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A FINITE DIMENSIONAL METHOD FOR SOLVINGNONLINEAR ILL-POSED PROBLEMS�1)Qi-nian Jin(Institute of Mathematis, Nanjing University, Nanjing 210008, China)Zong-yi Hou(Institute of Mathematis, Fudan University, Shanghai 200433, China)AbstratWe propose a �nite dimensional method to ompute the solution of nonlin-ear ill-posed problems approximately and show that under ertain onditions, theonvergene an be guaranteed. Moreover, we obtain the rate of onvergene ofour method provided that the true solution satis�es suitable smoothness ondi-tion. Finally, we present two examples from the parameter estimation problems ofdi�erential equations and illustrate the appliability of our method.Key words: Nonlinear ill-posed problems, Finite dimensional method, Convergeneand onvergene rates. 1. IntrodutionIn this paper we onsider the nonlinear problems of the formF (x) = y0; (1)where F : D(F ) � X ! Y is a nonlinear operator between real Hilbert spaes X and Yand y0 2 R(F ). The norms in X and Y will be denoted by k�kX and k�kY respetively.We are mainly interested in those problems of the form (1) for whih the solution doesnot depend ontinuously on the right hand side. Suh problems are alled ill-posed.We refer to [5℄ for a number of important inverse problems in natural sienes whihlead to suh ill-posed problems.Let L be a linear operator L : D(L) � X ! Zwith Z a Hilbert spae (the norm is denoted by k � kZ) and D(F ) \ D(L) 6= ;. Lneed not be bounded and allows us to de�ne a seminorm j � j on D(L) by means ofjxj := kLxkZ . Let (x; z)L := (x; z)X + (Lx;Lz)Z for eah pair x; z 2 D(L), then (�; �)L� Reeived Otober 31, 1996.1)This work is arried out during the �rst author's stay at Fudan University and is supported byNational Natural Siene Foundation of China.



316 Q.N. JIN AND Z.Y. HOUis an inner produt on D(L), and the indued norm is denoted by kzkL =p(z; z)L forz 2 D(L). If L is losed then (D(L); k � kL) forms a Hilbert spae.Now we hoose a onept of \solution" for problem (1). An element x0 2 X isalled an x�-minimum-seminorm-solution (x�-MSS) of problem (1) for given y0 2 Yand x� 2 D(L) if F (x0) = y0;and kLx0 � Lx�kZ = inffkLx� Lx�kZ j F (x) = y0; x 2 D(F ) \D(L)g;where x� 2 D(L) is an a priori guess of x0 and it plays the role of a seletion riterion.In the following we always assume the existene of an x�-MSS x0 for problem (1). Dueto the nonlinearity of F , this solution need not be unique.Sine in pratie, we often only know the approximation data yÆ of y0, kyÆ�y0k � Æ,regularization tehnique is required to obtain a reasonable solution to x�-MSS x0 dueto the ill-posedness of problem (1). Tikhonov regularization is the well known method.In [7℄, Tikhonov regularization method with the seminorm j � j in the regularizationterm was introdued and the solution xÆ� of the minimization problemminx2D(F )\D(L)fkF (x) � yÆk2Y + �kLx� Lx�k2Zg (2)was used to approximate the x�-MSS of problem (1). By suitable hoie of the regu-larization parameter �, onvergene and onvergene rate of xÆ� were obtained. Thepratial advantage of allowing for regularization with an operator L is given by thefat that one an realize seminorm regularization terms, whih penalize undesired os-illations in the numerial solution without signi�antly a�eting its low modes.In this paper we will present a �nite dimensional method for solving nonlinear ill-posed problems. We desribe the method in Setion 2 and show that this method is well-de�ned and prove the existene of the approximate solutions. It is easy to see that ourmethod an be viewed as a modi�ed form of the (generalized) Marti's method if F is alinear operator[10;15℄. The analysis for onvergene and onvergene rates are presentedin Setion 3 and two examples from the parameter estimation problems of di�erentialequations are given in Setion 4 to illustrate the reasonability of our assumptions andthe appliability of our method. For the �nite-dimensional approximation of Tikhonovregularization of nonlinear ill-posed problems, F is required to be ompat[11;13℄. Forour method, this is not neessary.2. The Desription of the MethodLet x0 be the sought x�-MSS of (1). Let fPng be a sequene of bounded linearoperators of �nite rank on X suh that Pnx0 2 D(F ) \D(L) for suÆiently large n,and we an hoose positive number sequenes fbng and fng suh thatkPnx0 � x0kX = o(bn); limn!1 bn = 0; (3)kL(Pnx0 � x0)kZ = O(n); limn!1 n = 0: (4)



A Finite Dimensional Method for Solving Nonlinear Ill-Posed Problems 317Let Fn be the approximations of F with the properties that D(Fn) = D(F ) for alln and 8� > 0 there is a onstant (�) depending only on � suh thatkFn(x)� F (x)kY � C(�)�n; 8x 2 D(F ) \ U�(x0); (5)where �n = o(1) and U�(x0) := fx 2 X j kx� x0kX � �g.Let yn be the observation data of y0 suh thatkyn � y0kY � Æn; (6)where Æn is assumed to be known andlimn!1 Æn = 0:Now we an de�ne the setSn := fx j kFn(x)� ynkY � bn + Æn + (1)�n; x 2 Pn(X) \D(F ) \D(L)g (7)and onstrut xn as follows:xn 2 Sn and kLxn � Lx�kZ = inffkLx� Lx�kZ j x 2 Sng: (8)We will use the sequene fxng to approximate the x�-MSS x0 of (1).To show our method is well de�ned, we need the following assumptions.Assumption 1. 1) F : D(F ) � X ! Y is Fr�ehet di�erentiable at eah pointx 2 D(F ) with Fr�ehet derivative F 0(x) 2 L(X;Y ), the adjoint of F 0(x) is denoted byF 0(x)�;2) Let 0 < 1 � 2, 0 � 2 � 1 and 1 + 2 � 1. 8� > 0, there exists � := �(�) > 0suh that for all x 2 D(F ) \ U�(x0) there holdskF (x)� F (x0)� F 0(x0)(x� x0)kY � �kx� x0k1X kF (x) � F (x0)k2Y :Assumption 2. 1) For eah �xed n, (Fn; L) : D(F )\D(L) � X ! Y �Z is weaklylosed, i.e., for any sequene fxkg � D(F ) \D(L), if xk * x in X, (Fn(xk); Lxk) *(y; z) in Y �Z, then x 2 D(F )\D(L) and Fn(x) = y, Lx = z. (Here \*" denotes theweakly onvergene).2) For eah �xed n, let fxkg be a sequene in D(F ) \D(L), if f(Fn(xk); Lxk)g isbounded in Y � Z, then fxkg is bounded in X.Now we are in a position to prove the well-de�nedness of our method. we �rst provethat for suÆiently large n there holdskF (Pnx0)� F (x0)kY � bn: (9)In fat, equation (3) implies that kPnx0 � x0kX � 1 for suÆiently large n. Therefore,Assumption 1 2) an be applied to obtain (here � := �(1))(kF (Pnx0)� F (x0)k1�2Y � �kPnx0 � x0k1X )kF (Pnx0)� F (x0)k2Y



318 Q.N. JIN AND Z.Y. HOU�kF 0(x0)(Pnx0 � x0)kY : (10)If kF (Pnx0)� F (x0)k1�2Y � 2�kPnx0 � x0k1X , thenkF (Pnx0)� F (x0)kY � (2�) 11�2 kPnx0 � x0k 11�2X :Sine 11� 2 � 1, from (3) we immediately obtain (9) providing n large enough.If kF (Pnx0)� F (x0)k1�2Y � 2�kPnx0 � x0k1X , then (10) gives12kF (Pnx0)� F (x0)kY � kF 0(x0)(Pnx0 � x0)kY :Therefore kF (Pnx0)� F (x0)kY � 2kF 0(x0)kL(X;Y )kPnx0 � x0kX ;and we again obtain (9) providing n large enough.Thus from (5), (6) and (9) we get for suÆiently large n thatkFn(Pnx0)� ynkY �kF (Pnx0)� F (x0)kY + kyn � y0kY + kFn(Pnx0)� F (Pnx0)kY�bn + Æn + (1)�n:This implies that Pnx0 2 Sn. Therefore, without loss of generality, in the following wealways assume that Sn 6= ; for all n.Now for eah �xed n, we de�nedn := inffkLx� Lx�kZ j x 2 Sng;and let fx(k)n g be a minimizing sequene. Therefore x(k)n 2 Pn(X) \D(F ) \D(L), andkFn(x(k)n )� ynkY � bn + Æn + (1)�n; limk!1 kLx(k)n � Lx�kZ = dn:This implies that f(Fn(x(k)n ); Lx(k)n )g is bounded in Y �Z. Thus from Assumption 2 2)we know that fx(k)n g is bounded in X. Sine a bounded set in Hilbert spae always hasa weakly onvergent subsequene, there is a subsequene fx(kl)n g and elements xn 2 X,(�yn; �zn) 2 Y � Z suh thatx(kl)n * xn in X; (Fn(x(kl)n ); Lx(kl)n ) * (�yn; �zn) in Y � Z:Hene Assumption 2 1) implies that xn 2 D(F ) \D(L), Fn(xn) = �yn and Lxn = �zn.By the weak lower semiontinuity of Hilbert spae norm we havekFn(xn)� ynkY � lim infl!1 kFn(x(kl)n )� ynkY � bn + Æn + (1)�n:Sine a losed subspae in Banah spae is always weakly losed, from x(kl)n 2 Pn(X)and x(kl)n * xn we know xn 2 Pn(X). Hene xn 2 Sn. Note thatkLxn � Lx�kZ � lim infl!1 kLx(kl)n � Lx�kZ = dn;



A Finite Dimensional Method for Solving Nonlinear Ill-Posed Problems 319we have kLxn � Lx�kZ = dn. Therefore we obtain the existene of xn de�ned by (8).3. Convergene and Convergene RatesIn this setion we present the analysis for onvergene and onvergene rates of ourmethod. The following additional assumptions are needed.Assumption 3. (F;L) : D(F ) \D(L) � X 7! Y � Z is weakly losed.Assumption 4. Let fxkg � D(L). If xk * x in X and kLxkkZ ! kLxkZ , thenxk ! x in X.We �rst give the onvergene result for fxng.Theorem 1. Let Assumptions 1{4 be ful�lled and D(F ) be bounded in X, let fxngbe the sequene de�ned by (8). Then there is a subsequene of fxng onvergent in(D(L); k � kL) and the limit is an x�-MSS of (1). If in addition, the x�-MSS x0 of (1)is unique, then limn!1 kxn � x0kL = 0:Proof. Aording to the analysis in Setion 2 we know there is an N suh thatPnx0 2 Sn for all n � N . Hene from the de�nition of xn it follows thatkLxn � Lx�kZ � kL(Pnx0 � x�)kZ � kL(Pnx0 � x0)kZ + kL(x0 � x�)kZ : (11)Sine xn 2 Sn, we have kFn(xn)� ynkY � bn + Æn + (1)�n:Due to the boundedness ofD(F ) inX, there is a onstantM suh that kxn�x0kX �M ,Therefore (5) implies thatkF (xn)� ynkY � kFn(xn)� F (xn)kY + kFn(xn)� ynkY� bn + Æn + (1)�n + (M)�n: (12)Combining the above we know that f(xn; F (xn); Lxn)g is bounded in X�Y �Z. Thusthere is a subsequene fxnkg and elements �x 2 X, �y 2 Y , �z 2 Z suh thatxnk * �x in X; (F (xnk); Lxnk) * (�y; �z) in Y � Z:Now Assumptiom 3 implies that �x 2 D(F ) \D(L), F (�x) = �y and L�x = �z. But from(12) we know limn!1 kF (xn)� y0kY = 0:Therefore �y = y0. Using (4), (11) and the weak lower semiontinuity of Hilbert spaenorm we have kL�x� Lx�kZ � lim infk!1 kLxnk � Lx�kZ� limsupk!1 kLxnk � Lx�kZ � kLx0 � Lx�kZ :



320 Q.N. JIN AND Z.Y. HOUSine x0 is the x�-MSS of (1), we havekL�x� Lx�kZ = kLx0 � Lx�kZ ; limk!1kLxnk � Lx�kZ = kL�x� Lx�kZ : (13)This implies that �x is an x�-MSS of (1), and fromkLxnk � L�xk2Z = kLxnk � Lx�k2Z � 2(Lxnk � Lx�; L�x� Lx�)Z + kL�x� Lx�k2Zwe know limk!1kLxnk � L�xkZ = 0:On the other hand, sine xnk * �x in X, from (13) and Assumption 4 it follows thatlimk!1 kxnk � �xkX = 0:Hene limk!1kxnk � �xkL = 0:If the x�-MSS x0 of (1) is unique, from above we know that eah subsequene offxng has a subsequene onvergent to x0 in (D(L); k � kL). Thereforelimn!1 kxn � x0kL = 0:The above theorem provides us only the onvergene result of fxng. When the x�-MSS x0 of (1) satis�es suitable smoothness ondition, we an derive the onvergenerate for fxng.Lemma 1. Let X, Y and Z be Hilbert spaes, let L : D(L) � X ! Z be a losedlinear operator with R(L) losed in Z. If N(L) \ N(F 0(x0)) = f0g and there is aonstant � > 0 suh that kF 0(x0)vkY � �kvkX for all v 2 N(L), then there exists aonstant � > 0 suh thatkF 0(x0)xk2Y + kLxk2Z � �2kxk2L; 8x 2 D(L):Proof. Please refer to [9℄.Theorem 2. Let Assumptions 1{3 hold and D(F ) be bounded in X, let qn :=maxfbn; ng, let L : D(L) � X ! Z be a losed, densely de�ned linear operator withR(L) losed in Z and N(L) \ N(F 0(x0)) = f0g, and there is a onstant � > 0 suhthat kF 0(x0)vkY � �kvkX for all v 2 N(L). Let x� 2 D(F ) \ D(L) be hosen suhthat kPnx� � x�kL � O(qn). If x0 � x� 2 D(L�L) and there is an w 2 Y suh thatL�L(x0 � x�) = F 0(x0)�w, then for the sequene fxngde�ned by (10), we havekxn � x0kL � O(pqn + Æn + �n) as n!1if one of the following onditions holds:i) 1 = 2, 2 = 0, 2�kwkY < �2 with � := �(2kx0 � x�kX) and xn ! x0 in X asn!1;ii) 0 < 1 � 2, 0 < 2 � 1 and 1 + 22 � 2.



A Finite Dimensional Method for Solving Nonlinear Ill-Posed Problems 321Proof. Obviously we always have 1 + 2 � 1. Thus from the argument in Setion2 it follows that there is an N0 suh that Pnx0 2 Sn for all n � N0. Therefore, from(11) and (4) we an obtainkLxn � Lx�kZ � kLx0 � Lx�kZ +O(qn):HenekLxn � Lx0k2Z = kLxn � Lx�k2Z + kLx0 � Lx�k2Z � 2(Lxn � Lx�; Lx0 � Lx�)Z� 2kLx0 � Lx�k2Z � 2(Lxn � Lx�; Lx0 � Lx�)Z +O(qn)= 2(Lx0 � Lxn; Lx0 � Lx�)Z +O(qn)= 2(x0 � xn; L�L(x0 � x�))X +O(qn):Applying the assumptions on x0 � x� yieldskLxn � Lx0k2Z � 2(x0 � xn; F 0(x0)�w)X +O(qn)= 2(F 0(x0)(x0 � xn); w)Y +O(qn)� 2kwkY kF 0(x0)(xn � x0)kY +O(qn): (14)Sine D(F ) is bounded in X, there is a onstant M suh that kxn�x0kX �M . Heneby Assumption 1 2) we have (here � := �(M))kF 0(x0)(xn � x0)kY � Dn + �E1n D2n : (15)where we use the abbreviations Dn := kF (xn) � F (x0)kY and En := kxn � x0kX .Therefore, by adding kF 0(x0)(x0 � xn)k2Y to the both sides of (14) and using Lemma 1and (15) we an get�2kxn � x0k2L �kLxn � Lx0k2Z + kF 0(x0)(xn � x0)k2Y�2kwkY (Dn + �E1n D2n ) + 2D2n + 2�2E21n D22n +O(qn)=2(kwkY +Dn)Dn + 2�(kwkY + �E1n D2n )D2n E1n +O(qn): (16)Now we give the estimate of Dn. Noting the boundedness of fxng inX, from (5) we anhoose a onstant �0 independent of n suh that kFn(xn)�F (xn)kY � �0�n. ThereforeDn �kFn(xn)� ynkY + kyn � y0kY + kFn(xn)� F (xn)kY�bn + Æn + (1)�n + Æn + �0�n = O(bn + Æn + �n): (17)In the following we are going to give the proof of the assertion.i) When 1 = 2 and 2 = 0, we have from (16) that�2kxn � x0k2L � 2(kwkY +Dn)Dn + (2�kwk + 2�2E2n)kxn � x0k2L +O(qn): (18)Sine xn ! x0 in X, we have En � 2kx0 � x�kX for suÆiently large n. Therefore �appearing in (18) an be hosen as � := �(2kx0 � x�kX). Sine 2�kwkY < �2, we an



322 Q.N. JIN AND Z.Y. HOUhoose a onstant q > 0 and an integer N1 suh that �2 � (2�kwkY + 2�2E2n) � q forall n � N1. Therefore qkxn � x0k2L � 2(kwkY +Dn)Dn + O(qn). By applying (17) weobtain the desired result immediately.ii) We �rst assume 1 < 2. Applying the impliation (f. [12℄)a; b;  � 0; p > q � 0; ap � + baq =) ap � O(+ b pp�q )to (16) and noting 222� 1 � 1 it follows thatkxn � x0k2L � O(Dn +D 222�1n + qn) � O(qn + Æn + �n): (19)Now we onsider the ase 1 = 2. From (17) it follows that 2�(kwk+�E2nD2n )D2n !0 as n!1. Therefore, by noting that(�2 � 2�(kwk + �E2nD2n )D2n )kxn � x0k2L � 2(kwkY +Dn)Dn +O(qn);we immediately obtain kxn � x0k2L � O(qn + Æn + �n).Summing up, the proof is omplete.Remark 1. 1) In the above two theorems, we have assume that D(F ) is boundedin X. This is frequently used in parameter estimation problems (f. [1,8℄).2) The assumption that D(F ) is bounded in X is only needed to guarantee theboundedness of fxng in X. If L := I =identity, this assumption is not neessary.3) When L := I, the assumptions on L in Theorem 2 and Assumptions 2 2) and4 hold automatially and (4) is superuous, the number � appearing in Theorem 2should be replaed by � = 1 and xn ! x0 in X is not needed, and we also havekxn � x0kX � O(pbn + Æn + �n).4) To obtain the onvegene rates, the following assumption has been assumed inmany papers (f. [4,7,11℄):8� > 0, there is a onstant  suh thatkF 0(x)� F 0(x0)k � kx� x0kX ; 8x 2 D(F ) \ U�(x0):From this we an easily derivekF (x)� F (x0)� F 0(x0)(x� x0)k � 2 kx� x0k2:Therefore this is a speial ase of Assumption 1 2) with 1 = 2, 2 = 0.5) When 0 < 1 < 2, 0 < 2 < 1 and 1 + 2 � 1 > 121 + 2, we an also obtainthe onvergene rate for fxng, but now the onvergene rate is O((qn + Æn + �n) 222�1 ),not O(pqn + Æn + �n). As a matter of fat, by noting that 222� 1 < 1 we obtain thisassertion from the proof of Theorem 2 at one.6) When the ondition ii) in Theorem 2 is ful�lled, the smallness ondition 2�kwkY <�2 an be removed.



A Finite Dimensional Method for Solving Nonlinear Ill-Posed Problems 3234. ExamplesIn this setion we onsider two parameter estimation problems of di�erential equa-tions to illustrate the appliability of our method. These two problems are both non-linear and ill-posed and have been studied in [4,13℄ by Tikhonov regularization.Example 1. We treat the problem of estimating the parameter  in the two pointboundary value problem � uxx + u = f in (0; 1); (20)u(0) = 0 = u(1) (21)from the noise measurement uÆ 2 L2[0; 1℄. we assume 0 � 0, k0kL2 � K be thesought solution orresponding to the unperturbed observation u0, i.e. u(0) = u0. Hereu(0) 2 H10 [0; 1℄\H2[0; 1℄ denotes the solution of (20), (21) with  = 0 and f 2 L2[0; 1℄,f 6= 0 and K is a given onstant.To implement of our method, we hoose X = Y = Z := L2[0; 1℄ and L := ddx , andde�ne the nonlinear operator F byF : D(F ) : = f 2 L2[0; 1℄ j  � 0 a.e.; kkL2 � K + 1g � L2[0; 1℄ 7! L2[0; 1℄; 7! F () := u():Clearly D(L) = H1[0; 1℄ and L : D(L) � L2[0; 1℄ 7! L2[0; 1℄ is losed, densely de�nedand surjetive. Sine F is weakly losed[3℄, Assumption 3 follows. Assumption 2 2)follows immediately from the de�nition of D(F ). It is well known that[4℄ F is Fr�ehetdi�erentiable withF 0()h := �A()�1(hu());  2 D(F ); h 2 L2[0; 1℄;and satis�es Assumption 1 with 1 = 2 and 2 = 0, where A() : H10\H2[0; 1℄ 7! L2[0; 1℄is de�ned by A()u := �uxx+ u. Note that dimN(L) = 1 and R(L) = Z, Assumption4 follows fron [7, Lemma 1℄.Now suppose that h 2 N(L) \ N(F 0(0)). This implies that h is a onstant andhA()�1(u()) = 0. If h 6= 0 then this implies that u(0) = 0 whih an happen onlyif f = 0, whih is exluded. Sine dimN(L) = 1, there is a onstant � > 0 suh thatkF 0(0)hkL2 � �khkL2 for all h 2 N(L).To give the �nite dimensional approximation, let Pn(X) be the spae of the linearsplines on a uniform grid of n+ 1 points in [0; 1℄. If 0 satis�es: 0 2 H2[0; 1℄, 0 > 0,then from [14, Corollary 7.3℄ we havelimn!1 kPn0 � 0kL1 = 0:This implies that Pn0 2 D(F ) \D(L) for suÆiently large n.From [14℄ we also havekPn0 � 0kL2 � O(n�2k0kH2);



324 Q.N. JIN AND Z.Y. HOUkL(Pn0 � 0)kL2 � O(n�1k0kH2):Thus we an hoose the quantities bn and n appearing in our method to be bn =n�2 log n and n = n�1, hene qn = O(n�1). To de�ne the approximation Fn of F ,we hoose Yn be the spae of linear splines on a uniform grid of n + 1 points in [0; 1℄,vanishing at 0 and 1, and de�ne Fn byFn :D(F ) � L2[0; 1℄ 7! L2[0; 1℄; 7! Fn() := un();where un() is the unique solution of the variational equation((un)x; vx)L2 + (un; v)L2 = (f; v)L2 ; 8v 2 Yn:Then we have (f.[2,13℄)kFn()� F ()kL2 � O((1 + kkL2)n�2):Thus we an hoose �n = n�2. To show the appliability of our method, now we onlyneed to prove the weakly losedness of Fn for eah �xed n. Suppose fkg � D(F ) bea sequene suh that k *  in L2[0; 1℄ and un(k) * u in L2[0; 1℄. By the weaklylosedness of D(F ), we have  2 D(F ). Note that fkg is bounded in L2[0; 1℄, fun(k)gis bounded in H1[0; 1℄ by the theory of ellipti equations. Sine a bounded set ina Hilbert spae always has a weakly onvergent subsequene, and by the embeddingtheorem of Sobolev spae and Asoli-Arzela theorem we know there is a subsequene,still denote it by fun(k)g, suh that un(k) * ~u in H1[0; 1℄ and un(k) ! �u in themaximum norm. Obviously ~u = �u = u. Now letting k !1 in((un(k))x; vx)L2 + (kun(k); v)L2 = (f; v)L2 ; 8v 2 Ynwe an obtain (ux; vx)L2 + (u; v)L2 = (f; v)L2 ; 8v 2 Yn:Sine u 2 Yn due to the weakly losedness of Yn, it follows that u = un().Example 2. Consider the problem of estimating the di�usion oeÆient a in� (aux)x = f in (0; 1); (22)u(0) = 0 = u(1) (23)with f 2 L2[0; 1℄ from the noise data uÆ of the state variable u0, kuÆ � u0kL2 � Æ. Leta0 be the sought solution and u0 = u(a0). To put this problem into our framework, wehoose X = H1[0; 1℄, Y = L2[0; 1℄, and de�ne the nonlinear operator F byF : D(F ) : = fa 2 H1[0; 1℄ j a(x) � � � H1[0; 1℄ 7! L2[0; 1℄;a 7! F (a) := u(a);



A Finite Dimensional Method for Solving Nonlinear Ill-Posed Problems 325where u(a) is the unique solution of (22), (23) and � > 0 is a given onstant. It is wellknown that[4℄ F is weakly losed, ontinuous and Fr�ehet di�erentiable withF 0(a)h = A(a)�1(hu(a)x)x; a 2 D(F ); h 2 H1[0; 1℄;and A(a) : H10 \ H2[0; 1℄ 7! L2[0; 1℄ is de�ned by A(a)u := �(aux)x. We an showthat[6℄ there is an �0 > 0 suh that for every 0 < � � �0 there is an � := �(�) suh thatfor all a 2 D(F ) \ U�(a0),kF (a) � F (a0)� F 0(a0)(a� a0)kL2 � �ka� a0kH1kF (a) � F (a0)kL2 :If we hoose L := I, then Assumptions 2 and 4 and the assumptions on L in Theorem2 hold automatially. To give the �nite dimensional approximation, let Xn and Yn beas in Example 1, and let un(a) be the unique solution of the variational equation(a(un)x; vx)L2 = (f; v)L2 ; 8v 2 Yn;and de�ne the approximation Fn of F byFn :D(F ) � H1[0; 1℄ 7! L2[0; 1℄;a 7! Fn(a) := un(a):Then we an show that Fn is weakly losed for eah �xed n as in Example 1 and havethe estimate (f.[2,13℄) kFn(a)� F (a)kL2 � O((1 + kakH1)n�2):Hene we an hoose �n = n�2. If the sought solution a0 satis�es: a0 2 H2[0; 1℄, a0 > �,then [14, Corollary 7.3℄ implies Pna0 2 D(F ) for suÆiently large n andkPna0 � a0kH1 � O(n�1ka0kH2):Hene we an hoose bn = n�1 log n. Thus we also verify the appliability of our methodto this parameter estimation problem.Referenes[1℄ H.T. Banks, K. Kunish, Estimation tehniques for distributed parameter systems, Boston,Birkhauser, 1989.[2℄ P. Ciarlet, Letures on the �nite element method, Inst. of Fund. Researh, Bombay, 1975.[3℄ F. Colonius, K. Kunish, Stability for parameter estimation in two point boundary valueproblems, J. Reine Angewandte Math., 370 (1989), 1{29.[4℄ H.W. Engl, K. Kunish, A. Neubauer, Convergene rates for Tikhonov regularization ofnonlinear ill-posed problems, Inverse Problems, 5 (1989), 523{540.[5℄ H.W. Engl, Regularization methods for the stable solutions of inverse problems, Surv. Math.Ind., 3 (1993), 71{143.[6℄ B. Hofmann, O. Sherzer, Fators inuening the ill-posedness of nonlinear problems, In-verse Problems, 10 (1994), 1277{1297.
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