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ON THE LINEAR CONVERGENCE OF PC-METHOD FOR ACLASS OF LINEAR VARIATIONAL INEQUALITIES�Nai-hua Xiu(Department of Mathematis, Nothern Jiaotong University, Beijing 100044, China; Instituteof Applied Mathematis, Chinese Aademy of Sienes, Beijing 100080, China)AbstratThis paper studies the linear onvergene properties of a lass of the projetionand ontration methods for the aÆne variational inequalities, and proposes aneessary and suÆient ondition under whih PC-Method has a globally linearonvergene rate.Key words: AÆne variational inequality, Projetion and ontration method, Lin-ear onvergene. 1. IntrodutionLet M be an n�n matrix and let q be a vetor in Rn, the n-dimensional Enlideanspae. Let 
 be an nonempty losed onvex set. The linear variational inequalityproblem (denoted by (LV I)) is to �nd x� 2 
 suh that(x� x�)T (Mx� + q) � 0; 8x 2 
: (1:1)The problem (1.1) is well known in optimization and ontains as speial ases linear(and quadrati) programming, bimatrix game, et. (see Cottle and Dantzig [1℄). When
 is a polyhedral set, for onveniene expressed asX = fx 2 RnjAx � bg; A 2 Rm�n; b 2 Rm; (1:2)it is alled the aÆne variational inequality problem (AV I). When 
 = Rn+; the nonneg-ative orthant in Rn, it is again alled the linear omplementarity problem (LCP ): Forthese subjets, many omputational methods and theoretial results have been devel-oped (See Harker and Pang [2℄, Cottle, Pang and Stone [3℄, Isa [4℄ et.). An importantlass of methods is the projetion-type method, originally proposed by Goldstein [5℄,Levitin and Polyak [6℄ for solving onvex programming. More reently, He [7{12℄ hasproposed a speial lass of the projetion methods for problem (1.1). The iterativeform is as follows. Given xk 2 Rn (or 
), �nd the searh diretion d(xk) suh that itsatis�es xk+1 = xk � �k � d(xk); or xk+1 = P
[xk � �kd(xk)℄; (1.3a)� Reeived September 3, 1996.



200 N.H. XIUkxk+1 � x�k2G � kxk � x�k2G � �k � ke(xk)k2; (1.3b)where �k > 0 is the searh step length, �k is a positive number, G 2 Rn�n is symmetriand positive de�nite, kxkG = (xTGx) 12 ; P
[�℄ denotes the projetion from Rn onto 
,i.e., P
[x℄ = argminfkx� yk j8y 2 
g; (1:4)e(x) = x� P
[x� (Mx+ q)℄; and x� 2 
�, whih denotes the set of solutions of prob-lem (1.1). From (1.3) we readily see that the sequene fkxk � x�k2Gg has a ontrativeproperty. Therefore, He de�nes this lass of methods as the projetion and ontra-tion method (PC-Method). The main advantages of the method are its simpliity,robustness and ability to handle the large-sale problems.In [12℄, He has summerized the basi idea of �nding the searh diretion d(x) ofPC-Method, i.e., for any x� 2 
�; it holds that(x� x�)Td(x) � r � ke(x)k2; r > 0; (1:5)and proven that the PC methods of He [7{11℄ are all globally onvergent for varietiesof monotone problems. However, He only prove that PC-Method is globally linearlyonvergent for the monotone linear omplementarity problem.The purpose of this paper is to develop the linear onvergene theory of PC-Method.The main results obtained in this paper are as follows.(a) For the monotone problem (AV I), a lass of PC methods is linearly onvergent.Furthermore, xk ! x� Q-linearly, ke(xk)k ! 0 R-linearly.(b) For strongly monotone problem (AV I), the neessary and suÆient onditionunder whih a lass of PC methods has linearly onvergent rate is the searh diretiond(x) to be strongly desent (see Theorem 4.2).This paper is organized as follows. In setion 2, we give the de�nitions of thestritly desent diretion and strongly desent diretion, and disuss their onvergeneproperties, whih extend the previous onvergene theory. In Setion 3, we investigatethe linear onvergene of PC-Method when it is applied to solve the monotone problem(AV I): Finally, Setion 4 onsiders the speial ase of (AV I) where M is positivede�nite.We adopt the following notations throughout. For any x 2 Rn and y 2 Rn, wedenote by xT y the Eulidean inner produt of x with y. For any x 2 Rn, we de�nekxk = (xTx) 12 : For any C1; C2 � Rn, we denote by dist(C1; C2) the usual Eulideandistane between two sets C1 and C2, that is,dist(C1; C2) = inffkx� yk jx 2 C1; y 2 C2g:For any symmetri matrix A 2 Rn�n; we denote by �min(A) (and �max(A)) the min-imum (and maximum) eigenvalue of A. Other notations have the usual meaning.Throughout this paper we assume that (H1) 
� 6= �; and (H2) M is positive semi-de�nite (but not neessarily symmetri).



On the Linear Convergene of PC-Method for A Class of Linear Variational Inequalities 2012. A Class of Desent Diretions and Convergene for (LV I)For any x� 2 
�; we de�ne the funtion g(x) = 12kx � x�k2: Obviously, �d(x)satisfying (1.5) is a desent diretion of g(x) at point x. We learly give the followingde�nition.De�nition 2.1. A diretion �d(x) is said to be stritly desent for g(x) at x, ifd(x) is ontinuous on 
 (or Rn), and there exists r(x) > 0 suh that(x� x�)Td(x) � r(x) � ke(x)k2; 8x 2 
 (or Rn): (2:1)Moreover, if r(x) � r > 0; i.e., the inequality(x� x�)Td(x) � r � ke(x)k2; 8x 2 
 (orRn) (2:2)holds, then we say that �d(x) is strongly desent.In this setion we study the onvergene of PC-Method, where �d(x) is stritlydesent, applied to solve (LV I). The main result is the following theorem.Theorem 2.2. Let �d(x) be stritly desent diretion, the sequene fxkg be gener-ated by iteration form xk+1 = xk � �kd(xk); 8x0 2 Rn; (2.3a)�k = rk � ke(xk)k2kd(xk)k2 ; rk = r(xk): (2.3b)If the sequene frkg satis�es ondition1Xk=0 r2k = +1; (2:4)then fxkg onverges to a solution point x1 of (1.1).Proof. For any x� 2 
�; by (2.1) and (2.3), we havekxk+1 � x�k2 = kxk � x� � �kdkk2� kxk � x�k2 � 2�krk � ke(xk)k2 + �2k � kdkk2= kxk � x�k2 � rk � �k � ke(xk)k2: (2.5)Hene the sequene fxkg is bounded, and fkxk � x�k2g # : Further, we readily obtain1) 9C > 0; 3 kd(xk)k2 � C; 8k 2 N 4= f0; 1; 2; � � �g;2) rk � �k � ke(xk)k2 � r2k ke(xk)k4C :From (2.5) and the above inequalities, we have1Xk=0 1C r2k � ke(xk)k4 < +1: (2:6)Assume that 9"0 > 0 suh thatke(xk)k � "0; 8k 2 N; (2:7)



202 N.H. XIUthen from (2.6), we implies that 1Xk=0 r2k < +1; a ontradition to (2.4). So (2.7) doesnot hold, i.e., there is a subset N1 � N suh that limk2N1;k!1ke(xk)k = 0: By theboundedness of fxkg; we assume, without loss of the generality, thatlimk2N1;k!1xk = x1; ke(x1)k = limk2N1;k!1ke(xk)k = 0: (2:8)This shows that x1 2 
�: Again using (2.5), for any k; k0 2 N1 and k0 > k;0 kxk0 � x1k2 � kxk+1 � x1k2 < kxk � x1k2 ! 0:It follows that limk!1xk = x1 2 
�: The proof is ompleted. 2This result shows that �d(x) is not neessarily strongly desent when we onlydemand the PC method to be onvergent. That is, it suÆes that �d(x) is a stritlydesent diretion with onditions rk ! 0 and 1Xk=0 r2k = +1: It is interesting to notethat this onsistents with a lass of desent diretionsgTk dk � "k � kgkk � kdkk; 1Xk=0 "2k = +1 (2:9)for the unonstrained optimization (See Yuan [13, P75℄).If the iterative form (2.3) is replaed by the following formxk+1 = P
[xk+1℄; (2.10a)xk+1 = xk � �kdk; 8x0 2 
; (2.10b)�k = rk � ke(xk)k2=kdkk2; (2.10)we an obtain the result similar to Theorem 2.2.Theorem 2.3. Under the onditions of Theorem 2:2, if fxkg is generated by (2:10),then it onverges to a solution point x1 of (1:1).Proof. Using inequalitykxk+1 � x�k2 = kP
[xk+1℄� P
[x�℄k2 � kxk+1 � x�k2and the proof of Theorem 2.2, it is easy to get the proof of this theorem. 2We now onsider the linesearh in (2.3) or (2.10). Let'k(�) 4= 2�rkke(xk)k2 � �2 � kdkk2; � � 0;�optk 4= rk � ke(xk)k2=kdkk2:Then we easily prove the properties(i) 'k(�) � 0; for 0 � � � 2�optk ;(ii) For 0 < Æ � 1; when � satis�es Æ � �optk � � � (2� Æ) � �optk , we have'k(�) � Æ(2� Æ) � 'k(�optk ): (2:11)



On the Linear Convergene of PC-Method for A Class of Linear Variational Inequalities 203This says that the sequene fkxk � x�k2g must be stritly dereaing for �k 2 [Æ; 2 �Æ℄ � �optk : For onveniene we introdue the following onept.De�nition 2.4. �k is alled exat linesearh if �k = �optk ; and inexat linesearhif �k satis�es (2:11).From the above de�nition, Theorems 2.2 and 2.3, we immediately dedue a generalonlusion.Theorem 2.5. For problem (1:1), if �d(x) is stritly desent, and fxkg is generatedby iterative form ( xk+1 = xk � �kdk; or xk+1 = P
[xk � �kdk℄;�k by exat/inexat linesearh,then limk!1xk = x1 2 
� when 1Xk=0 r2k = +1:3. Linear Convergene of PC-Method for (AV I)In this setion, we onsider the problem (AV I). LetX� denote the set of solutions of(AV I):We �rst quote an error bound result of Luo and Tseng [14, Theorem 2.3℄, whihwill play an important role in linear onvergene analysis of this setion. By studyingarefully the proof of this theorem, we readily �nd that the ondition \x 2 X" an berelaxed to \x 2 Rn", i.e., feasibility for x is not demanded. So we haveLemma 3.1 (the extended error bound result). There is a onstant " > 0suh that for any x 2 Rn and ke(x)k � ";dist(x;X�) � �ke(x)k; (3:1)where � > 0 is some onstant.Based on the above result, we an now establish the main result of this setion.Theorem 3.2. For problem (AV I), if the sequene fxkg generated by PC-Methodsatis�es onditionkxk+1 � x�k2 � kxk � x�k2 � �ke(xk)k2; � > 0;8x� 2 X�; (3:2)then fxkg onverges to a solution point x1 at least Q-linearly.Proof. By the proof tehnique of Theorem 2.2, we an easily prove that the sequenefxkg onverges to a point x1 2 X�. So it suÆes that the onvergene rate of fxkg isQ-linear. Let x�(k) = argminfkxk � xk jx 2 X�g; 8k 2 N:By (3.2) we have for any k 2 N;kxk+1 � x�(k)k2 � kxk � x�(k)k2 � �ke(xk)k2= dist(xk;X�)2 � �ke(xk)k2;whih implies that dist(xk+1;X�)2 � dist(xk;X�)2 � �ke(xk)k2: (3:3)



204 N.H. XIUUsing (3.3) and Lemma 3.1 (sine ke(xk)k ! 0);9K" > 0 suh that for any k � K";dist(xk+1;X�)2 � dist(xk;X�)2 � ��2dist(xk;X�)2= Æ1 � dist(xk;X�)2; (3.4)where Æ1 = 1� ��2 and 0 < Æ1 < 1: Let againÆ2 = max(1� � � ke(x0)k2dist(x0;X�)2 ; � � � ; 1� �ke(xK")k2dist(xK" ;X�)2) :By (3.2), we have 0 < Æ2 < 1 anddist(xk+1;X�)2 � Æ2 � dist(xk;X�)2; 8k < K": (3:5)Set Æ = maxfÆ1; Æ2g, then 0 < Æ < 1: Combining (3.4), (3.5) with xk ! x1; we anobtain the desired result. 2The above theorem shows the onvergene behavior of the sequene fxkg: In pra-tie, we also onerns with onvergene properties of fe(xk)g: The following theoremtell us an important fat. In order to attain the goal, we �rst prove a signi�ant lemma.Lemma 3.3. For problem (AV I) and any x� 2 X�; we haveke(x)k � (kI +Mk) � kx� x�k; 8x 2 Rn: (3:6)Proof. By the de�nition of e(x), x � e(x) = PX [x �Mx � q℄: So we have for anyx� 2 X�; (x� e(x)� x�)T (Mx� + q) � 0; 8x 2 Rn: (3:7)By the essential property of the projetion operator, we again obtain(x� � (x� e(x)))T ((Mx+ q)� e(x)) � 0; 8x 2 Rn: (3:8)Adding (3.7) and (3.8), and rearranging terms, we dedue(x� x�)TM(x� x�) � e(x)T [(Mx+ q)� (Mx� + q) + x� x�℄� ke(x)k2= e(x)T (I +M)(x� x�)� ke(x)k2: (3.9)By M � 0 and the Cauhy-Shwartz inequality, it follows thatke(x)k2 � e(x)T (I +M)(x� x�) � ke(x)k � k(I +M)k � kx� x�k:Therefore the lemma is true. 2Theorem 3.4. For problem (AV I), the sequene fe(xk)g generated by PC-Methodwith (3:2) is R-linearly onvergent.Proof. By Theorem 3.2, fxkg onverges Q-linearly to some point x� 2 X�; and90 < Æ < 1 suh that kxk+1 � x�k2 � Æ � kxk � x�k2; 8k 2 N:



On the Linear Convergene of PC-Method for A Class of Linear Variational Inequalities 205That is, kxk � x�k2 � Æk � kx0 � x�k2; 8k 2 N:From the above inequality and Lemma 3.3, we haveke(xk)k2 � (kI +Mk)2 � kxk � x�k2 � kI +Mk2 � Æk � kx0 � x�k2= C � Æk; 8k 2 N;where C 4= kI +Mk2 � kx0 � x�k2: This ompletes the proof. 2We lose this setion by mentioning Theorems 3.2 and 3.4's appliations to somePC methods.In 1987, Khobotov [15℄ proposed a modi�ed extragradient method for monotonevariational inequality problem:xk = P
[xk � �kF (xk)℄; (3.10a)xk+1 = P
[xk � �kF (xk)℄; (3.10b)where �k is determined by some linesearh rule. Sun [16, 17, 18℄ used the di�erentlinesearh rules. When the problem degenerates into (AV I), it an be obtained theinequality similar to (3.2). So the following result be gained.Corollary 3.5. For the problem (AV I), the modi�ed extragradient methods of[15; 16; 17; 18℄ are globally linearly onvergent (Here we mean fxkg at Q-linearly, andfe(xk)g at R-linearly).In [9℄, He introdued a PC algorithm for the monotone problem (LV I) :xk+1 = xk � �kdk; 8x0 2 Rn; (3.11a)dk = (I +MT )e(xk); �k = ke(xk)k2=kdkk2; (3.11b)It has been proven that the sequene fxkg generated by (3.11) satis�es the ondition(3.2). Hene we haveCorollary 3.6. For the problem (AV I), the PC algorithm (3:11) of He [9℄ is globallylinearly onvergent.Similarly, we an also handle the algorithms in [10, 11℄. In Theorem 3.2, however,it is not given the estimate of Q-fator. The next setion will disuss this problem.4. Further Disussion for M > 0In this setion, we onsider the problem (AV I), and assume that M is positivede�nite but not neessarily symmetri (denoted byM > 0). So the problem (AV I) hasthe unique solution whih we shall denote by x�, and dist(x;X�) = kx� x�k;8x 2 Rn:To start, we derive the global upper and lower error bounds of the solution x� to suha problem, the idea of proof of whih omes from Pang [19℄.Lemma 4.1. for the problem (AV I), if M > 0 and X� 6= �, the we have(a) 1kI +Mkke(x)k � kx� x�k � kI +Mk� ke(x)k; 8x 2 Rn: (4.1)



206 N.H. XIU(b) �kI +Mk2 ke(x)kkPX [�q℄k � kx� x�kkx�k � kI +Mk2� ke(x)kkPX [�q℄k ; 8x 2 Rn: (4.2)where � = �min(M̂ ) > 0; M̂ = M +MT2 :Proof. From (3.9) and M > 0, we have�kx� x�k2 � e(x)T (I +M)(x� x�)� ke(x)k2 � ke(x)k � kI +Mk � kx� x�k;whih readily lead to the right-hand side inequality of the part (a). This together with(3.6) implies (4.1). Now, setting x = 0 in (4.1), we obtain1kI +MkkPX [�q℄k � kx�k � kI +Mk� kPX [�q℄k: (4:3)Combining (4.1) with (4.3), we obtain (4.2) readily. 2By using Lemma 4.1, we an now study the linear onvergene property of thesequene fxkg generated by PC-Method without `feasibility'.Theorem 4.2. For the problem (AV I), if M > 0;X� 6= �, and �d(x) is a stritlydesent diretion satisfyingm1 � ke(x)k � kd(x)k � m2 � ke(x)k; m1;m2 > 0;8x 2 Rn; (4:4)then the sequene fxkg generated by (2.3) onverges to the unique solution x� at Q-linearly if and only if �d(x) is strongly desent.Proof. By Theorem 2.2, fxkg must onverge to x�, and (2.5) holds, i.e.,kxk+1 � x�k2 � kxk � x�k2 � rk � �k � ke(xk)k2: (4:5)\(=". If �d(x) is strongly desent, then we have from (4.5) and (4.4),kxk+1 � x�k2 � kxk � x�k2 � �ke(xk)k2; (4:6)where � = r2=m22 > 0: This together with (4.1) yieldskxk+1 � x�k2 �  1� � �2kI +Mk2! kxk � x�k2: (4:7)This shows that fxkg onverges to x� at Q-linearly.\=)". By ontrary, we assume that there is a subsequene rki ! 0 satisfying(xki � x�)Td(xki) = rki � ke(xki)k2: (4:8)Similarly we an alulatekxki+1 � x�k2 = kxki � x�k2 � r2ki ke(xki)k4kdkik2 : (4:9)



On the Linear Convergene of PC-Method for A Class of Linear Variational Inequalities 207From (4.9) and inequalitieske(xki)k � kI +Mk � kx� x�k; (by Lemma 4.1)ke(xki)k � 1m1 kd(xki)k; (by (4.4))we readily imply thatkxki+1 � x�k2kxki � x�k2 = 1� r2ki � ke(xki)k4kdkik2 � kxki � x�k2� 1� r2ki � kI +Mk2m21 ! 1(i!1)This is to say that fxkig does not linearly onverge to x�, the proof is ompleted. 2It is easy to see that the PC algorithm (3.11) of He [9℄ satis�es the assumptions ofTheorem 4.2. Hene a diret result isCorollary 4.3. For strongly monotone problem (AV I), the PC algorithm of He [9℄is globally linearly onvergent, and Q-fator q � �1� � �2kI +Mk2� 12 :We here point out that the PC algorithm in [11℄ has also similar result. Theinequality (4.7) learly indiates that the onvergene rate of fxkg depends seriouslyon the least eigenvalue � of the symmetri part M̂ ofM (whenM is symmetri, � is theleast eigenvalue). The more � is small, the more Æ 4= �1� � �2kI +Mk2�12 approximatesto 1, and the onvergene rate is slow.Referenes[1℄ Cottle R.W., Dantzig G.B., Complementarity pivot theory of mathematial programming,Linear Algebra and its Appliations, 1 (1968), 103{125.[2℄ Harker P.T., Pang J.S., Finite-Dimensional variational inequality and nonlinear omple-mentarity problems: A survey of theory, algorithms and appliations, Math. Programming,48 (1990), 161{220.[3℄ Cottle R.W., Pang J.S., Stone R.E., The linear omplementarity problem, Aademi Press,New York, 1992.[4℄ Isa G., Complementarity Problems, Leture Notes in Mathemtias 1528, Springer Verlag,Berlin, 1992.[5℄ Goldstein A.A., Convex programming in Hilbert spae, Bull. Am. Math. So., 70 (1964),709{710.[6℄ Levitin F.S., Polyak B.T., Constrained minimization methods, USSR Comput. Math. andMath. Phys., 6 (1965), 1{50.[7℄ He B.S., A projetion and ontration method for a lass of linear omplementarity problemsand its appliation in onvex quadrati programming, Appl. Math. and Optim., 25 (1992),247{262.[8℄ He B.S., Stoer J., Solution of projetion problems over polytopes, Numer. Math., 61 (1992),73{90.
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