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A GOLDSTEIN'S TYPE PROJECTION METHOD FOR A CLASSOF VARIANT VARIATIONAL INEQUALITIES�1)Bing-sheng He(Department of Mathematis, Nanjing University, Nanjing 210008, China)AbstratSome optimization problems in mathematial programming an be trans-lated to a variant variational inequality of the following form: Find a vetoru�, suh thatQ(u�) 2 
; �v �Q(u�)�Tu� � 0; 8v 2 
:This paper presents a simple iterative method for solving this lass of vari-ational inequalities. The method an be viewed as an extension of theGoldstein's projetion method. Some results of preliminary numerial ex-periments are given to indiate its appliations.Key words: Variational inequality, Goldstein projetion method.1. IntrodutionThe lassial variational inequality (VI) is to determine a vetor u in a losed onvexsubset 
 of the n-dimentional Euleaden spae Rn suh that(v � u)TF (u) � 0; 8v 2 
; (1)where F is a mapping from Rn into itself. Let � > 0, sine the early work of Eaves[3℄, it has been known that the variational inequality problem (VI) is equivalent to aprojetion equation u = P
[u� �F (u)℄;where P
(�) denotes the orthogonal projetion map on 
. In other words, to solve (VI)is equivalent to �nding a zero point of the residue funtione(u; �) := u� P
[u� �F (u)℄:� Reeived July 12, 1996.1)This Projet Supported by NSFC 19671041 and the Natural Siene Foundation of ProvineJiangsu of China.



426 B.S HEAmong the existing methods (e.g., see [5{11,16,18{20℄) for nonlinear variational in-equality problems, the simplest is the Goldstein's projetion method [6℄ whih, startingwith any u0 2 Rn, iteratively updates uk+1 aording to the formulauk+1 = P
[uk � �kF (uk)℄; (2)where �k is a hosen positive stepsize. In ontrast with Douglas{Rahford operatorsplitting method [2,12,13℄ for (VI), this projetion method an be viewed as a simpleexpliit method, beause uk+1 ours only on the left-hand side of the equation in (2).Its onvergene results an be found in [1,4℄ and [6℄.In this paper, however, we onsider a lass of variant variational inequalities (VI)v :Find an u, suh thatQ(u) 2 
; (v �Q(u))Tu � 0; 8v 2 
; (3)where Q(u) : Rn ! Rn is a funtion and 
 � Rn is a losed onvex set. The existeneresults on suh a problem have been investigated reently by Pang and Yao [17℄.There are some methods in literature ([12,14{16℄), whih an be used for solving(VI)v . However, our interest in this paper is to develop the simplest method{Goldstein'stype projetion method for solving the variant problem (3). Throughout this paper weassume that the solution set of (VI)v, denoted by S�, is nonempty and the projetionon 
 is simple to arry out. The Euliden norm in this paper will be denoted by k � k.2. Motivation and the MethodAs the lassial variational inequality is equivalent tou = P
[u� �F (u)℄with a � > 0, it is easy to prove that the variant variational inequality (3) is equivalentto the following projetion equation (PE)Q(u) = P
[Q(u)� �u℄: (4)Let r(u; �) := 1� (Q(u)� P
[Q(u)� �u℄) (5)denote the saled residue of the (PE). Then we haveu 2 S� () r(u; �) = 0:This tells us that to solve the variant variational inequality is equivalent to �nding azero point of r(u; �). Note that the Goldstein's projetion sheme (2) for (VI) an beviewed as uk+1 = uk � e(uk; �k): (6)



A Goldstein's Type Projetion Method for a Class of Variant Variational Inequalities 427A natural question is whether we an build a similar method for (VI)v based on r(u; �).Thus, we onsider the following iterative sheme:Projetion method for (VI)vGiven u0 2 Rn,For k = 0; 1; : : : ; if uk 62 S� then do:uk+1 = uk � r(uk; �k): (7)Remark. Sheme (7) an be also written asuk+1 = � 1�k f(Q(uk)� �kuk)� P
[Q(uk)� �kuk℄g: (8)As in Goldstein's projetion method for (VI), eah iteration of the presented methodfor (VI)v onsists of a funtion evaluation and a projetion on 
. Therefore, we saythis method is a Goldstein's type method for (VI)v .3. Some LemmasIn this setion, we prove some lemmas, whih are useful for the onvergene analysisof the projetion method.Lemma 1. Let 
 be a losed onvex set in Rn, then we havek(v � P
(v))� (w � P
(w))k � kv � wk; 8v; w 2 Rn: (9)Proof. Using a well-known inequality of the projetion mapping,(v � P
(v))T (u� P
(v)) � 0; 8v 2 Rn; u 2 
;we an prove(v � w)T (P
(v) � P
(w)) � kP
(v)� P
(w)k2; 8v; w 2 Rn:It follows thatk(v � P
(v)) � (w � P
(w))k2= kv � wk2 � 2(v � w)T (P
(v)� P
(w)) + kP
(v)� P
(w)k2� kv � wk2 � kP
(v)� P
(w)k2and the lemma is proved.Lemma 2. The sequene fukg generated by the projetion method for (VI)v satis�eskuk+1 � u�k � k(uk � u�)� 1�k (Q(uk)�Q(u�))k (10)



428 B.S HEand kr(uk+1; �k)k � k(uk+1 � uk)� 1�k (Q(uk+1 �Q(uk))k: (11)Proof. By using (8) andu� = u� � r(u�; �k) = � 1�k f(Q(u�)� �ku�)� P
[Q(u�)� �ku�℄gwe get uk+1 � u� = � 1�k f(Q(uk)� �kuk)� P
[Q(uk)� �kuk℄g+ 1�k f(Q(u�)� �ku�)� P
[Q(u�)� �ku�℄g:Substituting v = Q(uk)� �kuk and w = Q(u�)� �ku� in (9) we get the assertion (10).Similarly, using (5) and (8) we getr(uk+1; �k) = 1�k f(Q(uk+1)� �kuk+1)� P
[Q(uk+1 � �kuk+1℄g� 1�k f(Q(uk)� �kuk)� P
[Q(uk)� �kuk℄g:Then the assertion (11) follows immediately from Lemma 1.4. ConvergeneThe projetion method for (VI)v in this paper generates an in�nite sequene fukg,whih is not neessarily ontained in the feasible set (fu : Q(u) 2 
g), but undersuitable assumptions, will be asymptotially feasible and onverge to a solution of(VI)v . For u� 2 S� and an arbitrary start point u0, we denoteS0(u�) := fu 2 Rn j ku� u�k � ku0 � u�kg;and use the following de�nitions as in literature [4℄ and [17℄.De�nition 1. The funtion Q is said to be Lipshitz ontinuous on set S0(u�) ifthere is a onstant L > 0 suh thatu; v 2 S0(u�) ) k(Q(u) �Q(v))k � Lku� vk:De�nition 2. The funtion Q is said to bei) monotone on the set S0(u�) ifu; v 2 S0(u�) ) (u� v)T (Q(u)�Q(v)) � 0;ii) strongly monotone on the set S0(u�) if there exists a onstant � > 0 suh thatu; v 2 S0(u�) ) (u� v)T (Q(u)�Q(v)) � �ku � vk2:



A Goldstein's Type Projetion Method for a Class of Variant Variational Inequalities 429Now we prove the following onvergene theorem.Theorem 1. If the mapping Q is Lipshitz ontinuous (with a onstant L > 0)and strongly monotone (with a onstant modulus � > 0) on S0(u�), and the stepsize �ksatis�es �k > L22�; (12)then the sequene fukg generated by the projetion method is ontained in S0(u�), more-over, fukg satis�es kuk+1 � u�k � k � kuk � u�k (13)and kr(uk+1; �k)k � k � kr(uk; �k)k; (14)where k = s1� 2��k + L2�2k :Proof. The proof follows from indution. Assume that uk 2 S0(u�), it follows fromthe assumptions and (10) thatkuk+1 � u�k2 � k(uk � u�)� 1�k (Q(uk)�Q(u�))k2= kuk � u�k2 � 2�k (uk � u�)T (Q(uk)�Q(u�)) + 1�2k kQ(uk)�Q(u�)k2� �1� 2��k + L2�2k �kuk � u�k2:Sine �k > L22� , we have 0 � k < 1 and uk+1 2 S0(u�). Similarly, from (11) we getkr(uk+1; �k)k2 � k(uk+1 � uk)� 1�k (Q(uk+1 �Q(uk))k� �1� 2��k + L2�2k �kuk+1 � ukk2= �1� 2��k + L2�2k �kr(uk; �k)k2:From Theorem 1 we get diretlyCorollary 1. If the assumptions of Theorem 1 is satis�ed and the stepsize inprojetion method for (VI)v satis�es�L � �k � �Uwith �L > L22� , then the method is globally linear onvergent. Moreover, if we take aonstant stepsize �k � � > L22� , then both fkuk � u�kg and fr(uk; �)g globally andlinearly onverge to zero.



430 B.S HEIn the ase that Q is the gradient of a funtion, say q, we have the following:Theorem 2. Let q(u) : Rn ! R be a twie ontinuous di�erentiable funtion onS0(u�) and �(r2q(u)) denote the set of the eigenvalues of the Hessian matrix of q,moreover, �min := inff� 2 �(r2q(u)) j u 2 S0(u�)gand �max := supf� 2 �(r2q(u)) j u 2 S0(u�)g:If Q(u) = rq(u) is monotone on S0(u�), then for all �k > �max2 the sequene fukgprodued by the projetion method for (VI)v satis�eskuk+1 � u�k � dk � kuk � u�k (15)and kr(uk+1; �k)k � dk � kr(uk; �k)k; (16)where dk = maxf j1� �min�k j; j1� �max�k j g:Proof. Under the assumptions follows diretlykuk+1 � u�k � k(uk � u�)� 1�k (Q(uk)�Q(u�))k= k(uk � u�)� 1�k (r2q(u� + t(uk � u�))(uk � u�)k� kI � 1�kr2q(u� + t(uk � u�))k � kuk � u�k= dk � kuk � u�k;with a t 2 (0; 1). Q is monotone means that �min � 0. Sine �k > �max2 , we have0 � dk � 1 and uk+1 2 S0(u�). Similarly, from (11) we getkr(uk+1; �k)k2 � k(uk+1 � uk)� 1�k (Q(uk+1 �Q(uk))k= k(uk+1 � uk)� 1�k (r2q(uk + t(uk+1 � uk))(uk+1 � uk)k� kI � 1�kr2q(uk + t(uk+1 � uk))k � kr(uk; �k)k= dk � kr(uk; �k)k:As a onsequene of Theorem 2 we haveCorollary 2. If the assumptions of Theorem 2 is satis�ed and �min > 0, and thestepsize in projetion method for (VI)v satis�es�L � �k � �U



A Goldstein's Type Projetion Method for a Class of Variant Variational Inequalities 431with �L > �max2 , then the method is globally linear onvergent. Moreover, if we take aonstant stepsize �k � � > �max2 , then both fkuk � u�kg and fr(uk; �)g globally andlinearly onverge to zero.5. An Example of AppliationsMany optimization problems in mathematial programming are equivalent to alassial variational inequality. However, some of the problems may be formulatedto low dimensional variant problems of the form (3), and thereby an be solved bythe proposed method in this paper advantageously. As an example we onsider thefollowing least distane problem: min 12kx� k2s.t. Ax 2 B (17)where A 2 Rm�n,  2 Rn and B � Rm is a losed onvex set. We assume that theprojetion to B is simple to arry out. This problem an be written asmin 12kx� k2s.t. Ax� � = 0� 2 B (18)The Lagrangean funtion of problem (18) isL(x; �; y) = 12xTx� Tx� yT (Ax� �);whih de�ned on Rn�B �Rm. Under proper regularity assumption, there is a triplet(x�; ��; y�) 2 Rn �B �Rm, whih is a saddle point of the Lagrangean funtion, i.e.,L(x�; ��; y) � L(x�; ��; y�) � L�2B(x; �; y�): (19)From above inequalities we know that (x�; ��; y�) is a solution of the following (2m+n)-dimensional variational inequality:8>><>>:x� = AT y� + ;(� � ��)T y� � 0; 8� 2 B;Ax� = ��: (20)Substituting the �rst and the third equation in the seond of system (20), we get am-dimensional variant variational inequality(AAT y� +A) 2 B; (� � (AAT y� +A))T y� � 0; 8� 2 B: (21)



432 B.S HETherefore, we an solve problem (17) by solving the (VI)v problem (21), after obtaininga solution of (21), say y�, we get x� = AT y�+, whih is the solution of the least distaneproblem. 6. Preliminary Numerial ResultsThis setion tests the least distane problem desribed in the last setion with thepresented method. We form the test problem as follows: The matrix A is onstrutedsynthetially suh that it has a presribed distribution of its singular values. This isaomplished by setting A := U�V T ;where U = Im � 2 uuTkuk22 ;V = In � 2 vvTkvk22 ;are Householder matries and � = diag(�k)is a m� n diagonal matrix. The vetors u, v and  ontain pseudorandomnumbers:u1 = 13846ui = (31416ui�1 + 13846)mod 46261 i = 2; : : : ;mv1 = 13846vj = (42108vj�1 + 13846)mod 46273 j = 2; : : : ; n1 = 13846i = (45278bi�1 + 13846)mod 46219 i = 2; : : : ;m:The losed onvex set B in (17) is de�ned asB := fz 2 Rm j kzk � agwith a presribted a. In the test problems we set �k = os k�l+1 + 1; k = 1; : : : ; l =minfm;ng. The singular values of matrix A tend to luster at the endpoints of theinterval [0; 2℄.We take y0 = 0 as starting point and the iteration formulayk+1 = yk � 1� f(AAT yk +A)� PB [(AAT yk +A)� �yk℄gwith onstant steplength � = 2:5(> �max(AAT )2 � 42 ). Note that in the ase kAk > a,kAAT y� + Ak = a (otherwise y� = 0 is the trivial solution). Therefore, we test the



A Goldstein's Type Projetion Method for a Class of Variant Variational Inequalities 433problem with di�erent a < kAk and the stopping riterion is if both���kAAT y +Ak � aa ��� � " and kr(y; 1)ka � "are satis�ed for tolerane " = 5 � 10�6.The ode was written in FORTRAN. The alulations have been performed on a486 personal omputer (without Weitek opreessor). In following tables k denotes theiteration number by the simple projetion method until the onvergene riterium wasmet.m = 500; n = 1000a k0:05 � kAk 5930:10 � kAk 2080:15 � kAk 1120:20 � kAk 720:25 � kAk 510:30 � kAk 380:35 � kAk 290:40 � kAk 240:45 � kAk 190:50 � kAk 160:55 � kAk 140:60 � kAk 11

m = 1000; n = 500a k0:05 � kAk 6810:10 � kAk 2310:15 � kAk 1230:20 � kAk 780:25 � kAk 540:30 � kAk 400:35 � kAk 310:40 � kAk 250:45 � kAk 200:50 � kAk 170:55 � kAk 140:60 � kAk 12

m = 1000; n = 1000a k0:05 � kAk 5350:10 � kAk 1900:15 � kAk 1030:20 � kAk 670:25 � kAk 480:30 � kAk 360:35 � kAk 280:40 � kAk 250:45 � kAk 190:50 � kAk 150:55 � kAk 130:60 � kAk 11Conlusion remark. The main advantage of the presented method is its simpliity.Our preliminary numerial results show, that the method may be eÆient for some largeproblems. However, we would like to point out, as the Goldstein's method for (VI), themethod onvergens under strit onditions and it is easy to onstrut a small examplefor whih the presented method runs very poorly. For more eÆient (but expensive)methods, we refer the readers to onsult the papers ([12,15-16℄).Referenes[1℄ R.E. Bruk, An iterative solution of a variational inequality for ertain monotone operatorsin Hilbert spae, Bull. Amer. Math. So., 81(1975), 890{892.[2℄ J. Douglas and H.H. Rahford, On the numerial solution of the heat ondution problemin 2 and 3 spae variables, Trans. Amer. Math. So., 82(1956), 421{439.[3℄ B.C. Eaves, On the basi theorem of omplementarity,Mathematial Programming, 1(1971),68{75.[4℄ S.C. Fang, An iterative method for generalized omplementarity problems, IEEE Trans.Automat. Contr. AC, 25(1980), 1225{1227.
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