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Abstract

The Hamiltonian formulations of the linear “good” Boussinesq (L.G.B.) equation and
the multi-symplectic formulation of the nonlinear “good” Boussinesq (N.G.B.) equation are
considered. For the multi-symplectic formulation, a new fifteen-point difference scheme
which is equivalent to the multi-symplectic Preissmann integrator is derived. We also
present numerical experiments, which show that the symplectic and multi-symplectic
schemes have excellent long-time numerical behavior.

Key words: Nonlinear “good” Boussinesq equation, Multi-symplectic scheme, Preissmann
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1. Introduction

In recent years a remarkable development has taken place in the study of nonlinear evolu-
tionary partial differential equations. An example is the nonlinear “good” Boussinesq (N.G.B.)
equation

Utt = —Ugpger + Uze + (uz)z:t (]-)

which describes shallow water waves propagating in both directions. The analytic expression
of such solutions is

u(z,t) = —Asech’[(P/2)( - &)], €=z —ct; (2)

where & and P > 0 are free real parameters and the amplitude A and velocity ¢ of the wave
are related to P through the formulas

A=3P?)2, c=+V1- P2 (3)

Note that & determines the initial position of the wave, and that, due to the square root
in (3), the parameter P can only take values in 0 < P < 1. Thus, the solitary waves (2) only
exist for a finite range of velocities —1 < ¢ < 1. Of course, a positive (respectively negative)
velocity corresponds to a wave moving to the right (respectively to the left). From the available
literature we find that for the Korteweg-de Vries(KdV) or cubic schrédinger (CS) equations,
the literature is very large, while the study of the N.G.B. equation is only beginning [1, 8, 9, 10].

Hamiltonian systems are canonical systems on phase space endowed with symplectic struc-
tures. The dynamical evolutions, i.e., the phase flow of the Hamiltonian systems are symplectic
transformations that are area-preserving. The importance of the Hamiltonian systems and their
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special property require the numerical algorithms for them should preserve as much as possible
the relevant symplectic properties of the original systems.

Feng Kang[15]_[17] proposed in 1984 a new approach to computing Hamiltonian systems
from the view point of symplectic geometry. He systematically described the general method
for constructing symplectic schemes with any order accuracy via generating functions. A gen-
eralization of the above theory and methods for canonical Hamiltonian equations in infinite
dimension can be found in paper [18].

The L.G.B. equation (10) can be written as three infinite dimension Hamiltonian systems.
Therefore, it is natural to require a discretization or a semi-discretization to reflect this property.
The basic idea is to find a finite dimensional spatial truncation of (10) so that the resulting semi-
discretization equation can be cast into a finite dimensional Hamiltonian system. Next, we can
integrate the finite dimensional Hamiltonian system in time using a symplectic discretization
[11].

However, there are limitations in this approach to developing a symplectic method for
PDEs. The disadvantage of this approach is that it is global. To overcome this limitation,
Bridges and Reich introduced the concept of multi-symplectic integrators based on a multi-
symplectic structure of some conservative PDEs [3, 4]. The theoretical results indicated [4]
that the nice features of the multi-symplctic structure are that it is a strictly local concept
and that it can be formulated as a conservation law involving differential two forms. Thus the
multi-symplectic integrators have excellent local invariant conserving properties. The N.G.B.
equation has multi-symplectic structures, therefore we can apply this approach to obtain multi-
symplectic integrators.

The purpose of this paper is to present symplectic integrators based on the Hamiltonian
formulations of (10) and multi-symplectic integrator based on the multi-symplectic formulation
of (1). The outline of this paper is as follows. In section two, we derive the multi-symplectic
formulation of the N.G.B. equation and obtain a new fifteen-point multi-symplectic scheme.
In section three, we give out three Hamiltonian formulations of the L.G.B. equation (10) with
periodic boundary condition and use the hyperbolic function tanh(z) to construct symplectic
schemes of arbitrary order for them. Numerical experiments are presented in section four.

2. Multi-symplectic Formulation of N.G.B. Equation and
Multi-symplectic Integrator

We first present the concept of multi-symplectic integrators introduced by Bridges and Reich
in [3, 4]. A large class of PDEs (for simplicity,we only consider one space dimension) can be
reformulated as a system of the form

Mzt+sz:sz(z),zeR”,(a:,t) ERZ) (4)

where M and K are skew-symmetric matrices on R™,n > 3 and S : R™ — R is a smooth func-
tion. We call the above system a multi-symplectic Hamiltonian system on a multi-symplectic
structure, since it has a multi-symplectic conversation law

0 0

where w and k are the pre-symplectic forms
1 1
wzidz/\Mdz and /ﬁ:idz/\l(dz

The most significant aspect of the multi-symplectic formulation (4) is that its multi-symplect-
icity is completely local, which characterizes the system more deeply.

Multi-symplecticity is a geometric property of the PDEs, and we naturally require a dis-
cretization to reflect this property. Based on this idea, Bridges and Reich introduced the
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concept, of multi-symplectic integrators, i.e., numerical methods which preserve a discrete ver-
sion of multi-symplectic conservation law in [3]. It has been shown that popular methods such
as the center Preissmann scheme [5] and the leap-frog method are multi-symplectic and that
such schemes having remarkable local energy and momentum conserving properties [3].

Now consider the following generalized nonlinear “good” Boussinesq equation

Ugg = —Uggge T Ugz T+ (GI (U))mc (6)

where G(u) : R — R is some nonlinear smooth function. Especially, choosing G(u) =
then equation (6) is just equation (1).

Introducing the canonical momenta u; = wy,;,u, = p, we can obtain the multi-symplectic
PDEs

1,3
3u,

—wy — Py = —u— G'(u)
Ut = Wgg
Uy =P

with state variable z = (u,w,p)? and the Hamiltonian

1

S = 5w —wl +77) - G(w)
In this case,

0 -1 0 0 0 -1

M=11 0 0], K=10 0 0

0 0 O 1 0 O
The corresponding multi-symplectic conservation law is

0 0

—(dund —(du Adp) =0 7

= (du A dw) + = (du A dp) (7

. . . . 1 41 j 1 jt+3 j+i

Proposition. Upon introducing canonical moments E(“Z+% - ug+%) = 5= ( i+32 — 2wl+22 +

ijr%) 5 L (! ] +%) the following two discrete versions are equivalent
i % 7pi+l - Ax i+1 3 ’ g q

11— 1
O2ul,, +207ul + Opul_, N Opul "+ 204u] + 0fu]t 1

S S R
VN N “(@ +ul) AT T )
1 _ —j—1 i1
+ (G @D + (G @] + (G @] + (G @ )])e (8)
4
. . _Its g it
1 —“’ZE+“’§+% 1 —plE gl Yird +G (i )
— Wt +—— 0 = (w! 2. .9
At i+ 0 it3 Ax uj+% _uj+% Zjﬁz
i+l i Piii
where u! ~ u(iAz, jAL), Az and At are the space step length and time step length respectively.
J__QJ_J _ 2 Jj+1 J j=1 _j+1 _ 1, j+1 Jj+1 41_
(u])ez = Oou] = ul,y — 2u] +ul |, 2ul = ult = 2ul + ! ,uH_l—Q(u. +uiy,), Opui =
ul, _4UZ+1+6Ui_4Ui71+“i72a a =l +ul T ulf) vy, 3112 = 5(ul], +U 1); Zilz =

1( ujy g +ul+1) etc.
Remark 2.1. The scheme (9) is the central Preissmann scheme [3] with the discrete multi-

symplectic conservation law (6]

Jj+1 j+1 J j+1 j+ 1 j+i j+i
dui+§ /\d’w+2 du 41 /\de% N dul+12 /\dpz+12 —dui 2 /\dpi 2 o

At Az
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Remark 2.2. The scheme (8) is a new fifteen-point difference scheme for the N.G.B. equa-
tion, which we have not encountered in the literature. This new scheme is a multi-symplectic
integrator, since it is equivalent to the central Preissmann scheme (9).

3. Hamiltonian Formulation of L.G.B. Equation and Symplectic
Integrators

Before this section, we introduce some notations that will be used in the following paper.

n 2n
V" (2m) and A™(2m) are the 2mt" order central difference operator for 2 and 2. respec-
tively, and we note 7(2m) = ' (2m), A(2m) = A (2m), v>"(2m) = A™(2m), ul = g;‘j,
M(n,2) and M(n,4) are the corresponding matrices of the second and fourth order central

difference operators for EZ—",,, I is the identity operator.

3.1. Hamiltonian Formulation of the L.G.B. Equation
Let’s consider the L.G.B. equation

Ut = Ugz — Uzgpes, 0<2<2m,t>0 (10)
with an initial condition
w(x,0) = f(x),  w(x,0)=g(@) 0<z<2m, (11)
and periodic boundary conditions
u(0,t) = u(2m,t), t>0 (12)

We begin with rewriting the equation (10) in three Hamiltonian forms.
Hamiltonian form 1.
The first Hamiltonian form for the L.G.B. equation is
dz

— =J'H, 1
7= (13)

where the Hamiltonian is H = —1 [(v? 4+ u2 + u?,)dz and

_ | u -1 _ g _ 7 _ 0 -1 _ o _ —Ugzzzz + Uza
ot £ Rl R R E A il il

(13) can be rewritten as
dz 1

where

1y 0 1 I AVAC |
JA_[A—N(J]’ A—[ 0 -1

and A" is the central difference operator for BB;—;”-
Let A(2m) be the 2m — th order central difference operator for 88—;, we have

Aem) =7, v- Y (-1 (AEYEV=Y (15)
=0

where 3; = [(j)%2%]/[(2j + D!(j + 1)], v+ and y_ are forward and backward difference
operators, respectively.
Denoting U = [uy,us,--- ,un],V = [v1,vs,--- ,un], system (14) will be

daluv|_ 0 I U | 14 (16)
at | V| T M@2m)-M@,2m) 0 || V| T | M2 2m) - M4,2m)U
where I is N x N identity matrix, M (2,2m) and M (4,2m) are N x N matrix corresponding
to A(2m) and A?(2m), respectively. System (16) approximates (14) of accuracy o(Az*™) in
the space discretization.
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In practice, the second and fourth order central difference approximations are usually ap—
plied. Let A(2) and A(4) be the second and fourth order central difference operators for 2,

respectively. In these two cases, we have

A@2)u! =

(3

Ad)u! =

J J
Uiy — 2u; +uj_

J J
—Uj o+ 16uiJrl

Az?

)

— 30u +16u |, —ul ,

K3

Their corresponding matrices are

M(2,2) m

—30

16

1 -1

M(2,4): A2
-1

16

16

-30

16
0
-1

12 A 22

-1
16
-30
0
0

e 1
0 0
-2 1
1 -2
0 -1
-1 .- 0
6 -1 -
16 —30
-1 16

16
-1
0

16

-30

(17)

(18)

(19)

(20)

Similarly, Let A?(2) and A?(4) be the second and fourth order central difference operators

4
for 5 respectively, we have

J J
Uips — 4y + 6y

—And
du;_

J
1t U

Azt

)

—39ul, | +56ul — 39ul_, +12ul_, —ul_,

A 2)u] =
ol +12u]

A2(4)Uz — uz+3 uz+2

Their corresponding matrices are
6
—4
1 1

M(4,2): —
wy: —| !
1
—4
—-56 39 -—12
39 =56 39
_1 —-12 39 56

D 1 12
L] B
-12 1 0
39 -12 1

Hamiltonian form 2.

1
—12
39
—56
0
0

AN &

0
1
—12
39

0
0
1
1

0

—12

1

The second Hamiltonian form for the L.G.B. equation is

dz
—=J"'H
dt z

1
—12
1

39
—12

—56
39

39
—56
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where the Hamiltonian is H = 1 [(u? + v2 + u2)dz and
| u R 0 -1 . o | Uz tu
z—{v},J _J_J_{l 0],Hz_{g_ﬁ - |

(25) can be rewritten as
dz

—=J"'4 2
o =) Az (26)
where
L, [ 0o A [1-2 0
ra=] 0y 0] a=10 A
Denoting U = [uy,ua,--- ,un],V = [v1,vs,--- ,un], system (26) will be
dlu|_ 0 M(2,2m) U | M(2,2m)V (27)
dt |V | | I—M(2,2m) 0 V| | U=-M(@2.:?2mU

Hamiltonian form 3.
The third Hamiltonian form for the L.G.B. equation is

d: _ o
dt 6z
where the Hamiltonian is H = 1 [(u? + v? + u2)dz and
81 §H [ H _
o=l vl sE-ln )=
v Bz 0 0z Sv v
Obviously the operator D is skew-adjoint and system (28) can be rewritten in the form similar
o (14), but in this case
dz

- = -1
o K Az, (29)
where
_| 0 v
h= [ v 0 ]

which is a nonsingular skew-symmetric matrix, and
2 _ 4
S N T A A
v-v> 0 0 \Y
where 7, 72, v° and v* are the central difference operator for 2, ;—;2, 88—; and 88—;, respec-
tively.

Denoting U = [uy,us,--- ,un],V = [v1,vs,- -+ ,un], system (29) will be
dlu|_ 0 M(1,2m) U | M(1,2m)V
dt | V| | M(1,2m) — M(3,2m) 0 V| | M(1,2m)U — M(3,2m)U

(30)
where I is N x N identity matrix, M (1,2m) and M (3,2m) are N x N matrix corresponding
to 7(2m) and 57°(2m), respectively. System (30) approximates (29) of accuracy o(Az*™) in
the space discretization.

Let v7(2) and (4) be the second and fourth order central difference operators for =
respectively, we have
Uiy U

YN (31)

v(2)ui =
_“Z:+2 + 8“g+1 - 8“571 + “372

12A (32)

V(4)u] =
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Their corresponding matrices are

0 1 0 -1
-1 0 1 0
1
M(1L,2): 5o ; (33)
0 0 0 1
1 0 -1 0
0 8 -1 0 1 -8
-8 0 8 -1 0 1
1 1 -8 0 8 -1 0
Mg | DT 0 (39
-1 0 0 --- -8 0 8
8 -1 0 -~ 1 -8 0

Similarly, Let v73(2) and v7?(4) be the second and fourth order central difference operators for
3

2 respectively, we have

i J VY |
Wiy — 2U5 0 + 22U — Uy,

3(2)) =
v (2)u! S , (3)
()l = —ul, g+ 8ul , — 13ul | + 13u]_, — 8ul_, +ul_, (36)
¢ 8 A z3 '
Their corresponding matrices are
0 -2 1 0 -1 2
2 o -2 1 -+ 0 -1
1 -1 2 o -2 1 - 0
M(3,2): ———
CRITg > (37
1 0 0 2 0 -2
-2 1 0 -1 2 0
0 -13 8 -1 0 o --- 1 -8 13
13 0 -13 8 -1 0 --- 0 1 -8
1 -8 13 o -13 8 -1 --- 0 0 1
D o——— — 1 -1 -1
A 7. R RSO
8 -1 0 0 1 -8 13 0 -13
-13 8 -1 0 0 1 -8 13 0

We can apply generating function methods to construct symplectic integrators of (14), (26)
and (29). As paper [11], we can construct symplectic schemes from Hyperbolic Functions
tanh(z), sinh(z), and cosh(z). For example, we only present the symplectic schemes from
Hyperbolic Function tanh(z).

3.2. Symplectic Schemes from Hyperbolic Function tanh(z)
Now, we consider symplectic schemes generated from tanh(z) for the linear Hamiltonian
system

— = J tA(2m)z, (39)

where A(2m) is a symmetric matrix which has 2m — th order approximation to matrix A. Then
the exact solution of (39) at time ¢ + At and ¢ have the relation

2(t+ At) = A TARM) (g,
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2t + At) = 2(8) = (A 7AC™ _1)z(t),  2(t+ At) + 2(t) = (AT AR L 1)2(1).

we then have
AtJ_ tA(2m) _ 1

Aty
= tanh ( - A(2m)) (2(t + At) + 2(1), (40)
where
tanh(a:)::n——m3-+—3 5—£m7+- :ia% T (41)
3 15 315 B ’
k=1
B
of—1 = 22k(22k - 1)(2—]261;', Bsy, : Bernoulli numbers.
We know scheme (40) is of arbitrary order, while the follow scheme
At
Zn+1 — Zn = tanh (7J 1A(Qm)) (Znt1 + 2n) (42)

given by the following 2s — th order truncation of tanh(z)
At 2k—1
tanh( s, —J 1A ) Zazk 1(—J 1A( )) ,

is obviously of accuracy o(At?® + Ax?™). We now prove (42) is also symplectic.

We have the following two lemma from [15].
Lemma 1. If f(z) is an odd polynomial and L is an infinitesimal symplectic matriz, i.e.,
L'J+ JL =0, then f(L) is also an infinitesimal symplectic matriz.
Lemma 2. If ® is an infinitesimal symplectic matriz, |I + ®| #0, then F = (I + ®)~1(I — @)
is also a symplectic matriz.

Since matrix L = J~'A(2m), where J~! = J' = —J = [ (1) _01 ] or J = K, is an

infinitesimal symplectic matrix, we know from Lemma 1, & = tanh(2s, %J”A(Qm)) is an
infinitesimal symplectic matrix. Then from Lemma 2, the scheme (42) is obviously symplectic.
Thus we get the following theorem.
Theorem. Scheme (42) is a symplectic scheme with the accuracy of o(At?* + Ax™).
We give out two schemes of order o(At? + Az?™) and o At* + Az*™)
At

Zn4l — Zn = TJflA(2m)(zn+1 + zp) (43)
At At
tur = 20 = (ST A@M) = (S5-T T AE@M))) (et + 20) (44)
We note scheme (43) is just the centered Euler scheme, especially, when m=2, which is
u"tt —2u™ fut _8§u”+1 + 20%u™ + 9tun—1t N O2untt 4+ 202u™ + Q2unt (45)
At? N 4Nzt 4 N x?

4. Numerical Experiments

In this section, we first present the numerical simulation results of the L.G.B. equation (10)
using Euler symplectic integrator (43) (m = 2) (i.e. (45) ) . Then the non-symplectic scheme
(5.1) of [1] with # =1/3, i.e.

utt — 2un + ! Odu™tl + 9tu™ + otun=t  Q2untt + 92un + QPunt
= +
At? 3Nzt 3 A x?
R {0 i AN

3N z2
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and the multi-symplectic scheme (8) analyzed above have been tested in the long-time integra-
tion of solitary waves for the N.G.B. equation (1). Equation (2) shows that this kind of solution
decays exponentially as |z] — oo and therefore, for numerical purposes we have employed the
scheme on an interval (Xr, Xg), where the artificial boundaries X;, and Xg are located far
enough for the theoretical solution to satisfy the periodic boundary conditions, except for a
negligible remainder. The numerical experiments were implemented with Matlab 5.

4.1. Numerical Experiments for Symplectic (45)

This part, we use Euler Symplectic scheme (45) to solve (10) with initial value f(z) =
sin(z) and compare the numerical results with the exact solution u(z,t) = sin(z) cos(v/2t).
We take a time step-length At = 72/1600 and a space step-length Az = /40 ( i.e., The
number of collocation points used here is 80), for simplicity, the missing starting level U*
was obtained by the theoretical solutions. The integrator is calculated until 10000 time steps,
the results are plotted out in Figure 1 in which the ranges of z and t are [7/40,27] and
[61.1052,61.6850], respectively. The compare results are listed in Table 1 (7/40 < z < 107/40,
t = 10000 x 72/1600 = 61.6850 ). When ¢t = 61.6850,7/40 < z < 27 The compare results are
also plotted out in Figure 2.

Table 1. Compare the numerical results of Euler Symplectic scheme (45) with the
exact solution at ¢t = 61.6850, 7/40 < z < 107/40 (z; =j X Az,j=1,2,---,80).

xj Exa. Solu. U(z;) | Num. Solu. U; | Error=U(z;) — U;
w/40 5.8529e-002 5.8498e-002 3.0658e-005
27 /40 1.7415e-001 1.7405e-001 9.1220e-005
3m/40 2.8547e-001 2.8532e-001 1.4954e-004
4w /40 3.8977e-001 3.8957e-001 2.0417e-004
57 /40 4.8447e-001 4.8422e-001 2.5378e-004
67/40 5.6725e-001 5.6695e-001 2.9713e-004
7w /40 6.3605e-001 6.3572e-001 3.3317e-004
8 /40 6.8920e-001 6.8883e-001 3.6101e-004
97 /40 7.2537e-001 7.2499¢-001 3.7996e-004
107 /40 7.4368e-001 7.4329e-001 3.8955e-004

Figure 1: Compare the numerical results of Euler Symplectic scheme (45) with the exact solution at
61.1052 < ¢ < 61.6850, 7/40 < z < 27. The left plot: obtained with (45). The right plot: with exact
solution.
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08r o
A
06 /*/ \g
rs %
0.4 e %
/ N
s hY
02 %
/
* *
oF \ J
Y »
0.2 \’f\ F
%
0.4 ‘x\ A
* /s(
) N
-06r | * exact solution Y 7
Num. solution g ¥
-o8r None

s 7 5 s
X(0~2m)
Figure 2: Compare the numerical results of Euler Symplectic scheme (45) with the exact solution at
t =61.6850, 7/40 < z < 2.

4.2. Numerical Experiments for Multi-symplectic Integrator

The single soliton solution First, we consider the propagation of single soliton. To do so,
we use the soliton solution (2) with an amplitude A = 0.5 and an initial phase & = 0, the
missing starting level U! was obtained by the theoretical solution, boundaries were placed at
X = —60, X = 60, with a time step At = 0.125 and a space step Az = 0.5. After 10000 time
steps, we find that the motion of the soliton is well simulated by integrator (8), and there has no
oscillation phenomena appearance. While the non-symplectic scheme (46) appears instability.
The left plot of Figure 3 shows the numerical results of multi-symplectic scheme (8) with the
time from ¢t = 1125 to ¢ = 1250 on a spatial interval [—40,40]. The right plot of Figure 3
shows the compare results of multi-symplectic scheme (8) with non-symplectic scheme (46) at
t = 1200.

Multi-symptectic Scheme (8}
Non-symplectic Scheme (46)
None

L L s s s L L s s
—40 -30 -20 -10 0 10 20 30 40 50
X

Figure 3: The left plot: The simulation results of the propagation of one soliton obtained with (8).
The right plot: The compare results of the propagation of one soliton obtained with (8) and (46)at
t = 1200.

The two-soliton solution From now on, we consider the case of two solitons of the same
amplitudes A = 0.369 placed reasonably apart to move towards each other with the integrator
(8). At this case, the initial positions are {§, = 0 and { = —50 respectively. Again, the
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missing starting level U! was taken from the theoretical solution, but now the boundaries were
placed at X, = —100, X = 100, with a time step length At = 0.125 and a space step length
Az = 0.5. After 10000 time steps, we observe that the integrator (8) simulates the interaction
of the solitons well, after the interaction, the waves seem to emerge from the collision with their
original shape and speed as if the collision had not taken place. The numerical results with the
time from ¢ = 1126.5 to t = 1250 on a spatial interval [—100, 100] are also plotted in Figure 4.

Finally, the collision process of the two solitons with (8) are plotted out in Figure 5.

The numerical results show that the symplectic and multi-symplectic scheme have excellent
long-time numerical behavior, which are coincident with theoretical results.

Figure 4: The simulation results of the interaction of two solitons with (8).
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Figure 5: The collision process of the two solitons with (8) at various ¢.
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