ROBUSTNESS OF AN UPWIND FINITE DIFFERENCE SCHEME FOR SEMILINEAR CONVECTION-DIFFUSION PROBLEMS WITH BOUNDARY TURNING POINTS *

Torsten Linß

(Institut für Numerische Mathematik, Technische Universität Dresden, D-01062 Dresden, Germany)

Abstract

We consider a singularly perturbed semilinear convection-diffusion problem with a boundary layer of attractive turning-point type. It is shown that its solution can be decomposed into a regular solution component and a layer component. This decomposition is used to analyse the convergence of an upwinded finite difference scheme on Shishkin meshes.

 $\label{eq:Keywords: Convection-diffusion, Singular perturbation, Solution decomposition, Shishkin mesh.$

1. Introduction

We consider the singularly perturbed semilinear convection-diffusion problem

$$\mathcal{T}u(x) := -\varepsilon u''(x) - x^p a(x)u'(x) + x^p b(x, u(x)) = 0 \text{ for } x \in (0, 1),$$
(1a)

$$u(0) = \gamma_0, \ u(1) = \gamma_1,$$
 (1b)

where $0 < \varepsilon \ll 1$ is a small constant, p > 0, $a(x) > \alpha > 0$, $b_u \ge 0$ for $x \in [0,1]$, $a \in C^1[0,1]$ and $b \in C^1([0,1] \times \mathbb{R})$. Its solution u typically has a boundary layer of width $\mathcal{O}(\varepsilon^{1/(p+1)} \ln \varepsilon)$ at x = 0. Numerical schemes for the case when p = 0 have been extensively studied in the literature; see [6] for a survey.

The class of problems considered includes

$$-\varepsilon u'' - xu' + xu = 0$$
, for $x \in (0,1)$, $u(0) = \gamma_0$, $u(1) = \gamma_1$,

which models heat flow and mass transport near oceanic rises [1]. Multiple boundary turning points (p > 1) are also covered by (1) and they too arise in applications [7].

We are aware of four publications that analyse numerical methods for (1) with p=1. Liseikin [2] constructs a special transformation and solves the transformed problem on a uniform mesh. The method obtained is proven to be first-order uniformly convergent in the discrete maximum norm. Vulanović [8] studies an upwind-difference scheme on a layer-adapted Bakhvalov-type mesh and proves convergence in a discrete ℓ_1 norm. This result is generalized in [9] for quasilinear problems. In [3] the authors establish almost first-order convergence in the discrete ℓ_{∞} norm for an upwind difference scheme on a Shishkin mesh. There are also a number of papers that consider problems of the type

$$-\varepsilon u''(x) - x^p a(x)u'(x) + c(x, u(x)) = 0$$
 in $(0, 1)$

with Dirichlet boundary conditions and $c_u(0, u(0)) \ge \gamma > 0$. In this case, however, the behaviour is dominated by the relation between the diffusion term and the reaction term. The layer structure is like that of reaction-diffusion problems and is different from the layer occurring in (1). We are not aware of any publication that considers numerical methods for (1) with general p > 0.

^{*} Received March 6, 2001; final revised June 6, 2002.

The main purpose of the present paper is to derive a decomposition of the solution of (1) into a regular solution component and a boundary layer component, with sharp estimates for their derivatives up to the third order (Section 2). In Section 3 we shall show how this decomposition can be used to analyse the convergence of an upwinded difference scheme for the approximate solution of (1). We prove that the scheme on a Shishkin mesh is almost first-order convergent in the discrete maximum norm, no matter how small the perturbation parameter ε may be. This error analysis is based on a hybrid stability inequality derived in [3] which implies that the error in the ℓ_{∞} norm is bounded by a specially weighted ℓ_1 norm of the truncation error.

Notation. By C we denote throughout the paper a generic positive constant that is independent of ε and of N, the number of mesh nodes used.

2. Solution Decomposition

Theorem 1. Let $a \in C^1[0,1]$ and $b \in C^1([0,1] \times \mathbb{R})$. Then (1) has a unique solution $u \in C^3[0,1]$ and this solution can be decomposed as u = v + w, where the regular solution component v satisfies

$$\mathcal{T}v = 0$$
, $|v'(x)| + |v''(x)| \le C$ and $\varepsilon |v'''(x)| \le Cx^p$ for $x \in (0,1)$,

while the boundary layer component w satisfies

$$\tilde{\mathcal{T}}w := -\varepsilon w'' - x^p a w' + x^p \tilde{b}(x, w) = 0, \quad \tilde{b}(x, w) = b(x, v + w) - b(x, v)$$

and

$$|w^{(i)}(x)| \le C\mu^{-i} \exp\left(-\frac{\alpha x^{p+1}}{\varepsilon(p+1)}\right) \quad for \quad i = 0, 1, 2, 3, \quad x \in (0, 1)$$

with $\mu = \varepsilon^{1/(p+1)}$.

Proof. The decomposition is constructed as follows. We define v and w to be the solution of the boundary-value problems

$$\mathcal{T}v = 0 \text{ for } x \in (0,1), \ a(0)v'(0) = b(0,v(0)), \ v(1) = \gamma_1$$
 (2a)

and

$$\tilde{\mathcal{T}}w = 0 \text{ for } x \in (0,1), \ w(0) = \gamma_0 - v(0), \ w(1) = 0.$$
 (2b)

The bounds for v and w and their derivatives will be given in Sections 2.2 and 2.3.

2.1. Preliminaries

Let

$$A(x) := \frac{1}{\varepsilon} \int_0^x s^p a(s) ds$$

and choose α^* to satisfy $a(x) \ge \alpha^* > 0$. For our analysis we need bounds for a number of integral expressions involving A. First of all we have

$$-A(x) \le -\frac{\alpha^*}{\varepsilon} \frac{x^{p+1}}{p+1} \quad \text{and} \quad A(s) - A(x) \le \frac{\alpha^*}{\varepsilon} \frac{s^{p+1} - x^{p+1}}{p+1} \quad \text{for} \quad 0 \le s \le x \le 1.$$
 (3)

From this, for arbitrary $q \geq 0$ we get

$$\frac{\alpha^*}{\varepsilon} \int_0^x s^{(p+q)} \exp(A(s) - A(x)) ds \le \frac{\alpha^*}{\varepsilon} \int_0^x s^p \exp\left(\frac{\alpha^*}{\varepsilon} \frac{s^{p+1} - x^{p+1}}{p+1}\right) ds \le 1.$$
 (4)

We shall also use

$$\int_{0}^{1} \exp(-A(s))ds \ge \int_{0}^{1} \exp\left(-\frac{\|a\|_{\infty} s^{p+1}}{(p+1)\varepsilon}\right) ds = \mu \int_{0}^{1/\mu} \exp\left(-\frac{\|a\|_{\infty} t^{p+1}}{(p+1)}\right) dt
\ge \mu \int_{0}^{1} \exp\left(-\frac{\|a\|_{\infty} t^{p+1}}{(p+1)}\right) dt = C\mu.$$
(5)

Lemma 1. For arbitrary p > 0 there exists a constant C = C(p) such that

$$\frac{x^p}{\varepsilon} \int_0^x \exp\left(\frac{\alpha^*}{\varepsilon} \frac{s^{p+1} - x^{p+1}}{p+1}\right) \, ds \le C \quad \text{for all} \quad x \ge 0, \ \varepsilon > 0.$$

Proof. Using the transformations

$$x = (\varepsilon(p+1)t/\alpha^*)^{1/(p+1)}$$
 and $s = (\varepsilon(p+1)\sigma/\alpha^*)^{1/(p+1)}$,

we see that

$$\frac{\alpha^* x^p}{\varepsilon} \int_0^x \exp\left(\frac{\alpha^*}{\varepsilon} \frac{s^{p+1} - x^{p+1}}{p+1}\right) \, ds = e^{-t} t^{p/(p+1)} \int_0^t e^{\sigma} \sigma^{-p/(p+1)} \, d\sigma := F_p(t).$$

Clearly $F_p \in C^0[0, \infty)$ and $F_p(0) = 0$ for p > 0. On the other hand we have $\lim_{t \to \infty} F_p(t) = 1$. Thus there exists a constant C(p) > 0 with $\max_{t \in [0, \infty)} F_p(t) \leq C(p)$.

2.2. The Regular Solution Component

In (2a) we have defined v as the solution of

$$\mathcal{T}v(x) = 0$$
 for $x \in (0,1)$, $\mathcal{B}_0v := -a(0)v'(0) + b(0,v(0)) = 0$, $v(1) = \gamma_1$.

The operator \mathcal{T} with these boundary conditions satisfies a comparison principle [5], which ensures the existence of a unique solution: if two functions \check{u} and \hat{u} satisfy $\mathcal{T}\check{u}(x) \leq \mathcal{T}\hat{u}(x)$ in (0,1), $\mathcal{B}_0\check{u} \leq \mathcal{B}_0\hat{u}$ and $\check{u}(1) \leq \hat{u}(1)$, then $\check{u}(x) \leq \hat{u}(x)$ on [0,1]. Using this comparison principle with

$$v^{\pm} = \pm \left(\frac{1-x}{\alpha} \max_{x} |b(x,0)| + |\gamma_1|\right),\,$$

we get

$$|v(x)| \le C$$
 for $x \in (0,1)$.

Now let us bound the derivatives of v. It is easily verified that

$$v(x) = \int_{x}^{1} \vartheta_{v}(s) ds - \frac{b(0, v(0))}{a(0)} \int_{x}^{1} \exp(-A(s)) ds + \gamma_{1},$$

where

$$\vartheta_v(x) = -\frac{1}{\varepsilon} \int_0^x s^p b(s, v(s)) \exp(A(s) - A(x)) ds.$$

From this representation we immediately get

$$v'(x) = \frac{1}{\varepsilon} \int_0^x s^p b(s, v(s)) \exp(A(s) - A(x)) ds + \frac{b(0, v(0))}{a(0)} \exp(-A(x)).$$
 (6)

This gives

$$|v'(x)| \le C$$
 for $x \in (0,1)$,

because of (4).

Differentiating (6) once and using integration by parts, we get

$$v''(x) = \frac{x^p a(x)}{\varepsilon} \int_0^x \left(\frac{b(\cdot, v)}{a}\right)'(s) \exp(A(s) - A(x)) ds.$$

Therefore

$$\left|v''(x)\right| \le C\frac{x^p}{\varepsilon} \int_0^x \exp(A(s) - A(x)) ds \le C\frac{x^p}{\varepsilon} \int_0^x \exp\left(\frac{\alpha}{\varepsilon} \frac{s^{p+1} - x^{p+1}}{p+1}\right) ds$$

and

$$|v''(x)| \le C$$
 for $x \in (0,1)$

by Lemma 1.

A bound for the third-order derivative is obtained from the differential equation and the bounds on v' and v'':

$$-\varepsilon v''' = x^p (av - b(\cdot, v))' + px^{p-1} (av' - b(\cdot, v)).$$

Let $F(x) := av' - b(\cdot, v)$. Equation (2a) implies F(0) = 0. On the other hand we have

$$|F'(x)| = |(av' - b(\cdot, v))'(x)| \le C,$$

by our earlier bounds for v, v' and v''. Thus $|F(x)| \leq Cx$. We get

$$\varepsilon |v'''(x)| < Cx^p \text{ for } x \in (0,1).$$

This completes our analysis of the regular part of u.

2.3. The Boundary Layer Component

Let α_i be arbitrary but fixed with $\min_{x \in [0,1]} a(x) = \alpha_1 > \alpha_2 > \alpha_3 > \alpha$. Recall that the layer component solves

$$\tilde{\mathcal{T}}w(x) = 0 \text{ for } x \in (0,1), \ w(0) = \gamma_0 - v(0), \ w(1) = 0.$$

The operator $\tilde{\mathcal{T}}$ with Dirichlet boundary conditions also satisfies a comparison principle [5]: if two functions \check{u} and \hat{u} satisfy $\tilde{\mathcal{T}}\check{u}(x) \leq \tilde{\mathcal{T}}\hat{u}(x)$ in (0,1) and $\check{u}(x) \leq \hat{u}(x)$ for x=0,1, then $\check{u}(x) \leq \hat{u}(x)$ on [0,1]. This comparison principle guarantees the existence of a unique solution. Using the barrier functions

$$w^{\pm} = \pm |\gamma_0 - v(0)| \exp\left(-\frac{\alpha_1}{\varepsilon} \frac{x^{p+1}}{p+1}\right),$$

we obtain

$$|w(x)| \le C \exp\left(-\frac{\alpha_1}{\varepsilon} \frac{x^{p+1}}{p+1}\right) \text{ for } x \in (0,1).$$
 (7)

To bound the derivatives of w we use

$$w(x) = \int_{x}^{1} \vartheta_{w}(s)ds - \frac{v(0) - \gamma_{0} + \int_{0}^{1} \vartheta_{w}(s)ds}{\int_{0}^{1} \exp(-A(s))ds} \int_{x}^{1} \exp(-A(s))ds,$$

where

$$\vartheta_w(x) = -\frac{1}{\varepsilon} \int_0^x s^{p} \tilde{b}(s, w(s)) \exp(A(s) - A(x)) ds.$$

Thus

$$w'(x) = -\vartheta_w(x) + \frac{v(0) - \gamma_0 + \int_0^1 \vartheta_w(s) ds}{\int_0^1 \exp(-A(s)) ds} \exp(-A(x)).$$
 (8)

We have

$$\left|\tilde{b}(s, w(s))\right| = \left|b(s, v(s) + w(s)) - b(s, v(s))\right| \le C|w(s)| \le C \exp\left(-\frac{\alpha_1}{\varepsilon} \frac{s^{p+1}}{p+1}\right),$$

by (7). Using this bound and (3) with $\alpha^* = \alpha_1$, we obtain

$$\left|\vartheta_w(x)\right| \le C \frac{x^{p+1}}{\varepsilon} \exp\left(-\frac{\alpha_1}{\varepsilon} \frac{x^{p+1}}{p+1}\right) \le C \exp\left(-\frac{\alpha_2}{\varepsilon} \frac{x^{p+1}}{p+1}\right) \quad \text{for } x \in (0,1). \tag{9}$$

From (5), (8) and (9) we get

$$|w'(x)| \le C\mu^{-1} \exp\left(-\frac{\alpha_2 x^{p+1}}{\varepsilon(p+1)}\right) \text{ for } x \in (0,1).$$

Use the differential equation and the estimates for w and w' to get

$$|w''(x)| \le C\mu^{-2} \exp\left(-\frac{\alpha_3 x^{p+1}}{\varepsilon(p+1)}\right) \text{ for } x \in (0,1).$$

We differentiate (2b) and apply our bounds for w, w' and w'' to get the desired bound for w'''. This completes the proof of Theorem 1.

3. Error Analysis of a First-order Upwind Scheme

Let N, our discretization parameter, be a positive integer. Let $\omega: 0=x_0 < x_1 < \cdots < x_N=1$ be an arbitrary mesh and set $h_i=x_i-x_{i-1}$ for $i=1,\ldots,N$. We discretize (1) using the following simple upwind scheme:

$$[TU]_i = 0 \text{ for } i = 1, \dots, N - 1, \ U_0 = \gamma_0, \ U_N = \gamma_1,$$
 (10)

where

$$[TU]_{i} := -\varepsilon [D^{+}D^{-}U]_{i} - x_{i}^{p} a_{i} [D^{+}U]_{i} + x_{i}^{p} b(x_{i}, U_{i}),$$
$$[D^{+}U]_{i} := \frac{U_{i+1} - U_{i}}{h_{i+1}} \text{ and } [D^{-}U]_{i} := \frac{U_{i} - U_{i-1}}{h_{i}}.$$

In order to achieve uniform convergence, i.e., convergence that is independent of the perturbation parameter ε , we use generalized Shishkin meshes [4]. Let

$$\lambda = \left(\lambda_0 \frac{\varepsilon(p+1)}{\alpha} \ln N\right)^{1/(p+1)}$$

with a constant $\lambda_0 \geq 2$. Also, let J = qN be a positive integer such that q < 1 and $q^{-1} \leq C$. We assume that $\lambda \leq q$, since N is unreasonably large otherwise. Then we form the Shishkin mesh by dividing the interval $[0, \lambda]$ into J equidistant subintervals and the interval $[\lambda, 1]$ into N - J equidistant subintervals. Note that $x_J = \lambda$. We denote by $h = \lambda/J$ and $H = (1-\lambda)/(N-J) \leq C/N$ the local mesh sizes on the fine and coarse parts of the mesh.

In [3] stability properties of the discrete operator T were studied. It was established that (10) possesses a unique solution on arbitrary meshes and that for any mesh functions V and W with $V_0 = W_0$ and $V_N = W_N$, one has

$$||V - W||_{\omega,\infty} := \max_{j=0,\dots,N} |(V - W)_j| \le \alpha^{-1} ||TV - TW||_{\omega,1}$$
(11)

where

$$||V||_{\omega,1} := \sum_{j=1}^{N-1} h_{j+1} Q_j |V_j|$$

with

$$Q_N = 0$$
 and $Q_{j-1} = \left(1 + \frac{x_{j-1}^p h_j}{\varepsilon}\right)^{-1} \left(Q_j + \frac{h_j}{\varepsilon}\right)$ for $j = 1, \dots, N$.

Using induction it was proved that

$$0 \le Q_j \le x_j^{-p} \text{ for } j = 1, \dots, N - 1,$$
 (12)

see [3]. However for our analysis we need a sharper bound on Q_j for $j=1,\ldots,J-1$. On our Shishkin mesh we have

$$Q_{j-1} \le Q_j + \frac{\lambda}{\varepsilon J}$$
 for $j = 1, \dots, J$,

since $h_j = \lambda/J$ for $j \leq J$. Thus

$$Q_j \le Q_J + \frac{(J-j)\lambda}{\varepsilon J} \le \frac{1}{\lambda^p} + \frac{\lambda}{\varepsilon} \le C\frac{\lambda}{\varepsilon} \text{ for } j = 1, \dots, J-1,$$
 (13)

by (12).

Theorem 2. Let u be the solution of problem (1). Then the following ε -uniform convergence result holds true for the solution U of the discrete problem (10) on the Shishkin mesh:

$$||u - U||_{\omega,\infty} \le C(\ln N)^{2/(p+1)} N^{-1}.$$

Proof. We have

$$||u - U||_{\omega, \infty} \le \alpha^{-1} ||Tu||_{\omega, 1},$$

by (10) and (11). Using the solution decomposition of Theorem 1 it is easily verified that

$$Tu = Lv - \mathcal{L}v + Lw - \mathcal{L}w$$
 in the mesh points,

where L and \mathcal{L} are the linear parts of T and \mathcal{T} , i. e., $L = -\varepsilon D^+ D^- - aD^+$ and $\mathcal{L} = -\varepsilon \frac{d^2}{dx^2} - a\frac{d}{dx}$. In Sections 3.1 and 3.2 we shall show that

$$||Lv - \mathcal{L}v||_{\omega,1} \le CN^{-1}$$
 and $||Lw - \mathcal{L}w||_{\omega,1} \le C(\ln N)^{2/(p+1)}N^{-1}$,

which together with a triangle inequality yields the desired result.

Remark 1. Numerical experiments suggest that the estimate of (13) can be improved to

$$Q_i \leq C\mu/\varepsilon$$
 for $j=1,\ldots,J-1$.

This would imply the better convergence result

$$\left\|u-U\right\|_{\omega,\infty} \le C \left(\ln N\right)^{1/(p+1)} N^{-1},$$

but we do not yet have a rigorous proof of this.

3.1. Regular Component of the Error

Let $\tau^v = Tv - \mathcal{T}v$. Then in view of (12) we have

$$\|\tau^v\|_{\omega,1} \le \sum_{j=1}^{N-1} \frac{h_{j+1}}{x_j^p} |\tau_j^v| \tag{14}$$

When studying $|\tau_{\underline{j}}^{v}|$ we shall distinguish three cases: j < J, j = J and j > J.

Layer region. For j = 1, ..., J - 1 use a Taylor expansion to get

$$\left|\tau_{j}^{v}\right| \le Ch\left(\max_{[x_{j-1},x_{j+1}]}\left|\varepsilon v'''\right| + x_{j}^{p}\max_{[x_{j},x_{j+1}]}\left|v''\right|\right).$$
 (15)

Thus

$$\frac{h_{j+1}}{x_j^p} \left| \tau_j^v \right| \le Ch^2 \left\{ \left(\frac{x_{j+1}}{x_j} \right)^p + 1 \right\} \le Ch^2, \tag{16}$$

because $x_{j+1}/x_j = (j+1)/j \le 2$ for j < J.

Transition point. For j = J a Taylor expansion gives

$$\left|\tau_{j}^{v}\right| \leq C \left(\max_{\left[x_{j-1}, x_{j+1}\right]} \left|\varepsilon v''\right| + H x_{j}^{p} \max_{\left[x_{j}, x_{j+1}\right]} \left|v''\right|\right).$$

Thus

$$\frac{h_{j+1}}{x_j^p} \left| \tau_j^v \right| \le C \left(\frac{H\varepsilon}{\lambda^p} + H^2 \right) \le C \left(H\mu + H^2 \right) \le CH. \tag{17}$$

Coarse mesh region. Similarly to (15), for j = J + 1, ..., N - 1 we have

$$\left|\tau_j^v\right| \leq CH\left(\max_{[x_{j-1},x_{j+1}]} |\varepsilon v'''| + x_j^p \max_{[x_j,x_{j+1}]} |v''|\right).$$

Thus

$$\frac{h_{j+1}}{x_j^p} \left| \tau_j^v \right| \le CH^2 \left\{ \left(\frac{\lambda + (j+1-J)H}{\lambda + (j-J)H} \right)^p + 1 \right\} \le CH^2, \tag{18}$$

because $\lambda + (j+1-J)H \le 2(\lambda + (j-J)H)$ for j > J.

Combining (14) with (16)–(18), we obtain

$$||Tv - \mathcal{T}v||_{\omega,1} \le CN^{-1}$$
.

3.2. Layer Component of the Error

Let $\tau_i^w = Tw - \mathcal{T}w$. We have

$$\|\tau^w\|_{\omega,1} \le \sum_{j=1}^{N-1} Q_j h_{j+1} |\tau_j^w|. \tag{19}$$

We shall distinguish two cases: j < J and $j \ge J$.

Layer region. For j = 1, ..., J - 1 we have (cf. (15))

$$\left|\tau_{j}^{w}\right| \leq Ch\left(\max_{[x_{j-1},x_{j+1}]}\left|\varepsilon w^{\prime\prime\prime}\right| + x_{j}^{p}\max_{[x_{j},x_{j+1}]}\left|w^{\prime\prime}\right|\right) \leq Ch\mu^{-2}\left(\varepsilon\mu^{-1} + x_{j}^{p}\right)\exp\left(-\frac{\alpha x_{j-1}^{p}}{\varepsilon(p+1)}\right),$$

by Theorem 1. This inequality, (12) and (13) give

$$Q_j h_{j+1} \left| \tau_j^w \right| \le C \frac{\Lambda^3}{J^2} \exp \left(-\frac{\alpha x_{j-1}^p}{\varepsilon(p+1)} \right),$$

where $\Lambda := (\ln N)^{1/(p+1)}$. For any m > 0 there exists a constant $\bar{C} = \bar{C}(m)$ such that

$$\exp\left(-\frac{\alpha x^p}{\varepsilon(p+1)}\right) \le \bar{C} \exp\left(-m\frac{x}{\mu}\right).$$

This yields

$$Q_j h_{j+1} \left| \tau_j^w \right| \le C \frac{\Lambda^3}{J^2} \exp \left(-\frac{\Lambda}{J} \right)^{j-1}.$$

Thus

$$\sum_{j=1}^{J-1} Q_j h_{j+1} \left| \tau_j^w \right| \le C \frac{\Lambda^3}{J^2} \frac{1}{1 - \exp\left(-\frac{\Lambda}{J}\right)} \le C \frac{\Lambda^2}{J} \le C \frac{\Lambda^2}{N},\tag{20}$$

since $\lim_{z\to 0} z/(1-\exp(-z)) = 1$ and $\lim_{N\to\infty} \Lambda/J = 0$.

Transition point and coarse mesh region. Here we use the fact that for $j = J, \ldots, N-1$ one has

$$\left| \frac{w_j - w_{j-1}}{h_j} \right| \le \max_{[x_{j-1}, x_j]} |w'(x)| \le C\mu^{-1} \exp\left(-\frac{\alpha x_{j-1}^{p+1}}{\varepsilon(p+1)}\right)$$

and

$$|w(x)| \le C \exp\left(-\frac{\alpha x_J^{p+1}}{\varepsilon(p+1)}\right)$$

by Theorem 1. Thus

$$\begin{aligned} Q_{j}h_{j+1} \left| \tau_{j}^{w} \right| &\leq \frac{h_{j+1}}{x_{j}^{p}} \left| \tau_{j}^{w} \right| \leq C \left(\frac{\varepsilon}{\lambda^{p}\mu} + 1 + H \right) \exp \left(-\frac{\alpha x_{J-1}^{p+1}}{\varepsilon(p+1)} \right) \\ &\leq C \exp \left(-\frac{\alpha x_{J}^{p+1}}{\varepsilon(p+1)} \right) \exp \left(\frac{\alpha \left(x_{J}^{p+1} - x_{J-1}^{p+1} \right)}{\varepsilon(p+1)} \right) \\ &\leq C \exp \left(-\frac{\alpha x_{J}^{p+1}}{\varepsilon(p+1)} \right) \exp \left(\lambda_{0}(p+1) \frac{\ln N}{J} \right) \leq C N^{-\lambda_{0}}, \end{aligned}$$

since $\ln N/J \leq C$. We get

$$\sum_{j=1}^{J-1} Q_j h_{j+1} \left| \tau_j^w \right| \le C N^{-1} \tag{21}$$

Now $||Tw - \mathcal{T}w||_{\omega,1} \le C\Lambda^2 N^{-1}$ follows from (19), (20) and (21).

4. Numerical Results

In this section we verify experimentally our convergence result. Our test problem is the semilinear problem

$$-\varepsilon u'' - x^p(2-x)u' + x^p e^u = 0 \text{ for } x \in (0,1), \ u(0) = u(1) = 0.$$
(22)

The exact solution of this problem is unavailable. We therefore estimate the accuracy of the numerical solution by comparing it with the numerical solution on a finer mesh. For our tests we take $\alpha = 1$ and q = 1/2.

Indicating by U_{ε}^{N} that the numerical approximation of (22) depends on both N and ε , we estimate the uniform error by

$$\eta^N := \max_{\varepsilon = 1} \max_{10^{-1}} \|U_\varepsilon^N - \tilde{U}_\varepsilon^{8N}\|_\infty,$$

where $\tilde{U}_{\varepsilon}^{8N}$ is the approximate solution of the first-order scheme on a mesh obtained by bisecting the original mesh three times, i.e. a mesh that is eight times finer. The rates of convergence are computed using the standard formula $r^N = \ln \left(\eta^N / \eta^{2N} \right) / \ln 2$.

The results of our test computations are given in Tables 1. They are clear illustrations of the almost first-order convergence proved in Theorem 2.

5. Interior Turning Point Problems

Let us now briefly discuss the case of interior turning points. For this purpose we consider the boundary-value problem

$$\mathcal{T}u(x) := -\varepsilon u''(x) - x|x|^{p-1}a(x)u'(x) + |x|^p b(x, u(x)) = 0 \text{ for } x \in (-1, 1),$$
(23a)

$$u(-1) = \gamma_{-1}, \ u(1) = \gamma_1.$$
 (23b)

Again, we assume that $0 < \varepsilon \ll 1$ is a small constant, p > 0, $a(x) > \alpha > 0$, $b_u \ge 0$ for $x \in [-1,1]$, $a \in C^1[0,1]$ and $b \in C^1([-1,1] \times I\!\! R)$. Because the convection coefficient changes sign at an interior point of the domain, u has an interior layer.

rable 1. opwing benefine on binbinkin meshes.						
	p = 1/2		p = 2		p = 3	
N	error	$_{\mathrm{rate}}$	error	$_{\mathrm{rate}}$	error	rate
16	6.630 e-2	0.76	5.405e-2	0.90	5.298e-2	0.92
32	3.912e-2	0.82	2.902e-2	0.93	2.797e-2	0.95
64	2.214e-2	0.86	1.520e-2	0.95	1.451e-2	0.97
128	1.222e-2	0.89	7.850e-3	0.96	7.421e-3	0.98
256	6.610e-3	0.91	4.022e-3	0.97	3.771e-3	0.98
512	$3.529e\!\!-\!3$	0.92	2.050e-3	0.98	1.906e-3	0.99
1024	1.867e-3	0.93	1.042e-3	0.98	9.596e-4	0.99
2048	9.806e-4	0.94	5.280e-4	0.98	4.822e-4	0.99
4096	5.127e-4	0.94	2.671e-4	0.99	2.422e-4	0.99
8192	2.670e-4	0.95	1.349e-4	0.99	1.218e-4	0.99
16384	1.387e-4	_	6.806e-5	_	6.128e-5	_

Table 1: Upwind scheme on Shishkin meshes.

The operator \mathcal{T} enjoys a comparison principle which can be used to show that $|u(x)| \leq C$ for $x \in (-1,1)$. Then $u^+ := u|_{[0,1]}$ and $u^- := u|_{[-1,0]}$ solve

$$\mathcal{T}u^+ = 0$$
 in $(0,1)$, $u^+(0) = u(0)$, $u^+(1) = \gamma_1$

and

$$\mathcal{T}u^- = 0$$
 in $(-1,0)$, $u^-(-1) = \gamma_{-1}$, $u^-(0) = u(0)$.

Hence u^+ and u^- can be regarded as solutions of boundary-turning point problems of the type considered in Section 2. This immediately gives us bounds for the derivatives of u and a decomposition into regular and layer components.

The generalization of the simple upwind scheme (10) for (23) on the mesh $\omega: -1 = x_0 < x_1 < \cdots < x_N = 1$ is

$$[TU]_i = 0$$
 for $i = 1, ..., N - 1$, $U_0 = \gamma_{-1}$, $U_N = \gamma_1$,

where

$$\begin{bmatrix} TU \end{bmatrix}_i := \left\{ \begin{array}{ll} -\varepsilon \left[D^+D^-U \right]_i - x_i^p a_i \left[D^+U \right]_i + x_i^p b(x_i, U_i) & \text{if } x_i \geq 0 \\ -\varepsilon \left[D^-D^+U \right]_i - x_i^p a_i \left[D^-U \right]_i + x_i^p b(x_i, U_i) & \text{if } x_i < 0. \end{array} \right.$$

The technique from [3] can be used to prove that for any mesh functions V and W with $V_0 = W_0$ and $V_N = W_N$, one has

$$||V - W||_{\omega,\infty} \le \alpha^{-1} ||TV - TW||_{\omega,1}$$

where

$$||V||_{\omega,1} := \sum_{j=1}^{N-1} h_j Q_j |V_j| \quad \text{with} \quad h_j := \left\{ \begin{array}{ll} h_{j+1} & \text{if } x_j \geq 0, \\ h_j & \text{otherwise,} \end{array} \right.$$

$$Q_N = 0$$
, $Q_{j-1} = \left(1 + \frac{x_{j-1}^p h_j}{\varepsilon}\right)^{-1} \left(Q_j + \frac{h_j}{\varepsilon}\right)$ for $x_{j-1} \ge 0$,

and

$$Q_0 = 0$$
, $Q_j = \left(1 + \frac{|x_j|^p h_j}{\varepsilon}\right)^{-1} \left(Q_{j-1} + \frac{h_j}{\varepsilon}\right)$ for $x_j < 0$.

The convergence analysis then follows along the lines of Section 3.

Acknowledgements. The author wishes to acknowledge the hospitality of R. Vulanović and his family and of the Department of Mathematics and Computer Science at Kent State University (Ohio) during a visit to KSU, where work on this paper was started.

References

- [1] T. C. Hanks, Model relating heat-flow values near, and vertical velocities of mass transport beneath, oceanic rises, J. Geophys. Res., 76 (1971), 537-544.
- [2] V. D. Liseikin, The use of special transformations in the numerical solution of boundary layer problems, *Comput. Math. Math. Phys.*, **30**:1 (1990), 43-53.
- [3] T. Linß, R. Vulanović, Uniform methods for semilinear problems with an attractive boundary turning point, *Novi Sad J. Math.*, **31**:2 (2001), 99-114.
- [4] J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Solution of Singularly Perturbed Problems with ε-uniform Numerical Methods — Introduction to the Theory of Linear Problems in One and Two Dimensions, World Scientific, Singapore, 1996.
- [5] M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1967.
- [6] H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Volume 24 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1996.
- [7] H. Schlichtin,. Boundary-Layer Theory, McGraw-Hill, New York, 1979.
- [8] R. Vulanović, On numerical solution of a mildly nonlinear turning point problem, RAIRO, Modél. Math. Anal. Numér, 24:6 (1990), 765-783.
- [9] R. Vulanović and P. Lin, Numerical solution of quasilinear attractive turning point problems, Comput. Math. Appl., 23:12 (1992), 75-82.