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ROBUSTNESS OF AN UPWIND FINITE DIFFERENCE SCHEME
FOR SEMILINEAR CONVECTION-DIFFUSION PROBLEMS
WITH BOUNDARY TURNING POINTS *
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Abstract

We consider a singularly perturbed semilinear convection-diffusion problem with a
boundary layer of attractive turning-point type. It is shown that its solution can be
decomposed into a regular solution component and a layer component. This decomposi-
tion is used to analyse the convergence of an upwinded finite difference scheme on Shishkin
meshes.
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1. Introduction

We consider the singularly perturbed semilinear convection-diffusion problem
Tu(z) := —eu"(z) — 2Pa(x)u’(z) + 2Pb(z,u(z)) =0 for x € (0,1), (1a)
u(0) =0, u(l) =, (1b)
where 0 < ¢ < 1 is a small constant, p > 0, a(z) > a > 0, b, > 0 for z € [0,1], a € C*[0,1]
and b € C*([0,1] x IR). Its solution u typically has a boundary layer of width O(e!/(P+!) In¢)
at z = 0. Numerical schemes for the case when p = 0 have been extensively studied in the

literature; see [6] for a survey.
The class of problems considered includes

—eu" —zu' +zu=0, for z € (0,1), u(0) =10, u(l)=m,

which models heat flow and mass transport near oceanic rises [1]. Multiple boundary turning
points (p > 1) are also covered by (1) and they too arise in applications [7].

We are aware of four publications that analyse numerical methods for (1) with p = 1.
Liseikin [2] constructs a special transformation and solves the transformed problem on a uni-
form mesh. The method obtained is proven to be first-order uniformly convergent in the
discrete maximum norm. Vulanovi¢ [8] studies an upwind-difference scheme on a layer-adapted
Bakhvalov-type mesh and proves convergence in a discrete 1 norm. This result is generalized
in [9] for quasilinear problems. In [3] the authors establish almost first-order convergence in
the discrete £, norm for an upwind difference scheme on a Shishkin mesh. There are also a
number of papers that consider problems of the type

—eu"(z) — 2Pa(z)u’ (z) + e(z,u(z)) =0 in (0,1)

with Dirichlet boundary conditions and ¢,(0,u(0)) > v > 0. In this case, however, the be-
haviour is dominated by the relation between the diffusion term and the reaction term. The
layer structure is like that of reaction-diffusion problems and is different from the layer occur-
ring in (1). We are not aware of any publication that considers numerical methods for (1) with
general p > 0.
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The main purpose of the present paper is to derive a decomposition of the solution of (1) into
a regular solution component and a boundary layer component, with sharp estimates for their
derivatives up to the third order (Section 2). In Section 3 we shall show how this decomposition
can be used to analyse the convergence of an upwinded difference scheme for the approximate
solution of (1). We prove that the scheme on a Shishkin mesh is almost first-order convergent
in the discrete maximum norm, no matter how small the perturbation parameter £ may be.
This error analysis is based on a hybrid stability inequality derived in [3] which implies that
the error in the /., norm is bounded by a specially weighted ¢; norm of the truncation error.

Notation. By C we denote throughout the paper a generic positive constant that is inde-
pendent of ¢ and of NV, the number of mesh nodes used.

2. Solution Decomposition

Theorem 1. Let a € C'[0,1] and b € C'([0,1] x IR). Then (1) has a unique solution u €
C3[0,1] and this solution can be decomposed as u = v+w, where the regular solution component
v satisfies

Tv=0, |V (@)|+[v"(x)] <C and e[v"(z)] < Ca? for z € (0,1),
while the boundary layer component w satisfies

Tw:= —ew" — zPaw’ + zPb(z,w) =0, b(z,w) = b(z,v + w) — b(z,v)

and
xPJrl

(4) < —i e i =0.1.2 1
|w (:U)|_Cu exp( 6(p+1)> for 1=0,1,2,3, z€(0,1)

with p = e'/(P+1)

Proof. The decomposition is constructed as follows. We define v and w to be the solution
of the boundary-value problems

Tv=0 for z€(0,1), a(0)v'(0) =5b(0,v(0)), v(l) = (2a)

and

Tw=0 for z € (0,1), w(0) = —v(0), w(l) =0. (2b)

The bounds for v and w and their derivatives will be given in Sections 2.2 and 2.3.

2.1. Preliminaries
Let

Aw) =1 /0 " Pa(s)ds

9

and choose a* to satisfy a(x) > o* > 0. For our analysis we need bounds for a number of
integral expressions involving A. First of all we have

* e+l * optl _ ptl
—A(x)g—%;”ﬂ and A(s)—A(x)g%% for 0<s<az<l. (3)
From this, for arbitrary ¢ > 0 we get
a* [ a* [ a* sPtl — pptl
@[ s+ exp(A(s) — A d<—/ P @5 T Vgs<1. 4
SA 070 exp(A(s) - Al))ds < % [ ey (ST < (4)

We shall also use

1 1 1 /p +1
||a||oosp+ ) / < llal|oot? )
exp(—A(s))ds >/ ex (—7 ds = exp | ————— | dt
/0 p(=A(s))ds 2 0 P (p+1e a 0 P (p+1)

1 1
waﬁ>
> exp | ———— | dt = Cp.
> p( p+D 8

()
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Lemma 1. For arbitrary p > 0 there ezists a constant C = C(p) such that
xrP z a* Serl _ l.p+1

— exp<—7> ds <C forall x>0, e>0.
e Jo € p+1

Proof. Using the transformations
z=(p+ Dt/a) P and s=(e(p+ 1)o/a) /P
we see that
= " exp (C“_*L - i””“) s =t [ o0 o = (1)
e Jo € p+1 0

Clearly F, € C°[0,00) and F,(0) = 0 for p > 0. On the other hand we have lim;_,, F,(t) = 1.
Thus there exists a constant C(p) > 0 with max;¢[o,o0) F(t) < C(p).

2.2. The Regular Solution Component
In (2a) we have defined v as the solution of

To(z) =0 for z € (0,1), Bov:= —a(0)v'(0) + b(0,v(0)) =0, v(1) = 7.

The operator 7 with these boundary conditions satisfies a comparison principle [5], which
ensures the existence of a unique solution: if two functions 4 and 4 satisfy Ta(z) < Ta(z) in
(0,1), Boi < Bpti and @(1) < @(1), then a(x) < 4(z) on [0,1]. Using this comparison principle
with
n 1-2z
v' =4 | ——max|b(z,0)| + ],
8] x
we get
lv(z)| < C for z € (0,1).
Now let us bound the derivatives of v. It is easily verified that

/! b(0,v(0) (!
v(x)—/m 9 (s)ds — L) /xexp(—A(s))ds-%'yl,
where

Pp(z) = —% /OI sPb(s,v(s)) exp(A(s) — A(z))ds.

From this representation we immediately get

v'(z) = R /Ox sPb(s,v(s)) exp(A(s) — A(z))ds +

b(0,v(0))
a
This gives
[v'(z)| < C for € (0,1),

because of (4).
Differentiating (6) once and using integration by parts, we get

v'a) = 24 [ (”("”’)' (5) exp(A(s) — A(x))ds.

9 a

Therefore

" P [* xP /m a sPtl — gpptl
<C= - <C— P
[v"(z)| < C 8 /0 exp(A(s) — A(z))ds < C e Jo €Xp (5 p+1 ds
and
[v"(z)| < C for z € (0,1)
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by Lemma 1.
A bound for the third-order derivative is obtained from the differential equation and the
bounds on v" and v"":

—ev" =2 (av — b(-,v))l + pa? (av" = b(-,v)).
Let F(z) := av’' — b(-,v). Equation (2a) implies F'(0) = 0. On the other hand we have
|F'(2)] = | (av' = b(-,v)) (2)] < C,
by our earlier bounds for v, v and v"”. Thus |F(a:)| < Cz. We get
e|v"(z)| < Ca? for z € (0,1).
This completes our analysis of the regular part of u.
2.3. The Boundary Layer Component

Let a; be arbitrary but fixed with mingepoqja(z) = a1 > a2 > az > a. Recall that the
layer component solves

Tw(z) =0 for z € (0,1), w(0) =1 —v(0), w(l)=0.
The operator 7 with Dirichlet boundary conditions also satisfies a comparison principle [5]:
if two functions @ and 4 satisfy Ta(z) < Td(z) in (0,1) and a(z) < 4(z) for z = 0,1, then
@(z) < u(x) on [0,1]. This comparison principle guarantees the existence of a unique solution.
Using the barrier functions

oy P!
=+ — -
o =~ o@lexp (22 )
we obtain
p+1
lw(z )|<C’exp< a1§+1> for z € (0,1). (7)

To bound the derivatives of w we use

70+/19
1

exp(—A(s))ds

Aem@A@m&

= /zl D (s)ds —
/

0

where
Do) = =3 [ s, w() expl(A(s) - A(w))ds
Thus
v(0) — v + / D
w'(z) = =y (x) + i exp(—A(7)). (8)
/Oexp ds
We have

ep+1

- al ght1
|M&M$H=M@M@+w@D—M&M$HSCW(N<pr< )
by (7). Using this bound and (3) with o* = ay, we obtain

p+1 p+1 p+1
|0 (2 )|<c”“° exp <_%;”+1> <Ce p< Of;’H) for = € (0,1). 9)
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From (5), (8) and (9) we get

p+1
|w'(z)| < Cp'exp <—;E;m+ 1)> for = € (0,1).

Use the differential equation and the estimates for w and w' to get
p+1
w”(z)| < Cpu=?ex (—&> for x € (0,1).
|w" (z)] < Cu™* exp ot D (0,1)

We differentiate (2b) and apply our bounds for w, w' and w" to get the desired bound for w'”.
This completes the proof of Theorem 1.

3. Error Analysis of a First-order Upwind Scheme

Let N, our discretization parameter, be a positive integer. Let w : 0 =29 < 21 < --- <
zn = 1 be an arbitrary mesh and set h; = x; — x;—1 fori =1,..., N. We discretize (1) using
the following simple upwind scheme:

[TU]izo fori=1,....N -1, Uy =, Un =1, (10)
where
[TU]i = —¢ [D"'D_U]i —azla; [D+U]i + 2Pb(z;, U;),
Uit1 — U; U; —U;—
[D*U], := 22— and [D7U], = 0
¢ hiy1 g h;

In order to achieve uniform convergence, i.e., convergence that is independent of the per-
turbation parameter €, we use generalized Shishkin meshes [4]. Let

1/(p+1)
)\ = (AO;(]): 1) In N)

with a constant Ay > 2. Also, let J = ¢N be a positive integer such that ¢ < Land ¢! < C. We
assume that A < ¢, since N is unreasonably large otherwise. Then we form the Shishkin mesh
by dividing the interval [0, A] into J equidistant subintervals and the interval [A, 1] into N — J
equidistant subintervals. Note that x; = A\. We denote by h = A/J and H = (1-))/(N—J) <
C/N the local mesh sizes on the fine and coarse parts of the mesh.

In [3] stability properties of the discrete operator T' were studied. It was established that (10)
possesses a unique solution on arbitrary meshes and that for any mesh functions V' and W with
Vo = Wy and Vy = Wiy, one has

IV = Wlo,eo :=  max |V —W);| < a YTV = TW ||, (11)
7=0,...,
where
N—1
Vo =Y hjr1Q; Vil
j=1
with

—1
2 h; :
Qn =0 and Qj_1:<1+JT”> (Qj+%> for j=1,...,N.

Using induction it was proved that
0<Qj<z;” for j=1,...,N—1, (12)

see [3]. However for our analysis we need a sharper bound on @; for j =1,...,J — 1. On our
Shishkin mesh we have

A .
Q]—lSQj-{_a for .]:17"'7J7
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since hj = A/J for j < J. Thus

(J=HX 1 X A .
i < — < — 4+ —-<(C- f =1,...,J—-1 1
Q<@+ —F—<g+os0 for j=1,....,7-1, (13)
by (12).

Theorem 2. Let u be the solution of problem (1). Then the following e-uniform convergence
result holds true for the solution U of the discrete problem (10) on the Shishkin mesh:

Ju-vll, . <) # N

Proof. We have

-1

le = Ull, oo < @7 |Tull,,,

by (10) and (11). Using the solution decomposition of Theorem 1 it is easily verified that
Tu= Lv— Lv+ Lw— Lw in the mesh points,

where L and £ are the linear parts of T and 7,i.e., L = —eDTD~ —aD%" and L = —5;—; —a%.
In Sections 3.1 and 3.2 we shall show that

|Zv = Lof|,, <ON' and ||Lw — Lw| |, < C(N)* "N,
which together with a triangle inequality yields the desired result.
Remark 1. Numerical experiments suggest that the estimate of (13) can be improved to
Q; <Cpfe for j=1,...,J—1
This would imply the better convergence result
lu—U|, .. <CN)/ "IN,

but we do not yet have a rigorous proof of this.

3.1. Regular Component of the Error
Let 7¥ = Tv — Tw. Then in view of (12) we have

N-by
j+
17%0wr <> 5 177 (14)
j=1 i
When studying |7}'| we shall distinguish three cases: j < .J, j = J and j > J.
Layer region. For j =1,...,J — 1 use a Taylor expansion to get
77| < Ch ( max |ev"'| + 28 max |v"|> . (15)
[j-1,2j+1] a0
Thus
h: . P
L || < on? { (@> + 1} < Cw?, (16)
X Tj

because zj41/z; = (j +1)/7 <2for j < J.
Transition point. For j = J a Taylor expansion gives

|T]”| <C ( max |ev”| +Ha:§.’ max |v”|> :

[j-1,2541] 5,05 41]



Robustness of an Upwind Finite Difference Scheme for ... 407

Thus

5120 (3 o) scimm <o

y4
Zj

Coarse mesh region. Similarly to (15), for j = J+1,...,N — 1 we have

7| < CH( max |ev"'| + 2 max |v”|> .

[j—1,2541] T;,Tj41
Thus
it 9 A (G+1=T)H\? )
P 7| < CH N+ G- DH +1s <CH?, (18)

because A+ (j +1—J)H <2(A+ (j — J)H) for j > J.
Combining (14) with (16)—(18), we obtain

ITv - To||lus < CN™L

3.2. Layer Component of the Error
Let 7} = Tw — Tw. We have

N-1
17 < Y~ Qihjea |7)]- (19)
j=1
We shall distinguish two cases: j < J and j > J.
Layer region. For j =1,...,J — 1 we have (cf. (15))

az?
™| < Ch max |ew''| + 2? max w”) <Chp 2 (ep ™t +a8)exp | ——2=L ),
| / | - ([mjlyzj+1]| | J [$j7Ij+1]| ) = a ( a ]) P e(p+1)

by Theorem 1. This inequality, (12) and (13) give

A3 az_
Qjhjs |7)] < C= exp (- I,

e(p+1)

where A := (In N)"/®*Y For any m > 0 there exists a constant C' = C'(m) such that
axP ~ T
exp| — ) < Cexp (—m—
( elp+ 1)) Iz

A3 ANt
th]'+1 |7']w| S Cﬁ exp <——> .

This yields

J
Thus
J—1
A3 1 A2 A2
Y Qi || < 05— < 0= < C—, (20)
= J J21—exp(-4%) J N
since lim z/(1 —exp(—z)) =1 and Jim AJJ=0.
Transition point and coarse mesh region. Here we use the fact that for j = J,..., N —1 one
has "
P
w; — Wj—1 ' —1 arj q
——— | < max |w'(z)|<C exp | —
‘ h; _[zj_l,zj]| (@)l < Cn p( E(p+1)>
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and

by Theorem 1. Thus

Qi 7] < Mt Ll H ity
jhis || o7 7l < R T
<c aw?ﬂ a(mgﬂ fgﬂl)
e —7 e
R WETEEVY A NEPESY
az?t! In N
<C - A 1)—— ) <CN~ o
since In N/J < C. We get
J—1
S Qi 1] < ON e
j=1

Now ||Tw — Tw||,1 < CA2N~! follows from (19), (20) and (21).

4. Numerical Results

In this section we verify experimentally our convergence result. Our test problem is the
semilinear problem

—eu — 2P (2 —z)u' + 2P =0 for x € (0,1), u(0) =wu(1l) =0. (22)

The exact solution of this problem is unavailable. We therefore estimate the accuracy of the
numerical solution by comparing it with the numerical solution on a finer mesh. For our tests
we take @« =1 and ¢ = 1/2.

Indicating by UV that the numerical approximation of (22) depends on both N and ¢, we
estimate the uniform error by

nN = e:l,lor—nlz,l.).(.,lo—12 ”UEN B USNHOO

where UEN is the approximate solution of the first-order scheme on a mesh obtained by bisecting
the original mesh three times, i.e. a mesh that is eight times finer. The rates of convergence
are computed using the standard formula ¥ = In (nN/UZN) /ln 2.

The results of our test computations are given in Tables 1. They are clear illustrations of
the almost first-order convergence proved in Theorem 2.

5. Interior Turning Point Problems

Let us now briefly discuss the case of interior turning points. For this purpose we consider
the boundary-value problem

Tu(z) := —eu” () — x|z’ a(x)u' (z) + |2|Pb(z,u(x)) =0 for =€ (-1,1), (23a)
u(—1) = y-1, u(l) = 7. (23b)

Again, we assume that 0 < ¢ < 1 is a small constant, p > 0, a(z) > a > 0, b, > 0 for
€ [-1,1], a € C'[0,1] and b € C*([-1,1] x IR). Because the convection coefficient changes
sign at an interior point of the domain, u has an interior layer.
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Table 1: Upwind scheme on Shishkin meshes.
p=1/2 p=2 p=3
N error rate error rate error rate
16 6.630e-2 0.76 | 5.405e-2 0.90 | 5.298e-2 0.92
32 3.912e-2  0.82 | 2.902e-2 0.93 | 2.797e-2  0.95
64 2.214e-2  0.86 | 1.520e-2 0.95 | 1.451le-2 0.97
128 1.222e-2  0.89 | 7.850e-3 0.96 | 7.421e-3 0.98
256 6.610e-3  0.91 | 4.022e-3 0.97 | 3.771le-3 0.98
512 3.529e-3 0.92 | 2.050e-3 0.98 | 1.906e-3 0.99
1024 1.867e-3 0.93 | 1.042e-3 0.98 | 9.596e-4 0.99
2048 9.806e-4 0.94 | 5.280e-4 0.98 | 4.822e-4 0.99
4096 5.127e-4 0.94 | 2.671e-4 0.99 | 2.422e-4 0.99
8192 2.670e-4 0.95 | 1.349e-4 0.99 | 1.218e-4 0.99
16384 | 1.387e-4 — 6.806e-5 — 6.128e-5 —

The operator T enjoys a comparison principle which can be used to show that |u(z)] < C
for z € (—1,1). Then u™ := u|j 1) and u™ := u[_1,0] solve

Tut =0 in (0,1), u™(0) =u(0), u™(1)=m

and
Tu~™ =0 in (-1,0), u=(=1) =~_1, u(0) = u(0).

Hence ut and u~ can be regarded as solutions of boundary-turning point problems of the
type considered in Section 2. This immediately gives us bounds for the derivatives of u and a
decomposition into regular and layer components.

The generalization of the simple upwind scheme (10) for (23) on the mesh w : —1 = 29 <
T <. -<zy=1is

[TU], =0 for i=1,...,N—1, Up=7_1, Uy =,

where
U] —5[D+D_U]i —ata; [D+U]i + 2b(z;,U;) ifx; >0
7 —e[D DU, - 2ba;[DU], + alb(z;,U;) if @; < 0.
The technique from [3] can be used to prove that for any mesh functions V' and W with V5 = W
and Vy = Wy, one has

IV = Wllaoo <a TV = TW]lu

where Nt
— hj+1 lf wj > 0,
Vv = h;Q;|V;| with h; := -
1V .s ]2:; 193 1Vil ! { h; otherwise,
-1
z¥ | h; h;
Qn=0, Qj_1 = (1 + JTH> (Qj + f) for z;_1 >0,

and

pp\ h
QO =0, Qj = (1 + WT]> (Qj_l + ?) for T; < 0.
The convergence analysis then follows along the lines of Section 3.
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