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A STRUCTURE-PRESERVING DISCRETIZATION OFNONLINEAR SCHR�ODINGER EQUATION�1)Ming-you Huang Ru Qu Cheng-
hun Gong(Institute of Mathemati
s, Jilin University, Chang
hun 130023, P.R. China)Abstra
tThis paper studies the geometri
 stru
ture of nonlinear S
hr�odinger equationand from the view-point of preserving stru
ture a kind of fully dis
rete s
hemes ispresented for the numeri
al simulation of this important equation in quantum. Ithas been shown by theoreti
al analysis and numeri
al experiments that su
h dis-
rete s
hemes are quite satisfa
tory in keeping the desirable 
onservation propertiesand for simulating the long-time behaviour.Key words: S
hr�odinger equation, Hamiltonian system, Dis
rete s
hemes, Stru
turepreserving algorithm. 1. Introdu
tionMany important di�erential equations of evolution type in physi
s and me
hani
shave spe
i�
 geometri
 stru
ture. For instan
e, the Hamiltonian systems in 
lassi
alme
hani
s, the S
hr�odinger equation in quantum, the Korteweg-de Vries and Klein-Gordon equations of nonlinear waves have symple
ti
 stru
ture, i.e. the evolutions inphase spases of these equations are 
anoni
al mappings. To simulate 
onvin
ingly thedynami
 behaviour of di�erential equations, it is very natural to look for dis
retizedsystems whi
h preserve as mu
h as possible the geometri
 stru
ture and symmetries ofthe original 
ontinuous systems. Su
h dis
retization methods would be more satisfa
-tory than the 
onventional methods in keeping the desirable 
onservation properties andsimulating the long-time and global behaviour. In re
ent 10 years, studies on numeri
almethods from the view-point of geometry have be
ome more and more popular. Sin
e1984, the symple
ti
 methods initiated by Feng K.[1℄ for 
omputation of Hamiltoniansystems have been studied systemati
ally by Qin M.Z.[2℄, Sanz-Serna J.M.[3℄, ChannelP.J. and S
ovel C.[4℄, et
.. Huang M.Y. in [5℄ and [6℄ dis
ussed the stru
ture preserv-ing methods for nonlinear wave equation and Korteweg-de Vries equation, where thedis
retizations are related to the spe
tral or �nite element approximations of partialdi�erential equations and used to 
ompute the time periodi
 solutions and the solitarywaves respe
tively.In this paper, we shall dis
uss the dis
rete approximation of S
hr�odinger equation,whi
h preserves the geometri
 stru
ture and desirable properties of the 
ontinuous� Re
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554 M.Y. HUANG, R. QU AND C.C. GONGsystem. As a model, here we 
onsider the following nonlinear S
hr�odinger equationwith one spa
e variable i�u�t + �2u�2x � juj2u = 0; (1.1)where i = p�1, unknown fun
tion u = �+ i is assumed to be periodi
 in x or rapidlyde
ay as x! �1.To study the geometri
 stru
ture of equation (1.1), we introdu
e the fun
tional byintegral H(u) = 12 Z +L�L [�2x +  2x + (�2 +  2)2℄dx;where 0 < L < +1 when the periodi
 boundary 
ondition with period 2L is 
onsideredand L = 1 when the rapidly de
ay boundary 
ondition is 
onsidered, then (1.1) isequivalent to the following system with unknown fun
tions � and  :���t =� �2 �2x + 2(�2 +  2) = ÆHÆ � �t =�2��2x � 2(�2 +  2)� = �ÆHÆ� (1.2)where ÆHÆ , ÆHÆ� respresent the variations of H(u) with respe
t to  and � respe
tively.From (1.2) we see that the equation (1.1) has a Hamiltonian (Symple
ti
) stru
ture.It is easy to show that the solution u(t) = u(t; x) of (1.1) or (1.2) has the following
onservation properties:I1(u(t)) = Z +L�L (�2 +  2)dx = Const. (Total Mass of parti
les);I2(u(t)) = Z +L�L  �xdx = Const. (Total momentum);I3(u(t)) = H(u(t)) = Const. (Total energy):In long time simulation problems, to maintain these 
onservation properties is 
onsid-ered to be parti
ularly important.2. Dis
rete ApproximationIn this se
tion, a properly dis
retization of equation (1.1) with periodi
 boundary
ondition will be introdu
ed based on formulation (1.2).Assume that� �2�x2 �j(x) = �j�j(x); �j(�L) = �j(L); j = 1; 2; � � �i.e. �j(x), j = 1; 2; � � � are eigenfun
tions of the operator ��xx and �j, j = 1; 2; � � �the 
orresponding eigenvalues, and 
onsider f�j(x)g to be a ortho-normalized basis of
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hr�odinger Equation 555L2(�L;L). Set u(t; x) = �+ i = 1Xj=1(qj(t) + ipj(t))�j(x);then H(u) = H(p; q) = 12 1Xj=1�j(p2j + q2j ) + b(p; q);where b(p; q) = 12 Z +1�1 (�2 +  2)2dx:Thus, (1.2) is redu
ed to8>><>>: dqjdt = �jpj + �b�pj = �H�pjdpjdt = ��jqj � �b�qj = ��H�qj ; j = 1; 2; � � � (2.1)In this way, the S
hr�odinger equation (1.1) 
an be viewed as an in�nite-dimensionalHamiltonian system. To set up a �nite-dimensional approximation of (2.1), letHN(p; q) = 12 NXj=1�j(p2j + q2j ) + bN (p; q);where bN (p; q) = b(uN ); uN = NXj=1(qj(t) + ipj(t))�j(x) = �N + i N ;and we use the Hamiltonian system de�ned by fun
tion HN (p; q)8>><>>: dqjdt = �HN�pj = �jpj + �bN�pjdpjdt = ��HN�qj = ��jqj � �bN�qj ; j = 1; 2; � � � ; N (2.2)as a semidis
rete approximation of (1.1). This approximation not only preserves theHamiltonian stru
ture but also maintains the 
onservation properties of the originalequation.We shall get fully dis
rete s
heme from (2.2) by 
arrying further dis
retization intime variable. Let � > 0 be the time step, tn = n� , n = 0; 1; 2; � � � ; and denotepn+12j = pn+1j + pnj2 ; qn+12j = qn+1j + qnj2 ;then the simplist di�eren
e s
heme with se
ond order a

ura
y for the numeri
al inte-gration of (2.2) should be the midpoint s
heme:8>>><>>>: qn+1j � qnj� = �jpn+12j + �bN�pj (pn+12 ; qn+12 )pn+1j � pnj� = ��jqn+12j � �bN�qj (pn+12 ; qn+12 ); j = 1; 2; � � � ; N: (2.3)



556 M.Y. HUANG, R. QU AND C.C. GONGFrom the geometry theory of ODEs, we know that the evolution operators of Hamil-tonian systems are 
annoni
al mappings in the phase spa
e. It has been point out in[1℄ that the midpoint s
heme (2.3) maintains the symple
ti
 stru
ture of Hamiltoniansystems, i.e. (2.3) is a symple
ti
 s
heme.Remark. In the phase spa
e R2N of Hamiltonian system (2.2), the nondegenerateskew-bilinear form!2(�; �) = �TJ2N�; �; � 2 R2NJ2N = � 0 �ININ 0 � ; IN � unitary matrix of orderNde�nes a symple
ti
 stru
ture on R2N . A linear operator S on R2N is named as sym-ple
ti
 operator, if !2(S�; S�) = !2(�; �); 8�; � 2 R2N :A di�erentiable map g = g(z) : R2N ! R2N is 
alled 
annoni
al transformation, ifits Ja
obian g� = (�g)(z) is a symple
ti
 operator for every z 2 R2N .Denote the evolution operator of (2.2) by gt = gt(z), t 2 R, z 2 R2N . For any�xed t, gt is a 
onnoni
al transformation on R2N , and the family gt, t 2 R forms a
ontinuous group of 
annoni
al mappings. The single step di�eren
e s
hemes of (2.2)
an be written in form zn+1 = �� (zn); n = 0;�1; � � � (2.4)whi
h de�nes a family of mappings on R2N depending on a parameter � > 0. If forall � > 0, �� : R2N ! R2N are 
annoni
al mappings, then we say s
heme (2.4) is asymple
ti
 s
heme.In addition to the stru
ture preserving feature, the fully des
rete appromximation(2.3) has the total mass 
onservation property as indi
ated byTheorem 1. Any solution (pn; qn) of the fully dis
rete s
heme (2:3) satis�esI1(pn; qn) = NXj=1((pnj )2 + (qnj )2) = I1(p0; q0) 
onservation of the total mass of parti
lesProof. Multiplying the �rst and the se
ond equation of (2.3) by qn+12 and pn+12respe
tively and taking sum over j we obtainNXj=1(qn+1j )2 � NXj=1(qnj )2 = 2� NXj=1�jpn+12j qn+12j + 2� NXj=1 qn+12j �bN�pj (pn+12 ; qn+12 );NXj=1(pn+1j )2 � NXj=1(pnj )2 = �2� NXj=1�jpn+12j qn+12j � 2� NXj=1 pn+12j �bN�qj (pn+12 ; qn+12 ):Sin
e NXj=1 qj �bN�pj (p; q) = NXj=1 pj �bN�qj (p; q) = 2 Z +L�L (�2N +  2N )�N Ndx;
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hr�odinger Equation 557then from above two equalities we seeNXj=1�(pn+1j )2 + (qn+1j )2� = NXj=1�(pnj )2 + (q2j )2�whi
h shows the 
on
lusion of the theorem.However, we failed to prove s
heme (2.3) satisfying the 
onservation property ofenergy. After 
areful observation, we �nd that the following modi�ed midpoint s
heme8>>>>>><>>>>>>: qn+1j � qnj� = �jpn+12j + �bN�pj !n+12pn+1j � pnj� = ��jqn+12j �  �bN�qj !n+12 (2.5)simultaneously satis�es the total mass and the energy 
onservation law, where��bN�pj �n+12 = 2 Z +L�L [(�2N )n+12 + ( 2N )n+12 ℄ n+12N �jdx;��bN�qj �n+12 = 2 Z +L�L [(�2N )n+12 + ( 2N )n+12 ℄�n+12N �jdx;In fa
t, we haveTheorem 2. The solution (pn; qn) of s
heme (2:5) satis�esI1(pn; qn) = NXj=1((pnj )2 + (qnj )2) = I1(p0; q0)and HN(pn; qn) = NXj=1 �j2 ((pnj )2 + (qnj )2) + bN (pn; qn) = HN (p0; q0):Proof. The �rst 
on
lusion is proved in the same way as Th.1. To prove the se
ond
on
lusion, we multiply the �rst and se
ond equation of (2:5) by (pn+1j � pnj ) and(qn+1j � qnj ) respe
tively to obtain1� NXj=1(qj+1j � qnj )(pn+1j � pnj ) =12 NXj=1((pn+1j )2 � (pnj )2)2�j+ NXj=1��bN�pj �n+12 (pn+1j � pnj )and1� NXj=1(pj+1j � pnj )(qn+1j � qnj ) = �12 NXj=1((qn+1j )2� (qnj )2)2�j � NXj=1��bN�qj �n+12 (qn+1j � qnj ):
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e thatNXj=1 ��bN�pj �n+12 (pn+1j � pnj ) + NXj=1��bN�qj �n+12 (qn+1j � qnj )=12 Z +L�L [(�n+1N )2 + ( n+1N )2 + (�nN )2 + ( nN )2℄� [(�n+1N )2 + ( n+1N )2 � (�nN )2 � ( nN )2℄dx=12 Z +L�L [(�n+1N )2 + ( n+1N )2℄2dx� 12 Z +L�L [(�nN )2 + ( nN )2℄2dx;then 
ombining above equalities, we get12 NXj=1�j((pn+1j )2 + (qn+1j )2) + bN (pn+1; qn+1) = 12 NXj=1�j((pnj )2 + (qnj )2) + bN (pn; qn)whi
h shows the se
ond 
on
lusion of the theorem.Theorem 2 tells us that for given initial fun
tions �0(x),  0(x) 2 H1(R), the solution(�nN ;  nN ) of (2.5) will be uniformly bounded not only in L2(R) but also in H1(R) evenas t!1. The results of Theorem 2 indi
ate that the modi�ed midpoint s
heme (2.5)has a better stability property than (2.3), and it is easy to see, s
heme (2.5) also hasthe a

ura
y of se
ond order in � . Moreover, due to[(�2N )n+12 + ( 2N )n+12 ℄� [(�n+12N )2 + ( n+12N )2℄ = ��n+1N � �nN2 �2 + � n+1N � �nN2 �2;we see that s
heme (2.5) di�ers from the midpoint s
heme (2.3) only in a perturbationterm o(�2).Denote U = (�;  )T and de�ne SN to be the subspa
e spanded by eigenfun
tionsf�j(x), j = 1; 2; � � � ; Ng. Let PN be the proje
tion operator from L2(R) � L2(R) ontoSN � SN . Thus s
heme (2.5) 
an be rewritten in operator formUn+1N � UnN� = �J2�xxUn+12N + PN (jUn+1N j2 + jUnN j2)J2Un+12N ; (2.6)where J2 = � 0 �11 0 � ; (vTJ2v = 0;8v 2 R2):This formulation will �t the need to 
arry the 
onvergen
e analysis and error estimationof the dis
rete method. Based on the uniform boundedness of the approximate solutionsguaranteed by Theorem 2, by a 
onventional argument similar to �nite element analysiswe easily proveTheorem 3. For given initial data U0 = (�0;  0), assume that the solution U =(�;  ) of (1:2) exists and is smooth. Then when � > 0 suÆ
iently small, the dis
reteproblem (2:6) has an unique solution UnN = (�nN ;  nN ), and the following error estimateholds kUnN � U(tn; xj)k � eCtnfkUN0 � U(0; x)k +O(N�s + �2)g



A Stru
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retization of Nonlinear S
hr�odinger Equation 559where C is a 
onstant independent of N and � , s is an integer determined by thesmoothness of the exa
t solution U .4. Numeri
al ExperimentAs an example, we 
onsider the following periodi
 boundary value problem of thenonlinear S
hr�odinger equationi�u�t + �2u�x2 � 2juj2u = 0; 0 < x < 1; t > 0u(0; t) = u(1; t) (3.1)u(x; 0) = sin 2�xand use s
hemes (2.3) and (2.5) proposed in Se
tion 2 to 
ompute the approximatesolution of this problem. In the Fourier expansion with respe
t to spa
e variable we
hoose N = 10, and for the further dis
retization of time variable we take � = 0:01.All the Fourier 
oeÆ
ients are 
omputed by exa
t formula. Sin
e (2.3) and (2.5) areimpli
it s
hemes, we make use of iteration method in ea
h time step to 
ompute thesolution.Table 1 re
ords the total mass and total energy values of the approximate solution of(2.3) and (2.5) for the �rst 182 steps. The experimental results show that the s
heme(2.5) and s
heme (2.3) preserve not only the mass 
onservation but also the energy
onservation law prety well. Figs.1 and 2 are the pi
tures of the approximate solutions�nN and  nN 
omputed by s
heme (2.3) for time t = 0:0; 0:1; � � � ; 0:5.Table 1Time step Total energy Total mass Total energy Total massn S
heme(2.3) S
heme(2.3) S
heme(2.5) S
heme(2.5)2 5.6848024770 1.0000000000 5.6848024772 1.000000000012 5.6848024691 0.9999999991 5.6848024575 0.999999997322 5.6848024464 0.9999999955 5.6848024580 0.999999997332 5.6848024364 0.9999999940 5.6848024637 0.999999998242 5.6848024571 0.9999999972 5.6848024295 0.999999992952 5.6848024320 0.9999999933 5.6848023984 0.999999988162 5.6848024391 0.9999999944 5.6848024160 0.999999990872 5.6848024324 0.9999999934 5.6848023942 0.999999987482 5.6848024198 0.9999999914 5.6848023770 0.999999984792 5.6848024599 0.9999999976 5.6848024093 0.9999999898102 5.6848024644 0.9999999983 5.6848024008 0.9999999884112 5.6848024615 0.9999999979 5.6848023891 0.9999999866122 5.6848024332 0.9999999935 5.6848024066 0.9999999893132 5.6848024059 0.9999999892 5.6848023798 0.9999999852142 5.6848023818 0.9999999855 5.6848023905 0.9999999868152 5.6848023574 0.9999999817 5.6848023820 0.9999999855162 5.6848023854 0.9999999861 5.6848024021 0.9999999886172 5.6848023722 0.9999999840 5.6848024024 0.9999999887182 5.6848023937 0.9999999873 5.6848023887 0.9999999866
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