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ON THE LEAST SQUARES PROBLEM OF A MATRIXEQUATION�1)An-ping Liao(College of Siene, Hunan Normal University, Changsha 410081, China)AbstratLeast squares solution of F=PG with respet to positive semide�nite symmetriP is onsidered,a new neessary and suÆient ondition for solvablity is given,andthe expression of solution is derived in the some speial ases. Based on the ex-pression, the least spuares solution of an inverse eigenvalue problem for positivesemide�nite symmetri matries is also given.Key words: Least squares solution, Matrix equation, Inverse eigenvalue problem,Positive semide�nite symmetri matrix.1. IntrodutionThe purpose of this paper is to study the least squares problem of the matrixequation F=PG with respet to P2 Sn�,i.e.(P1) minP2Sn� kF � PGk; where F;G 2 Rn�m and G 6= 0:Where k � k denotes the Frobenius norm, and Sn� = fX 2 SnjX � 0g; Sn = fX 2Rn�njX = XT g.Problem(P1) was �rst formulated by Allwright [1℄,A neessary andsuÆient ondition for the existene of the minimizer P̂ in (P1) was given in [2℄,whereexat global solutions for (P1) are denoted throughout by P̂ .The expressions of solu-tion and the numerial solution for (P1) had been studied in [3℄. But the expression ofsolution is given only for two speial ases, i.e. ase a): P̂ = FG+ if rank(G)=n andGTF 2 Sm� ; and ase b):P̂ = 0 i� rank(G)=n and �FGT �GF T 2 Sn�.Problem (P1) is often appeared in many �elds suh as strutural analysis, systemparameter identi�ation ,automati ontrol, nonlinear programming and so on. A rel-evant work is [4℄.When S = Sn�,the following inverse eigenvalue problem(P 02) minP2S kG ^ �PGk; where G 2 Rn�m and ^ = diag(�1; �2; :::; �m)is a speial ase of (P1).A neessary and suÆient ondition for solvability and theexpression of solution of (P 02) were given for S = Rn�n and S = Sn in [5,6℄.The� Reeived Marh 27, 1997.1)Researh supported by National Siene Foundation of China.



590 A.P. LIAOfollowing speial inverse eigenvalue problem(P2) minP2Sn� kG ^ �PGk; where G 2 Rn�m and ^ = diag(�1; �2; :::; �m) � 0is solved by using dual one theory[10℄.Although the least squares solution of the following problem(P 002 ) minX2Sn� kATXA�Dk; where A 2 Rn�m;D 2 Rm�mwas suessfully solved by Dai and Lanaster[7℄, the approah adopted there is based onsymmetry of (P 002 ), and yet there is not suh property in (P1).So the approah adoptedin [7℄ is not suitable to (P1).The aim of this paper is to give a new neessary and suÆient ondition for solv-ability of (P1) and then derive a expression of solution in the some speial ases. Basedon the expression we have also solved (P2).This paper extends the results in [10℄.The notation used in the sequel an be summarized as follows. For A;B 2 Rn�m; A+and A�B respetively denote the Moore-Penrose pseudoinverse of A and the Hadamardprodut of A and B.ORn�n denotes the set of all orthogonal matries in Rn�n.Thenotation A � 0(> 0) means that A is positive semide�nite (de�nite). For � =diag(�1; �2; :::; �r) > 0;�� denotes the matrix ('ij)r �r,where 'ij = (�2i + �2j )�1; 1 �i; j � r: In addition, a unit matrix is denoted by I,and the set fX 2 SnjX > 0g isdenoted by Sn>:This paper is organized as follows. A new neessary and suÆient ondition forsolvability of (P1) is given in setion 2. Based on the ondition, in setion 3 theexpression of solution of (P1) is given in some speial ases. Problem (P2) is solved insetion 4. 2. The Solvability Conditions for (P1)To Study the solvability of (P1), we deompose the given matrix G by the singularvalue deomposition(SVD):G = U  � 00 0 !V T = U1�V T1 (2:1)where U = (U1; U2) 2 ORn�n; U1 2 Rn�r; V = (V1; V2) 2 ORm�m; V1 2 Rm�r;�= diag(�1; �2; :::; �r) > 0; r = rank(G):Theorem 2.1. Suppose that rank(G)<n, and a SVD of the matrix G is (2.1).Then (P1) has a solution if and only if rank(P̂11)= rank(P̂11jP̂12),where P̂11 is a uniqueminimizer of kUT1 FV1 � P11�k with respet to P11 2 Sr�,and P̂12 = (UT2 FV1��1)T :If (P1) has a solution, then the expression of solution isP̂ = U  P̂11 P̂12P̂ T12 P̂ T12P̂+11P̂12 +B !UT (2:2)where B 2 Sn�r� is arbitrary.To prove Theorem 2.1, it will be onvenient to give the following three lemmas.Lemma 2.1.[1℄ The minimizer in (P1) exists and is unique when rank(G)=n.



On the Least Squares Problem of a Matrix Equation 591Lemma 2.2. Suppose that F,G 2 Rn�m and there is a minimizer P̂ in (P1). ThenkF � P̂Gk = minP2Sn� kF � PGk = infP2Sn> kF � PGk:Proof. It is obvious that kF�P̂Gk = minP2Sn� kF�PGk � infP2Sn> kF�PGk.On the otherhand,for any � > 0, let Æ =(2kGk)�1� (note G 6=0), then P̂ + ÆI > 0 (note P̂ �0) andkF�(P̂+ÆI)Gk � kF�P̂Gk+kÆGk < kF+P̂Gk+�.Hene kF�P̂Gk = infP2Sn> kF�PGk. Lemma 2.3.[8℄ Suppose that a real symmetri matrix is partitioned as E FF T G !where E and G are square. Then this matrix is positive semide�nite if and only ifE � 0; G � F TE+F � 0 and rank(E) = rank(EjF ):Proof of Theorem 2.1. For P2 Sn�,partition P asP = U  P11 P12P T12 P22 !UT (2:3)where P11 2 Sr�.It follows from (2.1) and (2.3) thatkF � PGk2 = k UT1 FV1 � P11� UT1 FV2UT2 FV1 � P T12� UT2 FV2 ! k2 = kUT1 FV1 � P11�k2+kUT2 FV1 � P T12�k2 + kUT1 FV2k2 + kUT2 FV2k2 (2:4)It follows from Lemma 2.1 that there is unique P̂11 whih minimizes kUT1 FV1 � P11�kwith respet to P11 2 Sr�.If P̂12 = ��1V T1 F TU2 and rank(P̂11) = rank(P̂11j P̂12), thenP � = U  P̂11 P̂12P̂ T12 P22 !UTis optimal for (P1) for any P22 2 Sn�r� suh that P22 � P̂ T12P̂+11P̂12. In fat, it followsfrom Lemma 2.3 and (2.4) that P � 2 Sn�; P̂11 and P̂12 minimize the right hand sideof (2.4) with respet to P11 2 Sr� and P12 2 Rr�(n�r). Hene (P1) ertainly has aminimum when rank(P̂11) = rank(P̂11jP̂12) ,and in whih ase P̂ an be expressed by(2.2).Conversely,it only remains to be shown that there is no minimum when rank(P̂11) 6=rank(P̂11jP̂12).Suppose that rank(P̂11) 6= rank(P̂11jP̂12) and that there is a minimum, say atA0 2 Sn�: Partition A0 asA0 = U  B0 C0CT0 D0 !UT ; (2:5)whereB0 2 Rr�r; it follows from Lemma 2.3 that B0 2 Sr� and rank(B0) = rank(B0jC0).



592 A.P. LIAOIf C0 = P̂12, then B0 6= P̂11. Otherwise it follows that rank(P̂11) = rank(B0) =rank(B0jC0) = rank(P̂11jP̂12), whih ontradits the initial assumption that rank(P̂11) 6=rank(P̂11jP̂12).Hene, whether C0 = P̂12 or C0 6= P̂12, it follows from (2.1),(2.5) and Lemma 2.2that kF �A0Gk2 = kUT1 FV1 �B0�k2+ kUT2 FV1 � CT0 �k2 + kUT1 FV2k2 + kUT2 FV2k2> kUT1 FV1 � P̂11�k2 + kUT1 FV2k2 + kUT2 FV2k2= minP112Sr� kUT1 FV1 � P11�k2 + kUT1 FV2k2 + kUT2 FV2k2= infP112Sr> kUT1 FV1 � P11�k2 + kUT1 FV2k2 + kUT2 FV2k2= infP2Sn> kF � PGk2= minP2Sn� kF � PGk2This ontradits the optimality of A0 and therefore ontradits the existene of a min-imum for (P1) when rank(P̂11) 6= rank(P̂11jP̂12).Whih ompletes the proof.3. The Expression of Solution for (P1)As it is stated in [3℄, it is diÆult to �nd expression of solution for (P1).In thissetion, we get the expression of solution for (P1) in the some speial ases.Lemma 3.1. Suppose that real numbers �1; �2; :::; �r are all positive,�� = ('ij)r�r; 'ij =(�2i + �2j )�1; 1 � i; j � r.Then �� � 0.Proof. Note that 'ij = (�2i + �2j )�1 = R10 e�(�2i+�2j )tdt , then for any X =(x1; x2; :::; xr)T 2 Rr ,we see thatXT��X = Z 10 (x1; :::; xr)(e��21 t; :::; e��2r t)T (e��21 t; :::; e��2r t)(x1; :::; xr)T dt= Z 10 ( rXi=1 xie��2i t)2dt � 0;so �� � 0.The Lemma is proved.Lemma 3.2.[9℄ If A;B 2 Sn�, then A �B 2 Sn�. If,in addition,B2 Sn> and A has nodiagonal entry equal to 0,then A �B 2 Sn>.Theorem 3.1. Suppose that G 2 Rn�m,rank(G) = n and the SVD of the matrixG is G = U(E;O)V T = UEV T1 (3:1)where U 2 ORn�n; V = (V1; V2) 2 Rm�m; E = diag(�1; �2; :::; �n) > 0: ThenP̂ = U(�E � (UT (FGT +GF T )U))UT ; (3:2)if �E � (UT (FGT + GF T )U) � 0. Espeially, if FGT + GF T � 0, then P̂ an beexpressed by(3.2).



On the Least Squares Problem of a Matrix Equation 593Proof. For any P 2 Sn�, it follows from (3.1) thatkF � PGk2 = kUTFV1 � UTPUEk2 + kUTFV2k2 (3:3)On the other hand, it follows from [6,Lemma 2.1℄ that kUTFV1 � SEk is minimizedwith respet to S 2 Sn by takingŜ = �E � (UTFV1E +EV T1 F TU)= �E � (UT (FGT +GF T )U) (3:4)Hene,when Ŝ � 0,the minimizer P̂ of kUTFV1 � UTPUEk with respet to P 2 Sn�is UŜUT ,i.e.P̂ = UŜUT : That is to say,P̂ an be expressed by (3.2) when Ŝ � 0:Espeially, if FGT + GF T � 0,it follows from Lemma 3.1,Lemma 3.2 and (3.4) thatŜ � 0. Thus we have proved Theorem 3.1.Note: When rank (G) = n and GTF � 0, we an prove thatU(�E � (UT (FGT +GF T )U))UT = FG+ � 0;thereby �E � (UT (FGT + GF T )U) � 0. On the other hand,let G =  1 00 2 ! andF =  1 �1�2 2 ! ,then rank(G)=2 and FGT + GF T =  2 �4�4 8 ! � 0; thereby�E � (UT (FGT +GF T )U) � 0; but GTF =  1 �1�4 4 ! 62 S2�. Hene,Theorem 3.1 isa generalization of the Theorem 2.4 in [3℄.Theorem 3.2. Suppose that G 2 Rn�m, rank(G)< n and the SVD of the matrix Gis (2.1). Then(P1) has a solution if Ŝ � 0 and rank(Ŝ) = rank(ŜjP̂12),in whih asethe expression of solution isP̂ = U  Ŝ P̂12P̂ T12 P̂ T12Ŝ+P̂12 +B !UT (3:5)where B 2 Sn�r� is arbitrary ,Ŝ = ���(UT1 FV1�+�V T1 F TU1) and P̂12 = (UT2 FV1��1)T :Espeially, Problem(P1) has a solution if Ŝ > 0 or FGT + GF T > 0, and its solutionP̂ an be expressed by (3.5).Proof. When Ŝ � 0,it is easy to know from the proof of Theorem 3.1 that theminimizer P̂11 of kUT1 FV1 � P11�k with respet to P11 2 Sr� is Ŝ i.e. P̂11 = Ŝ.So,whenŜ � 0 and rank(Ŝ) = rank(ŜjP̂12),P̂11 � 0 and rank(P̂11) = rank(P̂11jP̂12): Thereby(P1) has a solution and the expression of its solution is (3.5) by Theorem 2.1. It onlyremains to be shown that Ŝ > 0 when FGT +GF T > 0. In fat,it follows from (2.1)that Ŝ = �� � (UT1 FV1�+�V T1 F TU1)= �� � (UT1 (FGT +GF T )U1);where U1 2 Rn�r and rank(U1)=r. Obviously, UT1 (FGT +GF T )U1 > 0 when FGT +GF T > 0,thereby Ŝ > 0 by Lemma 3.1 and Lemma 3.2. Thus we omplete the proof.5. The Expression of Solution for (P2)Theorem 4.1. Let a SVD of the G be (2.1). Then (P2) has a solution , and the



594 A.P. LIAOexpression of solution isP̂ = U  2�� � (�V T1 ^ V1�) 00 B !UT ; (4:1)where B 2 Sn�r� is arbitrary.Proof. Note that (P2) is a speial ase of (P1) when F= G^. So,from Theorem3.1 and Theorem 3.2,it is all right to be shown Ŝ = 2�� � (�V T1 ^ V1�) � 0 andP̂12 = 0.Here Ŝ and P̂12 are the same as Theorem 3.2. In fat,it follow from (2.1) thatŜ = �� � (UT1 FV1�+�V T1 F TU1)= �� � (UT1 G ^ V1�+�V T1 ^GTU1)= �� � (UT1 U1�V T1 ^ V1�+�V T1 ^ V1�UT1 U1)= 2�� � (�V T1 ^ V1�)and �� � (�V T1 ^ V1�) � 0 by �� � 0 and ^ � 0.In addition,it follows from UT2 U1 = 0that P̂12 = (UT2 FV1��1)T = (UT2 G ^ V1��1)T = (UT2 U1�V T1 ^ V1��1)T = 0:The theorem 4.1 is proved.The author thanks the referees for their valuble suggestions whih led to improve-ments in the ontent and the exposition of this paper.Referenes[1℄ J.C. Allwright, Positive semide�nite matries: Charaterization via onial hulls and least-squares solution of a matrix equation, SIAM J. Control Optim., 26 (1988), 537-556.[2℄ J.C. Allwright, K.G Woodgate, Errata and Addendum to: Positive semide�nite matri-es:Charaterization via onial hulls and least-squares solution of a matrix equation, SIAMJ.Control Optim., 28 (1990), 250-251.[3℄ K.G Woodgate, Least-squares solution of F=PG over positive semide�nite symmetri P,Linear Algebra Appl., 245 (1996), 171-190.[4℄ L. Zhang, The solvability onditions for the inverse problem of symmetri nonnegativede�nite matries, Math. Numer. Sinia, 11:4 (1989), 337-343.[5℄ J.G. Sun, Least-squares solution of a lass of inverse eigenvalue problems, Math. Numer.Sinia, 9:2 (1987), 206-216.[6℄ J.G. Sun, Two kinds of inverse eigenvalue problems for real symmtri matries, Math.Numer. Sinia, 10:3 (1988), 282-290.[7℄ H. Dai, P. Lanaster, Linear matrix equations from an inverse prblem of vibration theory,Linear Algebra Appl., 246 (1996), 31-47.[8℄ A. Albert, ondition for positive and nonnegative de�nite in terms of pseudoinverse, SIAMJ. Appl. Math, 17(1969), 434-440.[9℄ R.A Horn, C.R. Johnson, Topis in Matrix Analysis, Cambridge: Cambridge UniversityPress, 1991.[10℄ L. Zhang, A lass of inverse eigenvalue problem for symmetri nonnegative de�nite matri-es, J. Hunan Eduational Institute, 13:2 (1995), 11-17.


