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NUMERICAL COMPUTATION OF BOUNDED SOLUTIONS FOR
A SEMILINEAR ELLIPTIC EQUATION ON AN INFINITE STRIP*
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Abstract

In this paper, we consider the computation of bounded solutions of a semilinear
elliptic equation on an infinite strip. The dynamical system approach and reduction
on center manifold are used to overcome the difficulties in numerical procedure.
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1. Introduction
Consider elliptic problem on an infinite strip of R?

Pu

where (z,y) € (—00,00) x (0,1) and f, g are smooth functions of thier arguments, A, e
two real parameters. We are interested in the bounded solutions of (1.1) with the
following conditions

u(z,0) =u(z,1) =0, z€R (1.2)
and
lim wu(z,y) =0, ye(0,1). (1.3)

Some problems arising in applied mathematics are given by the formulation (1.1) with
conditions (1.2) and (1.3), for example, the description of the steady flow of an inviscid
nondiffusive fluid through a channel of varying depth(see A. Meilke[ 7 |). Here we
concern the numerical computation of the bounded solutions of (1.1) with (1.2) and
(1.3), i.e., that solution satisfying

sup |u(z,y)| < +oo. (1.4)
T,y
To do this, we shall meet some difficulties from two aspects, unboundedness of domain
and nonlinearity of function f. In order to overcome the difficulty from unboundedness
of domain, the boundary conditions at an artificial boundary are often used and then
the boundary-value problems on the finite domain are solved (see T.Hagstrom and
H.B.Keller [2] and its references). However, the multi-solution of our problem which
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is from the nonliearity makes it difficult to compute numerically even though artificial
boundary conditions are used.

We propose here another approach to compute the solutions of problem (1.1). The
first step of our approach is to transform (1.1) with boundary condition (1.2) into infi-
nite dimensional formally dynamical system which is follows the idea of K.Kirschgéissner[?’],
A Mielkel” and Mal®. Then, the bounded solutions of (1.1) will be found as the spe-
cial orbits—homoclinic or heteroclinic or half-periodic orbits of the formally dynamical
system. The second step of our approach is to study numerically the planar dynamical
system reduced from infinite dimentional system by use of center manifold theory. The
porpuse of this step is to provid good prediction of special orbits of system obtained
by the first step. Finally, we calculate numerically the special solutions of the formally
dynamical system. To this end, of course, it is neccessary to approximate the infi-
nite dimensional system by a finite dimensional one and to give a artificial boundary
condition. We use the semi-discrezation on y and the projection boundary conditions.
Meanwhile, we also use a predict-correct procedure with an initial prediction which is
constructed by use of the results in step two.

The outline of this paper is as follows: in Sec. 2, we describe the procedures to
transform (1.1) and (1.2) into the infinite dimensional system and to reduce it into a
planar dynamical system by use of the center manifold theory. In Sec. 3, we give a
numerical study of reduced system. In Sec.4, the predict-correct procedure to solve
problem (1.1)—(1.4) is described. In last section, a numerical implementation of our
approach is given by a example.

2. Formally Dynamical System Formulation of Problem

Following Kirschgissner® and Mielkel”), we now transform our problem (1.1)-(1.2)
into an infinite dimensional system. Assume that f(A,y,0) = 0 and define the linear
operator L()\) in L?(0,1) as

_ 0% of
L()‘)q5 = 8—y2 - %(Aaya0)¢a

Vg € D(L(N) = Ho (0, 1) [V H*(0,1).
Then (1.1) with (1.2) can be understood as a nonlinear differential equation

d?u

5 LNu+ f(\u) +g(\ e x) =0, (2.1)

where u : (—o0o0,00) — L%(0,1), f : A x L2(0,1) — L?(0,1), g : A x (—€g,€0) X
(—00,00) — L?(0,1) are defined by
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respectively. Setting v = g—g, we can transform the (1.1)—(1.2) into a formally dynam-

ical system

du_
dr "
@—LA — f(\u) —g(X 2.3
d:E_ ( )U’ f( 7“) g( 767:13)7 ()

on the infinite dimensional space L?(0,1) x L2(0,1). we can find the solutions of
problem (1.1)-(1.4) by understanding the behavier of solutions for (2.3) on (—o0,c0).
It is well known that L()) is selfadjoint and has an infinite seqence of eigenvalues p; (),
i =1,2,---. We assume that u1(A) < p2(X) < --- and there exists Ao € A such that
p1(Xo) =0, ph (M) < 0. We are interested in the solutions of (1.1)—(1.4) for A near A.
Denote by w the eigenfunction of L(XAg) corresponding to u1(Ag) = 0 and normalized
in L2(0,1). Define the projections

P / y)dy,

Qb =6 - ¢) (2.4)

and set 7 = P¢ = (71,72), 0 = Q¢ = (01,62). Then (2.3) yields
#(0)= (0 o) ()~ (rrocmnasn) 23
%@;):(Loo (1)> <g;>_<QF(>\,e,£,71w+9)> (2.6)

where Ly is the restriction of L(X\g) on QL?(0,1) and F is defined by

F()\,G,I,QZS)(y) = f(>‘7y7 QS) - %f(AU,y,O)QS + g(>‘7€7$7y)' (27)

The varibles (y1,72) and (0y,62) are supposed to be elements of X; = R?, and X, =
QH}(0,1) x QL2(0,1).

It has shown by Mielkel” that all small bounded solutions of system (2.6)—(2.7)
lie on a two-dimensional manifold modelled over the (71,72)-space. In more accurate
words, there exist a positive number x and a reduction function

he Ci((Xo — K, Ao + &) X (K, k) X R x (—k,k)%, QHE(0,1))

such that all solution of (2.5)-(2.6) which are sufficiently small in X; x X» for all
satisfy 01 = h()\, €, z,71,72), where Cj (A, B) is the space of bounded 4-times continouly
differentable functions. Thus the investigation of (2.5)-(2.6) for all small bounded
solutions is completely reduced to the ordinary differential equation

'+ PF(\ 6,z,0w + h(X 6,2,7,9") =0, |y],[7] <& (2.8)

On the other hand, every solution v of (2.7) yields a solution (v, ) of (2.5)-(2.6) via
0(z) = h(X,e,2,7(z),7 ().
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As an application of the above result, Mielkel”) analized the Problem (1.1)-(1.4)

when g satisfies
|8g()‘a vaay)| < Cell, (2.9)

It is proved that there exist three kinds of solutions for (1.1)—(1.4), satisfying
@) Jim_u(z,y) =0,
(i) lm u(z,y) =uly) #0,
(iii) there exist zp > 0, T' > 0 such that u(z + T,y) = u(z,y) for z > zg
respectively for different values of A and e near Ay and 0. They are corresponding
to special orbits of (2.8), (i) homoclinic, (ii) heteroclinic and (iii) half-periodic orbits
respectively.

3. Numerical Analysis of Reduced System

Our goal in this paper is to calculate the solutions of (1.1)—(1.4) numerically. As
we describe in Sec. 1, it is more difficult if we do it directly. In this section, we give
a numerical stretagy for study of reduced system (2.8) on plan. The results provided
by this section will be initial date to get the numerical solutions of (1.1)—(1.4) in next
section.

Assume that, after dropping the term O(u?), (2.8) can be reformulated as

£
dz?

What we want is the solutions of (3.1) satisfying

—au + bu® + ef(z) = 0. (3.1)

u(—o0) =0, sup|u(z)| < +oo. (3.2)
TER

We assume, in addition, that a > 0 and set

1
oc=a?, t=ox, v(t)= ﬁu(az) (3.3)
Now we rescale (3.1) by (3.3) and get that
d2
Eg — v+ 0?2 +eg(t) = 0. (3.4)
We will find the solutions of (3.4) with
v(—o00) =0, sup|v(t)] < +oo. (3.5)
teR
Furthermore, we assume that
supp g(t) C [=T,T] (3.6)

for some 0 < T < +oo. In case of g(t) = 0, we can give a complete description of
solutions for (3.4) with (3.5). In Fig.1, we draw down the (v, v’)-phase picture for (3.4)
when g(t) = 0, where curves Cj, i = 1,2, 3,4 are

2
Cl:v':\/UZ—gv?’, 0<wv<

N W

9
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2 3
Co:v' =— v2—§v3, ogvgi,
2
Cy:v = v2—§v3, v < 05
2
Cyp:v =— v2—§v3, v <0

When ¢(t) # 0, the solution of (3.4) with (3.5) must satisfy

% —v+viteg(t)=0, te(-T,T), (3.7)
(v(=T),v'(-T)) € D_, (v(T),v'(T)) € Dy, (3.8)

where D_ = C,|JC3JCy, Dy = C3 D and D is domain surrounded by C; and Cs.
Vv’

15
0.75 o1
C3
~0.75 0.75 i I
C4 _o.75 c2
~15
Fig.1

Let v(t;v_,v" ) be the solution of initial values problem

d?v 9

W—’U—FU +€g(t) :0, t > —T, (39)
d

o(~T) = v_, d—:(—T) _ (3.10)

Define ¢(v_,v") = (v(T;v_,v"), Lo(T;v_,v"))T, then (3.9) and (3.10) can be
rewritten as the shooting formulation:find (v_,v" ) € D_, such that

£(v_,v") € Dy. (3.11)

!

In particular, because &(v_,v" ) depends on (v_,v" ) continuously, the points (v_,v" )
on D_ which make £(v_,v" ) € Cy|JC2J C5 become important and the orbits corre-
sponding to these points are homoclinic orbits of reduced system.

In order to provid good initial date for numerical solution of problem (1.1)—(1.4),
we are to determin numerically set S of solutions for (3.11) in D_. This can be realized
by shooting method. In fact, we only need to find the boundary points of S then to
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determin S by the continuty of £(v_,v") on (v—,v"). In the example in Sec.5, we use
dichotomous search to find the boundary points of S. Of course, other way also can be
used to realized the numerical analysis described in this section.

4. Predict-Correct Procedure

To get the numerical solution of (1.1)-(1.4), we first discrete the equation (1.1)
only in direction y. It is proved in Mal®l that an approximate solution can be obtained
in neighborhood of every regular solution of (1.1) satisfying lim,_ 4. u(z,y) = 0 un-
der appropriate conditions. To realize this discretization we can chose finite dfference
method, spectral method or finite element method.

After this discretization, we obtain a finite dimentional system

d2uh
dz?

where uy, € X, X} a finite dimentional space, Ay, a matrix, F},, g, vector-value func-

+ Apup + Fr(A\ up) + gn(A e,3) =0, (4.1)

tions. Now the problem becomes to find the solution of (4.1) satisfying
up(—00) =0, |up(z)| < +oo. (4.2)

In fact, we are particularly interested in the solutions of (4.1) satisfying
up(—00) = up(+00) =0, (4.3)

which are correponding to the homoclinic orbits of system

dup

dz Wh:

dw

d—mh = —Apup — Fp(A\ up) — gn(A, €, ) (4.4)

in phase space Xp, x Xp. Thus, what we face is numerical computation of the homoclinic
orbits of dynamical system. Here, we will suffer difficulties from two aspects. One is
from the infinity of 2 and another one is from the ununiqueness of the solutions.

At first, we are referred Beyn!! to restricte (4.4) on z € [-T,T] and give a artificial
boundary-value condition on z = £7. (also see H.B.Keller et.[4]) To this end, we
suppose that g, (A, €,z) tends rapidly to zero as |z| — oo so that we can regard to
gn (A, €,2) = 0 for |z| sufficeintly large.

Let
Ly\)=A —i—iF (A, 0)
h — 4Ap (9’U,h h\ Ny V),
~ 0
Fp (A up) = Fp(A\ up) — B—Fh()\,())uh
up,
and ,u?, ngZh, 1=1,2,---,N, N =dim X}, be eigenvalues and eigenvectors. Thus we know

that the matrix

(o o)
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has the eigenvalues aii =+ ,u? and eigenvectors ( ?,j:\/,u?qﬁzh)T, 1 =1,2,--- N
where we assume that u? >0fori=1,2,---,N. Acorrding to Beynm and Keller et.!4,
we introduce the projection boundary-value conditions for (4.4) on x = £T, i.e.,

(un(~T), wn(~T))" € span{(¢}',\Jul!)", i = 1,2,---, N} (4.5)
and
(un (), wn(T)T € span{ (], —\/ulg!)T, i =1,2,--- N}, (4.6)
In matrix formulation, (4.5) and (4.6) can be written as
wp(=T) = (=Lp) 2up(~T), 47
wp(T) = —(—Lp) Fup,(T) 48
0 1
%Uh(_T) = (=Lp)2up(-T), (4.9)
St (1) = ~(~Ly) 2 () (4.10)

Therefore, we need to solve (4.1) on (=7, 7T) with artificial boundary value conditions
(4.9) and (4.10).

In order to overcome the difficulty from the ununiquesnees of solution, we use the
numerical results of the section 3 to constructe a prediction for solution of (4.1) with
(4.9) and (4.10). Suppose that ¥(x) is a numerical solution of (3.1) with limy,_,., 9(z) =
0. By center manifold theory, we regard

ﬁ(x,y) = 17(]7)@5(:{/) + h’()‘v 671‘76(1‘)76,(]7))

as an approximation solution of (1.1) with ‘l‘im @(z,y) = 0. Then, we can take
T|—00

uy) = P, as a prediction of solution for (4.1) with (4.9) and (4.10). In particular, for
simplicity, it is enough to take u(z,y) = v(z)d(y) directly.

5. Numerical Implementation

In this section, we illustrate our approach by a numerical example. Consider fol-
lowing problem

Ou + Ou + (208 — BP)u — (N + 46) %P u® 4 Negy ( =0
9z2 | Oy? g1(z,y) + €ga(z,y) =0,
(z,y) € Q (5.1)
u(z,0) = u(z,1) =0,

Jlim u(z,y) =0,
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where A, €, 5 € R, Q = (—o00,00) x (0,1), and

8Be P sin(1 — y)
e’ +e % +2cos(l —y)’

gy 8+ (" +e %) cos(l —y)
g2(z,y) Be [e® + e T + 2cos(1l — y)]Z

g1(ac,y) =

The above equation is from a classical problem to describe the steady flow of an inviscid
nondiffusive fluid through a channel of varing depth. Starting with the stationary
Euler equations, introducing a stream function and using a conformal mapping for the
boundary of channel, we obtain the equation

902+ o2 +a(A y)u 4 b\, y)u 4+ eg(N, z,y) + O(ju]” + |eu| +€7) =0, (5.3)
where
a(\y) =2X8 - 3%, b(A,y) = —(A — 4B)B%e"
and

g\ z,y) = Agi(z,y) + go(z,y), for |ef < 1.

Because we are only concerned with “small” solution of (5.3), we drop down terms
O(Jul]® + |eu| + €2) and get (5.1) (see Mielkea [7]).
To note that, setting

Fy,u) = (208 = BP)u — (X +4p) 5% Vu?
and
g\ e, z,y) = Xegi(z,y) + ega(m,y),

we identify the equation (5.1) with (1.1). We can apply the stretage described in
previous sections. Specially, we have linear operator

2
L\ ¢ = —aa—y2¢ — @78 - )9

and its eigenvalues
uk)(A) :k271'2—(2>\18—182), k=1,2---.

When X = \g = (72 + ?)/28, we have that eigenvalue p1(X\g) = 0 and eigenfunction
w(y) = V2siny. Using the procedure of reduction in the section 2 and 3, we obtain
the reduced system

2
i%; + (206 — B2 — 1)u — (A + 48) B2 cou® + Nefy(x) + efa(z) = 0, (5.3)

where

1
N
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filz) = /01 91(z, y)w(y)dy

and
fa(z) = /01 92(z, y)w(y)dy.

Applying the method in the section 3, we analyse the system (5.3) numerically. After
rescalling, we rewrite (5.3) as (3.4). In Fig.2, we show two approximate solutions of
(3.4) for A = Xy — 0.125, € = 0.001 which satisfy

lim u(z) =0.
|z|— o0
Here, we use dichotomous search in shooting procedure. Perhaps the accuracy of theses
approximate solutions is not high, but it is enough for our next step.

U
257

5 —4 -3 —2 —1
Fig.2
Now let us return to the equation (5.1). Assume that A < \g and o = /2(\g — A).
We rescale (5.1) by use of u = 02¢ and get

0? 0? A
G+ G+ AB = )= PO AP + o+ G =0 (54)

Using central difference on y, we get the semi-discretzation of (5.4)

2 4.
Cilj; +@(¢’“ =20 + di1) + (208 — )i — o7 (A + 4B) %M 4

Ae € .
+§gl($7yl)+992($7yl) :07 L= 1727"'7N7 (55)

where Ay is difference step-size and y; = iAy. (5.5) is a finite dimensional system on
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x. Setting up = (¢1, P2, -+, ¢n)T, we identifies (5.5) with (4.1), where

2 -1
1 -1 2 -1
Ay )
A
(Ay) 1 9 1
-1 2
and
b1 ePvr g3
eﬂy2 2
Fh()‘auh) = (2>‘/8_/82) ¢:2 _0—2()‘+4ﬁ)182 :¢2 )

Ag1(z,y1) + g2(z, 1)
e | Agi(z,y2) + g2(x, y2)

Ag1(z,yn) + g2(z,yn)

Therefore, we have that
Li(N) = Ap + (208 — )1
and —Lp(A) has eigenelements

4 . i
b= g LA - )

and
Pl = (sinimr Ay, sin2in Ay, - - - sinNirAy)T .

Let

Q= (¢1, 65, o)
Then we have that

(~Ln)? = QATQ,

where

=

1 1 1
A2 = dlag{M127u227"' 7#’]2\7}
Now we choose a T' > 0 large enough and consider to solve (4.1) on (—=7,7) with arti-
ficial boundary value conditions (4.9) and (4.10). Using second order central difference

quotient to approximate q;l, we get the following discrete system

W = 2] +ul T+ (D)2 Lyl + (Dx)?Fu (N ul)

+(Ax)Pgl =0, j=1,2,-- M—1, (5.6)
up = uf, = Aw(=Lp)Fuh,  up! = up Tt = = Ax(-Ly)Tup,

where Az = % and gi =gn(\ exj), v; = =T + jAx.
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Finally, we use the Newton method with a relaxation factor to solve system (5.6).
We describe this procedure brifely as follows: let (5.6) can be reformulated

F(u)=0. (5.7)
The Newton method with a relaxation factor w is the iteration

DF (u™)Au*+D) = — F(u®),

u(k+1) :u(k) +wAu(kJ+1), k:()al,--', (5-8)

The relaxation factor w is determined by

IE(® ) < 1P ®)]).

Fig.4
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The initial date of iteration is constructed by procedure described in the section 4 using
the numerical solutions of (5.3). The motive using Newton method with a relaxation
factor is to overcome the difficulty from ununiquesnees of solutions for (5.6). In the each
step of iteration (5.8), we need to solve a (M — 1) x (N — 1) linear algebric system. We
use block elimination in computation to reduce storage. Finally, we show two numerical
solutions for A = A\g — 0.125, ¢ = 0.001 in Fig.3 and Fig.4. The solution in Fig.4 is not
easy to obtain by usual methods.
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