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Abstract

Based on a class of functions, which generalize the squared Fischer-Burmeister
NCP function and have many desirable properties as the latter function has, we
reformulate nonlinear complementarity problem (NCP for short) as an equivalent
unconstrained optimization problem, for which we propose a derivative-free de-
scent method in monotone case. We show its global convergence under some mild
conditions. If F', the function involved in NCP, is Ry—function, the optimization
problem has bounded level sets. A local property of the merit function is discussed.
Finally, we report some numerical results.

Keywords: Complementarity problem, NCP-function, unconstrained mini-
mization method, derivative-free descent method.

1. Introduction

Consider the nonlinear complementarity problem (NCP for short), which is to find
an z € R" such that
>0, F(z)>0, z'F(z)=0, (1)

where F' : R — R" and the inequalities are taken componentwise. This problem have
many important applications in various fields. [13, 7, 5].

Due to the less storage in computation, derivative-free descent method, which means
the search direction used does not involve the Jacobian matrix of F', is popular in
finding solutions of nonlinear complementarity problems. We briefly view some (not
all) progress in such setting. In 1992, Fukushima [3] reformulates variational inequality
problem, which includes NCP as its special element, into a constrained minimization
problem through regularized gap function

f@) = max{(o — ) F@) - 5-llo —ulPh a0
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and propose a descent method for monotone case with global convergence. In 1993,
Mangasarian and Solodov [12] reformulate NCP as an equivalent unconstrained mini-
mization problem through the implicit Lagrangian function

U(z) = i), (2)
i=1
where 1;(z) = ¢prrs(zi, Fi(z)) and ¢prs : R2 — R is defined by

1
drs(a,b) =ab+ % (maxz(O,a — ab) — a® + max?(0,b — aa) — b2) , a> 1.

Yamashita and Fukushima [19] propose a descent method for such reformulation with
strong monotonicity and show the global convergence. Geiger and Kanzow [4] consider
another kind of function (2) with ¢;(x) = ¢%g(z;, F;(z)), where ¢pp : R2 — R is
Fischer-Burmeister NCP function defined by

¢FB(a,b) =Va2+0b? - (a + b)

Also a descent method is described in [4] for monotone case. Recently, Luo and Tseng
[10] study a new class of merit functions ¥ defined by

U(z) = (e’ F2)) + ) vhi(~Fil), z1),
=1

where 1o : R1 — [0,00) and 91, - - -, 9, : R2 — [0, 00) are continuous functions that are
zero on the nonpositive orthant only. For such merit functions, descent methods are
proposed for monotone case.

We reconsider the function ¢, the two parts in brackets, i.e, (max?{a—ab, 0} —a?)
and (max?{b — aa,0} — b?), can be viewed as relative errors with respect to a and b
and the penalty parameter a. ¢prg is sum of the both parts with the third one. We
note that the quantity (va? + ab? — a) can be viewed as a relative error connected to
(Va? +b? —a) and «. (\/fa? + b> — b) can be viewed in similar way. We consider the
product of the both parts.

#(a,b) = (Va? + ab®> — a)(y/Ba? + b% — b), a>0, B>0.

The function ¢ is originally proposed by Peng in [15] and its elementary properties are
discussed therein. It is interesting to note that ¢ is a generalization of ¢2., since for
a = (=1, we have

1 1
d(a,b) = (Va? + ab? —a)(y/Ba? + b2 —b) = 5(\/@2 +b02—a—-0)%= §¢%B'
Moreover, if af = 1, and let ¢ = \/ab, we have

blah) = %(\/&2 TP —a)(VE A E—0)
= =thulab)
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Hence in this case, ¢(a,b) reduces to the squared Fischer-Burmeister NCP function
except a constant factor. The function ¢ has the following properties:

(P1) ¢(a,b) =0<=a>0, b>0, ab=0,

(P2)  ¢(a,b) >0 for all (a,b) € R2.
With the (P1) and (P2) in hand, we can reformulate NCP as an equivalent uncon-
strained minimization problem

min ¥(z) = Zn: é(zi, Fi(z)) subject to z € R". (3)
i=1

The paper is organized as follows: In addition to some definitions, section 2 includes
the detailed study on the properties of ¢ defined in (3). In section 3, we reformulate
NCP as an equivalent minimization problem, and show that any stationary point of the
objective function is a solution of NCP if F'(z) is Py-matrix. It is also showed that the
level set is bounded if F' is Ryp—function. In section 4, In monotone case we propose a
globally descent method without using any derivative information of £'. In section 5, we
discuss a local property of the merit function ¥ near strict complementarity solutions.
Numerical results are included in section 6.

2. Properties of ¢ and Definitions

In this section, we show ¢ has some desirable properties in addition to (P1) and
(P2). We note that the function ¢ is continuously differentiable. In fact, the partial-
derivative of ¢ with respect to a and b have the following expressions: If (a,b) = (0,0),
then V¢(0,0) = 0, and if (a,b) # (0,0), then

%(a,m:(m_a)( fia +b—¢m> .

da vV Ba? + b? Va? + ab?

0p B ab a—+Va?+ ab?
%(a,b)—(\/ﬁcﬂjtb?_b)<\/a2+ab2+ N ) (5)

Proposition 2.1 [15]
¢(a,b) =0  if and only if V¢(a,b) =0.

Lemma 2.2 For (a,b) € R%, we have

99, 02

PG

(a,b) > 0.

Proof. Due to the symmetric role of ¢ and b in (4) and (5), it is suffice to prove the
inequality below

%(a,b) >0 for all (a,b) € R.
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We only consider 0 # (a,b) € R2, it follows that

o0 = Pa b—\/Ba® +b?
%(GJb) (\/(m—a)(\/m_i_ \/m )
= 2 2 _ ﬁa\/a2 + ab? + b\/ﬁa2 + b2 — (b2 + ﬁa2)
= (m a) Va2 + Ozb2\/ﬁa2 T+ b2
—  Blava?  ab® — a?) + b(\/Ba + b2 — b)
= (\/m a) \/a2 +Olb2\/,6a2 +b2

> 0.
a

Proposition 2.3 If the two positive parameters « and [ satisfy the condition

af < 1.
Then for any (a,b) € R2, one has
9¢ 9¢
— — > 0.
% (0,052 (a,1) > 0

Proof. We assume the contrary that there exists a pair (a,b) € R?, which satisfies

99 ,.5)9¢

L(a,h) o (D) < 0. (6
Without loss of generality, we assume that
9¢ 9¢
—(a,b —(a,b .
Lla,) >0, (1) <0 (7
By (7) and (4), we get
2152 _p
Ba v Ba? + >0 (8)

> ;
ViE TR Ja@iaR -
and hence ¢ > 0. Combining (5), the second inequality of (7) and (8), we have

ab n a—Va? + ab?
VaZ+ab?  \/Ba? + b2
_ ab__ VBZHP b Vol +al? (by 8)
VaZ+ a2 Va2 +ab? /B + b2
afby/Ba? + b2 4 (Ba® + %) — by/Ba? + b2 — (a® + ab?)
BVa? + ab?\/Ba? + b?
(B — 1)by/Ba? + b2 + (1 — ap)b?
BVa? + ab?\/Ba? + b?
(af — 1)(by/Ba? + b% — b?) ()
BVa? + ab®>\/Ba® + b2

0 >
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Since af < 1, then by (9), we have a8 < 1 and

by/Ba? + b2 —b* > 0.

It follows from the above inequality that b > 0, hence we obtain that (a,b) € R%. By
Lemma 2.2, we get
99 (0 122

b
da (a, )8b
which contradicts the assumed inequality (6). This completes the proof. O

(a,b) >0,

Proposition 2.4 [17] If af < 1, then the following equivalent relationships hold

0 9 9 0
bla,b) = 0 a—f(a,b) YN a—f(a,b) YN 8—f(a,b)a—f(a,b) 0.

At the end of this section, we recall some definitions for F'. Let I = {1,2,--- ,n}.

Definition 2.1 A function F : R" — R" is said to be
(a) monotone if

(F(x) = F(y))'(« —y) 20,  Vaz,y e R",
(b) strongly monotone with modulus p > 0 if
(F(z) = F(y)" (& —y) > plle —yll?,  Va,y € R".

(¢) Py-function, if for any x,y € R™, with © # y, there exists i € I such that x; # y;
and

[zi — yillFi(z) - Fi(y)] > 0,

(d) Ro-function, if it has the following property: For any sequence x',z?,--- in R"
with ||z¥|| — oo and

There is an index iy € I such that limsupy,_, . Fi, (z¥) = 0o and limsupy_, o, xfo = 00.

A matrix M € R™"*"is said to be a Py-matrix, if for any 0 # z € R", there exists
an index i € I, z; # 0 such that z;(Mz); > 0.

If F is continuously differentable in R™, then the following facts are known.

(a’) F is monotone if and only if the Jacobian F’'(z) is positive semidefinite for all
x € R".

(b’) F is strongly monotone if and only if F'(z) is uniformly positive definite, i.e.,

dVF'(x)d > p||d]|>  for some x> 0 and all z,d € R".

(¢') F is Py function if and only if F'(z) is Py matrix for all z € R".
Also if F' is strongly monotone, then it is Ry-function.
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3. Unconstrained Reformulation

Throughout this section and the forthcoming one, we assume af < 1. We mainly
consider the unconstrained problem (3). Let

p@) = (- S R, ) €W (10
o) = (o S (@), +-) e @)

Then the gradient of ¥ is given by
VU (z) =p(x) + VF(x)q(x). (12)

Here VF(x) is the transpose of Jacobian matrix of F' at z. Since the proof of the
following result is similar to that in [4] and [17], we omit the proof.

Theorem 3.5 Assume that NCP is solvable, if F' is continuously differentiable and
a Py-function, then a vector x* € R™ is a solution of (1) if and only if =* is a stationary
point of W,

In order to prove that ¥ has bounded level sets under some assumptions, we need the
following Lemma, which is on the limit behavior of ¢.

Lemma 3.6 For any sequence {(a®,b%)} C R2, the following equivalent relationship
holds

$(a®,b*) = 00 = a* = —o00 or bF = —00 or [aF = +oo and b — +o0). (13)

Proof. The if part is obvious. To show the only if part, it suffices to show if both
a¥ — —oc0 and b¥ — —oo do not occur, then the third case must occur. If not, without
loss of generality, we assume that a®* — +oo and |b*| < L for some L > 0. Then it

follows that

co = lim ¢(af,b") = lim of(at)?(b)*
k—00 ’ k—o00 (ak)2+a(bk)2+ak)( ﬁ(ak)2+(bk)2+bk)
— lim o (bk)?

koo \/1 + a(bF)?/(a*)? + 1)(\/ﬂ + (b%)2/(a*)? + b¥/aF)
< %a\/BLz < +oo.

This contradiction completes the proof. O
(13) has an equivalent description below. There exists a constant M > 0 such that
the following relationship hold uniformly in &.

{$(a*,b")} is bounded <= —M < min{a®,bF} < M. (14)

The relation (14) has been well used in [18].
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Theorem 3.7 Suppose that F is Ry-function. Let 2° € R" be any given vector

and L(z°) := {z € R ¥(z) < U(z%)} be the corresponding level set. Then L(x°) is
compact.

Proof. Assume the contrary that there is a sequence {z*} C L(2°) such that
limg_o0 ||2¥|| = 00. Since {¥(z*)} is bounded, by Lemma 3.2 we have, for some L > 0
lim inf min{F} (z*),---, F,(#*)} > =L and  liminfmin{z?, -, 2} > —L.

k—o0 k—r00

Dividing all sides of the above inequalities by ||z¥||, we obtain that the sequence {z*}
satisfies the conditions of Ry function. Hence there is an index 49 € I such that
xfo — +o0 and Fj,(z¥) — +oo for some subsequence of {z*}. Again from Lemma 3.2,
we get for this subsequence ¥(z*) — oo, which contradicts the boundedness of ¥ (z*).
Hence £(z") is compact. O

If we apply descent methods to search minimizers of ¥, the generated sequence
{z¥} C R" will remain in the bounded level set £(z°) if F is an Rp-function. We will
give such a descent method in the next section, and show its global convergence for
monotone complementarity problems.

4. A Descent Method

Throughout this section, we assume F' is continuously differentiable and monotone.
Let z* be a iterative point which is not a solution of NCP and

db = —q(z"). (15)

Then d* # 0 by Proposition 2.4. If F is monotone, then F'(z) is positive semidefinite
and from (12) and Proposition 2.4, we have

VI (ah)d" = —(p(a")" a(z") — (a(z") VF(2*)q(a") < 0. (16)

(16) means that if V¥(z¥)"d* = 0, then d* = 0. If F is strongly monotone, with
modulus g > 0, then we obtain similarly that

VU (") d < —p|d¥]7.

Now we present a descent algorithm for monotone NCP.

Algorithm

S.1 Choose 2% € R", € >0,0<y<1,0< 6§ <1, let kg = 0.

S.2 If ¥(2*) < ¢, stop: z* is an approximate solution of NCP.

S.3 Define the search direction d* by (15).

S.5 Compute the steplength A\, = v"**, where my, is the smallest nonnegative integer
satisfying Armijo-type line search rule

U(ah +ymedb) < W(2F) —y2meo]|dt| . (17)

S.6 Set z*t! = 2% +- \pd*, k:= k + 1 and go to S.1.
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Algorithm above is also used by Geiger and Kanzow [4]. Note that it does not
involve any Jacobian information of F', hence it is a derivative-free algorithm. Such
algorithm has its advantage over Jacobian-based ones when the evaluation of Jacobian
is time-consuming task. Now we show Algorithm is well defined for monotone NCP.

Lemma 4.8 For any iterative point z¥, which is not a solution of NCP, then there
exists a finite integer m satisfying the line search condition (17).

Proof. Since z* is not a solution, then d* is a descent direction by (16). If there

exist no nonnegative integer m satisfying (17), then for any m > 0, we have
(P + y™d®) > U (2F) — +*™m6||dF |2
Dividing the both sides of the above inequality, and let m — co, we get
v (zF)Tdk >0,

contradicting the fact that d* is a descent direction. Hence Algorithm is well defined.
a

Theorem 4.9 Let {z%} C R" be a sequence generated by Algorithm, then any cluster
point of the sequence is a solution of NCP. Moreover if F' is strongly monotone, then

z¥ must converge to the unique solution of NCP.

Proof. Assume z* is a cluster point of {z*}. Without loss of generality, we assume
that z¥ — 2*. Since the continuity of V¢(z), {d*} is bounded and we let d¥ — d*
for some subsequence. Here we denote, for simplicity, the subsequence as {xk} Let
N ={1,2,---} and

A:=1inf{\;| k € N}.

If A > 0, then
\I/(xk) — \I!(xk‘H) > >\25||dk||2.

Since the right hand of the above inequality converges to zero, we have
: k *
Jm ] = |d*][ =0,
—00
which implies that ¢(z*) = 0. By Proposition 2.4, 2* must solve NCP.

If A =0, then the sequence {my} is unbounded. We assume my — oo for k € Ny C N.
Obviously, we have from (16) that

v (z)Td* <o. (18)
By the line search rule, we have
A

U (zF + 7’%1’“) — W(zF) > 4225 dR|)2 (19)

Dividing the both sides of (19) by (A;z/v) and taking limit, we obtain

v (z*)Td* > 0. (20)
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It follows from (18) and (20) that V¥ (z*)Td* = 0, this implies d* = 0. Hence z* solves
NCP. Moreover if F' is strongly monotone, NCP has a unique solution, say «*. Then
the whole sequence {z*} must converge to z*. O

Remarks: If monotone NCP is unsolvable, then the generated sequence must be
unbounded and has no accumulation points. We note that the sequence {¥(z*)} is
monotonically decreasing and nonnegative, Qi in [18] has shown that the direction
sequence {d*} is bounded even {z*} is unbounded. This property is useful in studying
asymptotic behavior of the unbounded sequence {z*}.

5. A Local Property Near Strict Complementarity Solutions

We observe that —g(z) in section 4 functions as a descent direction for monotone
NCP under the condition o < 1. The fact essentially relys on the property in Propo-
sition 2.3. This property may be violated if the condition 8 < 1 does not hold. For
example, let « =100, 3=1,a=1,b= —1, we have

99 9¢ (1,-1) <0.

da 0b

On the other hand, from computational point of view, when iterative point is near a
solution, we hope increase a and [ large enough in order for stability of computation.
Under such consideration, we hope that —g(x), without any restriction on « and 3, can
also function as a descent direction near a solution. We show it is true near a strict
complementarity solution. We also estimate the radius of the neighborhood, in which
—q(z) is a descent direction. Let

. | >0,
sign(t) = { —1 t < 0.

We say (a*,b*) € R? satisfies the complementarity condition provided that a* > 0,b* >
0,a*b* = 0. (a*,b*) is said to satisfy the strict complementarity condition if it satisfies
complementarity condition with in addition a*+5b* > 0. Since in this section, we mainly
verify a descent property, we only consider points, which do not satisfy complementarity
condition. Throughout this section, we only assume a > 0,3 > 0 without any other
restriction.

Proposition 5.10 Let (a*,b*) € R? satisfy the strict complementarity condition.
then the following property holds near (a*,b*) provided that (a,b) does not satisfy the
complementarity condition.

o o

%(a, b) e (a,b) > 0. (21)

Proof. Note that (a*,b*) satisfies the strict complementarity condition. Let a —
a*,b — b*. Since the symmetric role of a and b in ¢, we only consider the case
a* > 0,b* = 0. Obviously a > 0. If b — 0T, then (21) is true by Lemma 2.2. Now we
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assume b — 0, we have

94 B Ba b— /BaZ 1 1°
50 (@) = (V“2+°"’2‘“)<¢m+ Va? T ol )

= 2 2 _ Ba(va? + ab? — a) + by/Ba? + b2 — b?
= (Va2 +ab? - a) N RN :

Let
A= Ba(Va? + ab? — a) + by/Ba? + b2 — b* = Ay + Ay + As.
Ay = LGI)Z—O((F)
L= Vaz+ab?+a ’
Ay = by\/Ba?+ b2 = O(b).
Hence

0
sign (8—3(61, b)) = sign(A) = sign(A; + Ay + Ag) = sign(b) = —1. (22)

On the other hand, for ¢ > 0,b < 0 we obviously have

sign (%(a, b)) S (23)

Then (22) and (23) lead to the property (21). O

In the following, we estimate the radius of the neighborhood, in which property
(21) holds. We again assume a¢* > 0,b* = 0. By the proof procedure above, we need
only guarantee (22) in this neighborhood. Let

a”,

5 . { 1 l}
=ming ——, =
3ay/B’ 2

and let B(0) denote the ball of radius 0 centered at (a*,b*), i.e.,

B() = {(a,b) € R | (a — a")? +0* < 5*} .

Let (a,b) € B(6), then

S a2 2 * * /842 1 p2 *
a® +ab*+a>a", a<2a, Ba? + b% > 2a.

Thus
A1 < #ba
Ay > VB
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When b < 0, (22) holds since

A<AI+Ay <

uay

2

~ Sl (- 5m0)

of .
7|b| (]6] — da®)
< 0.

M(ﬂ_\/ﬁ
2

IN

Similarly, if ¢* = 0,b* > 0, the radius § should be set by
1 1
d=min{ ———, - b*
i { 3/ap’ 2 } ’
in order that (22) holds in this neighborhood. Let z* € R" is a strict complementarity
solution of NCP, i.e.,

>0, F(z*)>0, (z°)'F(z*)=0, and z*+ F(z*)>0.

Let

= min {z; + Fi(z")}. (24)

Then we have the following descent property.

Theorem 5.11 Let F' be continuously differentiable and monotone. Let x* be a
strict complementarity solution of NCP. Then, if x is not a solution of NCP, —q(x)
defined by (11) is a descent direction of ¥ in the neighborhood N ((z*, F(z*)), €*), where

N((z*, F(z")),€") = {(z,F(2)) € R | ||(z, F(2)) — («", F(z"))[| < €},

and ) 1 1
Koo . S P
¢ mm{s\/aﬁ’ 3av/0 2}
Proof. Let (z,F(z)) € N((z*, F(z*)),€e*). Then for any index i € K, (x;, Fi(x))
must satisfy one of the following inequalities,

o =l + R - R < ({52 She) )
s = a3+ 1) = Fie)] 2 < (omin {5 %}5) (26)

Then by analysis before the Theorem, we obtain

pi(z)qi(z) > 0.

Since z is not a solution, then there exists an index 7 such that (x;, F;(x)) does not
satisfy the complementarity condition, but does satisfy either (25) or (26). Hence for
such ¢, we have by Proposition 5.10,

pi(x)qi(z) > 0.
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This shows that ¢(x) # 0. By similar proof as for (16), we claim that —q(z) is a descent
direction for ¥. O

Remark. In fact, ¥ has another local property near a strict complementarity solu-
tion z* without any restriction on « and 5. If F' is twice continuously differentiable and
the gradients of active sets are linearly independent, i.e., VFj(z*)(i € I'* = {i|z] > 0})
and e;(i ¢ I*) are linearly independent, where e; is the i colum of the n—dimensional
identity matrix. Then the Hessian matrix H(z) of ¥ near z* is positive definite. By this
local property, we can use quasi-Newton methods such as BFGS method to minimize
the function ¥ [15, 16, 17].

6. Numerical Results

Since Algorithm presented in section 3 involves no gradient information of the func-
tion F, we expect no rapid convergence. Also we note that even the direction d(z¥)
is not a descent direction when F' is not monotone. To overcome this drawback, we
modify the direction selection procedure (S.3) as following

(S.3’) Let d¥ = —q(zF). If (d¥)TV¥(z*) > 0, then let d*¥ = —V ¥ (zF).

We denote Algorithm with (S.3%) by Alg. A. In fact, if d* is not a descent direction
we use negative gradient direction of ¥. As pointed out in section 5, d* can be a
descent direction when iteration points are near strict complementarity solutions. So
Alg. A may fail in solving some hard problems. Alg. B is an implementation of the
BFGS method for minimizing ¥, with the identity as the initial scaling matrix and
the step size determined by Armijo rule (S.5). The parameters used are: a = § = 10,
e =107 6 = 0.1 and v = 0.5. The initial point is z° = (1,---,1)’. We point out
that the BFGS methods for minimizing the function ¥ are implemented in [15, 16, 17]
with the stepsizes determined by Wolfe-conditions and with various choices « and S.
We report numerical results on test problems selected from literatures.

Problem 1. (Kojima-Shindo [14]) (n=4) This is a nonmonotone NCP.
Problem 2. (Lemke [5]) (n=30) This is monotone LCP.

Problem 3. (Hock-Schittkowski problem 76 [6]) (n=7) This is a LCP and comes
from a quadratic programming problem.

Problem 4. (Luo-Tseng PSDLCP [10]) (n=30) F(z) = Mz + q where M = AAT
and every entry of the 30 x 10 matrix A is uniformly generated from [—1,1], and
g = —Mz + y, where each entry of z is uniformly generated from [0,10] and each of
7 is zero if the corresponding entry of Z is zero and otherwise is uniformly generated
from [0,10]. So z is typically a degenerate solution.

The numerical results are summarized in the following table, in which iter. res. and
val. stand for the number of iteration, natural residual || min{z*, F(z*)}|| and the final
value of ¥ upon termination respectively.
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We

Problem Alg. A Alg. B

iter. res. val. iter. res. val.
Prob. 1 274 2.646e-8 9.748e-15 | 41  5.911e-8 3.564e-15
Prob. 2 | >10000 — — 27  2.818e-8  9.83e-15
Prob. 3 325 1.308e-8 7.617e-15 | 38  1.928e-8 8.617e-15
Prob. 4 | > 10000 — — 189  3.451e-8 7.548e-15

point out that we can not find solutions of Problems 2 and 4 by Alg. A within

10000 iterations. This may due to that problem 2 is one for which Lemke’s method is
known to run in exponential time and problem 4 is randomly generated such that it
has degenerate solutions.
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thank Jiming Peng for his constant help and discussion on this subject.
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