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Abstract

This paper studies the geometric structure of nonlinear Schrédinger equation
and from the view-point of preserving structure a kind of fully discrete schemes is
presented for the numerical simulation of this important equation in quantum. It
has been shown by theoretical analysis and numerical experiments that such dis-
crete schemes are quite satisfactory in keeping the desirable conservation properties
and for simulating the long-time behaviour.
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1. Introduction

Many important differential equations of evolution type in physics and mechanics
have specific geometric structure. For instance, the Hamiltonian systems in classical
mechanics, the Schrodinger equation in quantum, the Korteweg-de Vries and Klein-
Gordon equations of nonlinear waves have symplectic structure, i.e. the evolutions in
phase spases of these equations are canonical mappings. To simulate convincingly the
dynamic behaviour of differential equations, it is very natural to look for discretized
systems which preserve as much as possible the geometric structure and symmetries of
the original continuous systems. Such discretization methods would be more satisfac-
tory than the conventional methods in keeping the desirable conservation properties and
simulating the long-time and global behaviour. In recent 10 years, studies on numerical
methods from the view-point of geometry have become more and more popular. Since
1984, the symplectic methods initiated by Feng K.[I for computation of Hamiltonian
systems have been studied systematically by Qin M.Z.[2, Sanz-Serna J.M.[*l, Channel
P.J. and Scovel C.14, etc.. Huang M.Y. in [5] and [6] discussed the structure preserv-
ing methods for nonlinear wave equation and Korteweg-de Vries equation, where the
discretizations are related to the spectral or finite element approximations of partial
differential equations and used to compute the time periodic solutions and the solitary
waves respectively.

In this paper, we shall discuss the discrete approximation of Schrodinger equation,
which preserves the geometric structure and desirable properties of the continuous
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system. As a model, here we consider the following nonlinear Schrodinger equation
with one space variable

oo
Z@t 0%x

where ¢ = +/—1, unknown function u = ¢+ i1 is assumed to be periodic in z or rapidly

— |u*u =0, (1.1)

decay as x — Fo0.
To study the geometric structure of equation (1.1), we introduce the functional by
integral

1 +L
Hw) =5 [ 162+ + (62 + 9,
where 0 < L < +oc when the periodic boundary condition with period 2L is considered

and L = oo when the rapidly decay boundary condition is considered, then (1.1) is
equivalent to the following system with unknown functions ¢ and 1):
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where W, E respresent the variations of H(u) with respect to ¢ and ¢ respectively.

From (1.2) we see that the equation (1.1) has a Hamiltonian (Symplectic) structure.
It is easy to show that the solution u(t) = wu(t,z) of (1.1) or (1.2) has the following
conservation properties:

+L
I (u(t)) = / (¢* + 9*)dz = Const. (Total Mass of particles);
~L

+L
Ir(u(t)) = . Ypydr = Const. (Total momentum);

I3(u(t)) = H(u(t)) = Const. (Total energy).

In long time simulation problems, to maintain these conservation properties is consid-
ered to be particularly important.

2. Discrete Approximation

In this section, a properly discretization of equation (1.1) with periodic boundary
condition will be introduced based on formulation (1.2).
Assume that

82
“a2bi@) = wge), L) =§(L), j=12,-

ie. &(x), j = 1,2,--- are eigenfunctions of the operator —0,, and puj;, j = 1,2,---
the corresponding eigenvalues, and consider {{;(x)} to be a ortho-normalized basis of
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L*(—L,L). Set
ultoa) = 6 8 = 3 (as) + ins (1) (0
H(u) = H(p.g) = 5 3 w0 + ) + blp.0)
where "~

Thus, (1.2) is reduced to

dg; ob  OH

dt = Kjpj + 8pj = 8pj .

dp; o om JThET (2.1)
&M By T " agy

In this way, the Schrodinger equation (1.1) can be viewed as an infinite-dimensional
Hamiltonian system. To set up a finite-dimensional approximation of (2.1), let

HN(p7 Z:u] p]+q])+bN(p7 )7
y 1
where v
bn(p.q) =bun), un =Y (g;(t) +ipj(t)&(z) = ¢n + i,
j=1

and we use the Hamiltonian system defined by function Hy (p, q)

dg; _OHy _ . Oby
dt 8])]' — Ml 8pj .
dpj _ OHy _ - Obn

as a semidiscrete approximation of (1.1). This approximation not only preserves the
Hamiltonian structure but also maintains the conservation properties of the original

equation.
We shall get fully discrete scheme from (2.2) by carrying further discretization in
time variable. Let 7 > 0 be the time step, t,, =n7, n=0,1,2,---, and denote
kBT kgt g
p; *= f, g °= f,

then the simplist difference scheme with second order accuracy for the numerical inte-
gration of (2.2) should be the midpoint scheme:

n+1 n 1

q; —4g; n+s  Oby 1 1

J A ,Ufjpj 2 %(pn+2’qn+2)

n+1 n 1 ! 7:172a '7N' (23)
p; - Dy n+3 Obyn +1 1

= 7“]q] (pn ann+§)a

T - Oqj
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From the geometry theory of ODEs, we know that the evolution operators of Hamil-
tonian systems are cannonical mappings in the phase space. It has been point out in
[1] that the midpoint scheme (2.3) maintains the symplectic structure of Hamiltonian
systems, i.e. (2.3) is a symplectic scheme.

Remark. In the phase space R?" of Hamiltonian system (2.2), the nondegenerate
skew-bilinear form

w?(&n) = honn, & ne RY

Jon = < 0 _IN> , Iy — unitary matrix of order N
In O

defines a symplectic structure on R?V. A linear operator S on R?" is named as sym-
plectic operator, if

w?(S¢, Sn) = w?(&.m), V& mneR™.

A differentiable map g = g(z) : R*N — R? is called cannonical transformation, if
its Jacobian g, = (dg)(z) is a symplectic operator for every z € R?N.

Denote the evolution operator of (2.2) by ¢ = ¢'(2), t € R, z € R?. For any
fixed ¢, ¢g' is a connonical transformation on R?*V, and the family ¢*, t € R forms a
continuous group of cannonical mappings. The single step difference schemes of (2.2)
can be written in form

=3, (2"), n=0+1,--- (2.4)

which defines a family of mappings on R?" depending on a parameter 7 > 0. If for
all 7 > 0, &, : R?N — R?N are cannonical mappings, then we say scheme (2.4) is a
symplectic scheme.

In addition to the structure preserving feature, the fully descrete appromximation
(2.3) has the total mass conservation property as indicated by

Theorem 1. Any solution (p™,q™) of the fully discrete scheme (2.3) satisfies

N
= Z:((p?)2 + (qJ")Q) = Li(p°, ¢") conservation of the total mass of particles
j=1
Proof. Multiplying the first and the second equation of (2.3) by ¢""2 and p"" 2
respectively and taking sum over j we obtain

1 N

N n+1 N n+2 § +28bN n+l ntx
gyt = (g} —27241312 4 Z 2,q""2),
7=1 7=1 =
DI => :_272ijj qj g Z 2,4""2).
7=1 7=1 =
Since
N
BbN
qua— Zp;a (p.q —2/ (¢% + ¥ dn¥nda,
Dj

Jj=1
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then from above two equalities we see

N
Z ( n-l—l ;1+1)2) _ Z ((p;z)Q + (qu)Q)

j=1 j=

—_

which shows the conclusion of the theorem.
However, we failed to prove scheme (2.3) satisfying the conservation property of
energy. After careful observation, we find that the following modified midpoint scheme

Q;lJrl_qy o n+% n Obyn mt
T — HiPj dp;

+
itk (o))"
T 'u]q] 8qj

(2.5)

simultaneously satisfies the total mass and the energy conservation law, where

by \n+3 +L n n
(G " = / (B + 3 1 ey,

—L

ob l n n n—l—

(52" =2/ R + W) I P,
95

In fact, we have
Theorem 2. The solution (p",q") of scheme (2.5) satisfies

N
L(p"q") =Y (p})* + (¢})?) = Li(p°, ¢")
j=1
and
N
= S ER + (€))7, a") = Hy(0°.0°).
7=1

Proof. The first conclusion is proved in the same way as Th.1. To prove the second
conclusion, we multiply the first and second equation of (2.5) by (p] nl p;) and

(q;”rl — q;') respectively to obtain
1 1Y
1
;Z AR (AR —5 D (P = (01))ny
N
8bN n+2 n+1
+ —p
> (G,) =)
and
1 & ) 1Y N Oby \n+
S0 @ ) = 5 (@~ @) - Y () @ a)
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Notice that
N 1 N 1
dby\n+3 | Oby \n+3 1
——) @i -+ (5-) Sl —d)
= [ T+ @R+ R
OV (U (037 — (R o
=5 / W+ @R — 5 [ IR + ),

then combining above equalities, we get

N N
Z n+1 (q;l+1) )_|_bN(pn+1 n+1 Z p] )2) —i—bN(p”,q")

[\Dl»—\

which shows the second conclusion of the theorem.

Theorem 2 tells us that for given initial functions ¢°(z), 9°(z) € H'(R), the solution
(%, %) of (2.5) will be uniformly bounded not only in L?(R) but also in H!(R) even
as t — 0o. The results of Theorem 2 indicate that the modified midpoint scheme (2.5)
has a better stability property than (2.3), and it is easy to see, scheme (2.5) also has
the accuracy of second order in 7. Moreover, due to

(G2 + (0321 - [ )% + (o 297 = (2

we see that scheme (2.5) differs from the midpoint scheme (2.3) only in a perturbation
term o(72).

Denote U = (¢,1)" and define Sy to be the subspace spanded by eigenfunctions
{¢;j(z), j =1,2,---,N}. Let Py be the projection operator from L*(R) x L?(R) onto
SNy x Sy. Thus scheme (2.5) can be rewritten in operator form

n+1 n 1
U “UN _ 50,02 4 Py (U + U )JQU"+2 (2.6)

T

where
Jo = <? _01> . (v Jov =0,V € R?).

This formulation will fit the need to carry the convergence analysis and error estimation
of the discrete method. Based on the uniform boundedness of the approximate solutions
guaranteed by Theorem 2, by a conventional argument similar to finite element analysis
we easily prove

Theorem 3. For given initial data U° = (¢°,4"), assume that the solution U =
(¢, 1) of (1.2) exists and is smooth. Then when T > 0 sufficiently small, the discrete
problem (2.6) has an unique solution Uy, = (¢, ¢%), and the following error estimate
holds

103 = Ultar )| < (T2 = U(0,)]| + O(N~* + %)}
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where C is a constant independent of N and T, s is an integer determined by the
smoothness of the exact solution U.

4. Numerical Experiment

As an example, we consider the following periodic boundary value problem of the
nonlinear Schrodinger equation

i—+ — 2ufu=0, 0<z<1,t>0
xXr

(3.1)

u(x,0) = sin 27z

and use schemes (2.3) and (2.5) proposed in Section 2 to compute the approximate
solution of this problem. In the Fourier expansion with respect to space variable we
choose N = 10, and for the further discretization of time variable we take 7 = 0.01.
All the Fourier coefficients are computed by exact formula. Since (2.3) and (2.5) are
implicit schemes, we make use of iteration method in each time step to compute the
solution.

Table 1 records the total mass and total energy values of the approximate solution of
(2.3) and (2.5) for the first 182 steps. The experimental results show that the scheme
(2.5) and scheme (2.3) preserve not only the mass conservation but also the energy
conservation law prety well. Figs.1 and 2 are the pictures of the approximate solutions

% and ¢}, computed by scheme (2.3) for time ¢ = 0.0,0.1,---,0.5.

Table 1
Time step  Total energy Total mass Total energy Total mass

n Scheme(2.3)  Scheme(2.3)  Scheme(2.5)  Scheme(2.5)
2 5.6848024770  1.0000000000  5.6848024772  1.0000000000
12 5.6848024691  0.9999999991  5.6848024575  0.9999999973
22 5.6848024464  0.9999999955  5.6848024580  0.9999999973
32 5.6848024364  0.9999999940  5.6848024637  0.9999999982
42 5.6848024571  0.9999999972  5.6848024295  0.9999999929
52 5.6848024320  0.9999999933  5.6848023984  0.9999999881
62 5.6848024391  0.9999999944  5.6848024160  0.9999999908
72 5.6848024324  0.9999999934  5.6848023942  0.9999999874
82 5.6848024198  0.9999999914  5.6848023770  0.9999999847
92 5.6848024599  0.9999999976  5.6848024093  0.9999999898
102 5.6848024644  0.9999999983  5.6848024008  0.9999999884
112 5.6848024615  0.9999999979  5.6848023891  0.9999999866
122 5.6848024332  0.9999999935  5.6848024066  0.9999999893
132 5.6848024059  0.9999999892  5.6848023798  0.9999999852
142 5.6848023818  0.9999999855  5.6848023905  0.9999999868
152 5.6848023574  0.9999999817  5.6848023820  0.9999999855
162 5.6848023854  0.9999999861  5.6848024021  0.9999999886
172 5.6848023722  0.9999999840  5.6848024024  0.9999999887
182 5.6848023937  0.9999999873  5.6848023887  0.9999999866
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