0. Solving the system (??), on account the infinity boundary
conditions, gives

V(z) =Cre ™ for z€[R,00) (3.7)
and
V(z) = C_er for z € (—o0,R], (3.8)
where e*2* are diagonal matrices with diagonal elements e**»® for m = 0,1,...,2n — 1 and
Cy are constant vectors (¢, ck,...,c3"™"). In order to satisfy the infinity condition, ¢%. is
subject to constraints T'(c%.,0,...,0) = (Y+oos---»%P+o0). Since A\g = 0 and its eigenvector is
(1,1,...,1), the constraints are equivalent to ¢}, = t¢)1o. Therefore it follows from (??) and
(??) that V(z) has the following boundary conditions at z = +R:
UO(:*:R) :z/}ima U.;(:I:R) =Fv A]U(iR)’ .7 = 1,2,3,"‘2’11- 1. (39)

This is the semidiscrete artificial boundary condition and the ordinary differential systems (?7?)
can be solved numerically in the finite region [— R, R] by central difference method incorporating
with (?7).

In the following we simulate several examples on vortices interaction by using vortex in cell
method incorporating with our semidiscrete artificial boundary condition (??). In order to test
the accuracy of the artificial boundary condition we also compute some example by using the
traditional constant boundary condition.

Example 1. Karman vortex streets [?]: two rows of vortex points with opposite vorticity
are located at Z1; and Zs;, on the complex plane are:

Zlkzl’l-l-i(yl-l-klz), Z2k:$2+i(y2+kL), kZO,:*:]_,:*ZQ,

where I' is the vorticity of each vortex point in the first row and —I' is the vorticity in the
second row. The exact solution of ¥(z,y) is:

_2n(@ —21)
r r e L -1
Y(z,y) = ﬁ(xl —z2) +Im - In 27 (z — ) (3.10)

e L -1
with ¢(—00,y) = —T'(x1 — 22)/2L and (400, y) = +I'(x1 — 22)/2L.

Fig ?? and Fig ?? show the relative errors |(Ya —9)(£R,y)|/|Y (LR, y)|for —L/2 <y < L/2,
where 1A are numerical solutions with space steps Az = Ay = A by using the artificial
boundary condition and the constant boundary condition. From Fig 7?7 we see that when the
artificial boundary region [— R, R] is not so big (in Fig ?? [-R, R] = [—1, 1], which just contains
the support of w), the relative error by using the artificial boundary condition (??) is much
smaller than that by using the constant boundary condition. Only when [—R, R] is big enough
(in Fig ?? [-R, R] = [-3, 3]) the two relative errors are compatible. This clearly indicates that
the artificial boundary condition is much more accurate and efficient than the tradition one.
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Figure 1: relative errors with parameters Figure 2: relative errors with parameters
L =20, R=1.0and A =0.05 L =20, R=3.0 and A = 0.05

Example 2. Two sheets of vortex patch: wo(z,y) is periodic in y with period L, which is
defined on R x [-L/2,L/2] by

1 (2,y) € {(z,y)|(z — 20)* +y* < 0.01}
wolw,y) =9 —1 (,9) € {(z,y)|(x +z0)* +y* < 0.01}
0 elsewhere.

Here we consider two cases: one is g = 0.3 and another is o = 0.11. In the former case the two
“far” separated sheets are never contact each other and in the later case the two “close” sheets
are interact and coalesce. Fig. ?7-?? and Fig. ?7-?7 show the motion of two sheets of vortex
patch solved by vortex in cell method incorporating with the artificial boundary conditions.

4. Artificial Artificial Boundary Condition for Compact Supported
Initial Value

In this subsection we consider a general initial value wo(z,y) compact supported in =
[ R, R] x[—R, R] for some constant R > 0 and satisfies [, wo(x,y)do = 0. Thus ¢(x, y) satisfies
an infinity condition:
x%_l?i/gn_)oow(a:,y) =0. (4.1)
Traditional numerical method for solving Poisson equation (3.14) is to set ¢ (z,y) = 0 at some
finite artificial boundary. Here we use Laurent expansion method to derive a more precise
artificial boundary condition for solving Poisson equation. The Laurent expansion method was
used by Han and Wu to obtain an exact artificial boundary condition in [?]. Since w(z,y,t) =0
in R*\ Q and —A¢ = 0, 1 is harmonic function in the same region. Thus we can define its
conjugate function ¢(z,y). Let £y = (zo,10) be a point in R? \ Q and set p(zq,y0) = 0 and
then for V = (z,y) € R*\ Q

[T o o
o(z,y) —/w a—ydw—%dy

0

where the integration is along any plane curve connecting xo to @ in R> \ Q.

Let z = z+iy and F(z) = ¢(z,y) +i(x,y). Then F(z) satisfies Cauchy-Riemann condition
and is analytical in R> \ ©Q with infinity as removable singular point. The Laurent Expansion
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of F(z) at infinity is

fl —d (4.2)

and £ is any closed curve surrounding © in R* \ Q. It is easy to see that Im{co} = 0 due
to the infinity condition (?7?). If we chose 9 as an artificial boundary and let £ = 09 and
z = + iy € 09, then the equation (?7?) is an exact artificial boundary condition for Poisson
equation on 2. In practical computation we have to truncate the series (??) to a finite sum:

N
= Z c_pz " for ze€0Q, (4.3)

where N is a given positive integer and

1 (&)

2mi oo {17

dg. (4.4)

C_p =

We call (??) the artificial boundary condition of N-th order.
In the following computation we chose N = 2 and then ¢(z,y) can be calculated by using

(??) as
Y(z,y) =Im(F(2)) =Im (co + c_127 ' +c_227%) for z€0Q, (4.5)
where Im(co) =0,

1

C_1 = -
27i

F iy)(dz + id d cg=-—
o (z+iy)(dz +idy) and c_o 57

. F(z +iy)(z + iy)(dz + idy).

More precisely,

Im (c,lz_l)

:W</ wRydy—ky/ 1/}de3:—$/ (=R, y)dy
—y/_RI/}(w, —R)dw—y/ w(R,y)dy+w/_]; o(z, R)dx

R R
+y1R w(—R,y)dy—w/Rsa(ﬂf,—R)dﬂf>

and Im (c_»z7?) has a similar expression. Here the integration of ¢ can be converted to
integration of ¢ through Cauchy-Riemann equation:

/_1; o(R,y)dy = /_i (@(R,O) + Oy (?;ﬁ( )dT) dy = 2Rp(R,0) / /y 81/} T)drdy,
/_ o(z, R)dz = 2R(0, R) — / /ya‘/’ R)drds,

¢(—R,y)dy = 2Ryp(—R, 0) ’ 6‘/’ r)drdy
[, e
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and
R R T 8’¢J
/ p(z,—R)dr = 2Rp(0, R) — / / — (1, —R)drdx.
-R “rJo Oy
Therefore the second order artificial boundary condition (??) gives a relationship between 1)
and g_:ﬁ along the artificial boundary 02, which is a global artificial boundary condition.

We use the five-point difference scheme in the interior domain ) incorporating with a discrete
artificial boundary condition (??) on the artificial boundary 0. Details of the discrete artificial
boundary condition was reported in [?].

In the following we first test the accuracy of the artificial boundary condition numerically by
solving a problem with two point vortices, and then simulate interaction of two vortex patches.
In the numerical tests we use the vortex in cell method incorporating with the discrete artificial
boundary (??) on 0.

Example 1. Two point vortices:

wo(x) =T(6(x — x1) — 0(x — 2)),

where 1 = (0.3,0.3), 2 = (0.2,0.2), T' = 0.01l7x and §(x) = d(x)d(y). In order to compare
with the traditional boundary condition, three boundary conditions (the artificial boundary
condition of first and second order and the zero boundary condition) are used in the numerical
computation and absolute errors |()a — ¢)(z, £R)| for « € [-R, R] are shown in Fig ??. The
results clearly indicate that the artificial boundary condition is much better than the zero
boundary condition.

— zero boundary — zero boundary
* 1 order artificial boundary * 1 order artifcial boundary
02 order arificial boundary 451 02 order arificial boundary

SREE Ay
gr** * %

* *

* *
051 *y Dnni'ﬂﬁﬂngn
DDD?DDD?DDDDDDDMDDD‘*¥*\ . DDDDPDD
-1 -0.8 -06 -0.4 -0.2 0 02 0.4 06 08 1
Figure 3: Absolute errors with parameters Figure 4: Absolute errors with parameters
R=1.0and A =0.05 R = 2.0 and A=0.05

Example 2. Two vortex patches:

—0.5, (z,y) € {(z,y)|(z — 0.45)> +y*> < 0.01}
wo(z,y) =< =05, (z,y) € {(z,y)|(z + 0.45)% + y% < 0.01}
0, otherwise.

In order to satisfy the infinity condition (??), we add an extra point vortex ws (z,y) = 0.0175(z)d(y)
to the initial vorticity wo and, after solving the Poisson equation, we subtract its stream func-
tion 9y (z,y) = —0.005In(z2 + y2) from the whole solution 1. The numerical results are shown
in Fig ??7-77.
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