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ON THE DOMAIN DECOMPOSITION METHOD FOR MORLEYELEMENT {FROM WEAK OVERLAP TO NONOVERLAP�Jian-guo Huang(Department of Applied Mathematis, Shanghai Jiao Tong University, Shanghai 200240,China)AbstratIn this paper, following our original ideas[9℄, we �rst onsider a weakly overlap-ping additive Shwarz preonditioner aording to the framework of [2℄ for Morleyelement and show that its ondition number is quasi-optimal; we then analyze indetail the struture of this preonditioner, and after proper hoies of the inexatsolvers, we obtain a quasi-optimal nonoverlapping domain deomposition preondi-tioner in the last. Compared with [12℄, [13℄, it seems that aording to this paper'sproedure we an make out more thoroughly the relationship between overlappingand nonoverlapping domain deomposition methods for nononforming plate ele-ments, and ertainly, we have also proposed another formal and simple strategy toonstrut nonoverlapping domain deomposition preonditioners for nononform-ing plate elements.Key words: Morley element, Domain deomposition, Weak overlap.1. IntrodutionWe onsider, for simpliity, the following lamped plate bending problem:(�2u = f; (
);u = �nu = 0; (�
); (1.1)where 
 is a plane polygonal domain and n denotes the unit outward normal along theboundary �
. The related variational form is(u 2 V � H20 (
);a(u; v) = (f; v); v 2 V; (1.2)where a(u; v) � R
[�u�v + (1 � �)(2�12u�12v � �11u�22v � �22u�11v)℄dx, (f; v) �R
 fvdx, � 2 (0; 0:5) is the Poisson ratio. Clearly, the above bilinear form a(�; �) satis�es� Reeived September 24, 1996.



616 J.G. HUANGthe boundedness and oerivity estimates:( ja(v; w)j � (1 + �)jvj2;
jwj2;
; v; w 2 H2(
);a(v; v) � (1� �)jvj22;
; v 2 H2(
): (1.3)Throughout this paper we adopt the standard onventions for Sobolev norms and semi-norms of a funtion v de�ned on an open set G:kvkm;G � (ZG Xj�j�m j��vj2dx)1=2;jvjm;G � (ZG Xj�j=m j��vj2dx)1=2;jvjm;1;G � maxj�j=m k��vkL1(G):We shall also denote the spae of polynomials of degree less than or equal to l onG by Pl(G).Let �
 = [K2Th �K be a quasi-uniform and regular triangulation of 
[4℄, the diametersize of whih is denoted by h, here eahK 2 Th is an open triangle. On this triangulationwe onstrut the so-alled Morley element[4℄;[11℄:V h � fv : vjK 2 P2(K); v(respetively, �nv) is ontinuous at eah vertexp of K(respetively, eah edge midpoint m of K), 8 K 2 Thg,V h0 � fv 2 V h : v(p) = 0; p 2 �
; �nv(m) = 0; m 2 �
g: (1.4)Here and heneforth, p and m (with or without subsript) represent a vertex and anedge midpoint of the elements in Th respetively. Then, based on (1.4), the disreteproblem of (1.2) reads as follows:( ah(uh; vh) = (f; vh); vh 2 V h0 ;uh 2 V h0 ; (1.5)where ah(v; w) �PK2Th RK [�v�w + (1� �)(2�12v�12w � �11v�22w � �22v�11w)℄dx.It is well-known that the PCG is a proper method to solve (1.5), and the ore stepis how to design a well-preonditioned and easily invertible in parallel preonditioner,sine the ondition number of the disrete system (1.5) is O(h�4). In [2℄, S.C.Brennerproposed a two-level additive Shwarz preonditioner for nononforming plate elements;the main ingredient is the onstrution of proper intergrid transfer operators whihbuild important bridges among nononforming elements and their onforming relatives,and thus the diÆulty that subspaes are not nested for nononforming element asewas overome suessfully. In [8℄, J.Gu and X.Hu presented some extension theorems



On the Domain Deomposition Method for Morley Element... 617for nononforming plate elements with appliations to two-subregions domain deom-position method, but their results an not show the equivalene between the energy ofthe disrete biharmoni funtion and the norm of its related boundary terms, whih isruial to the onstrution of nonoverlapping domain deomposition method for manysubregions ase. In [12℄, [13℄, using a modi�ed intergrid transfer operator indued by[2℄ and the ontinuity of the Morley element, Z.Shi and Z.Xie obtained the extensiontheorems of that kind, they then followed the ideas of J.H.Bramble et al[1℄ and ahieveda quasi-optimal nonoverlapping domain deomposition preonditioner.In this paper, following our original ideas[9℄, we �rst onsider a weakly overlappingadditive Shwarz preonditioner aording to the framework of [2℄ for Morley elementand show that its ondition number is quasi-optimal, equal to O((1+log Hh )2), where H,h denote the diameters of the oarse and the �nite element triangulations respetively;we then analyze in detail the struture of this preonditioner, and after proper hoiesof the inexat solvers, we also obtain a quasi-optimal nonoverlapping domain deompo-sition preonditioner in the last. Compared with [12℄, [13℄, it seems that aording tothis paper's proedure we an make out more thoroughly the relationship between over-lapping and nonoverlapping domain deomposition methods for nononforming plateelements, and ertainly, we have also given another formal and simple strategy to on-strut nonoverlapping domain deomposition preonditioners for nononforming plateelements. 2. Algorithm DesriptionsIn order to present the weakly overlapping domain deomposition preonditioner for(1.5), we need, at �rst, give an arbitrary oarse triangulation of 
, TH = f
igMi=1, whihis quasi-uniform and regular with the diameter size H, here eah 
i is a oarse opentriangle. As usual, we assume that �
i is aligned with the �nite element triangulationTh [5℄;[6℄. On this oarse triangulation, aH(�; �), V H(V H0 ) are de�ned as before. Forthe purpose of global ommuniation among the loal subspaes, whih is neessaryfor a good preonditioner, we next introdue some intergrid transfer operators andsome interpolation operators. Let ARh denote the Argyris element assoiated with thetriangulation Th, whih is de�ned below: For any v 2 ARh, vjK 2 P5(K), and it hasthe degrees of freedom f ��v(pi); j�j � 2; �nv(mi) g [4℄;[11℄ .We then onstrut an intergrid transfer operator Eh [2℄;[12℄;[13℄ as follows, whihbuilds an important bridge between the nononforming element spae V h and its on-forming relative ARh. For arbitrary vertex p of Th, we assign to it one of its adjaentedge midpoint ep; we want that, if p 2 [mi=1�
i n �
 (respetively, �
), ep should alsobelong to [mi=1�
i n �
 (respetively, �
). Obviously, there is ertain freedom for the



618 J.G. HUANGhoie of ep. After that, for any v 2 V h, Ehv 2 ARh is de�ned byEhv(p) = v(p); 8vertex p;��Ehv(p) = 0; j�j = 2;�nEhv(m) = �nv(m); 8midpoint m;�iEhv(p) = �iv(ep); i = 1; 2: (2.1)The main ingredient of this onstrution is that for v 2 V h, the slope of v, i.e. �iv,i = 1; 2, is ontinuous at any edge midpoint m. For the oarse spaes V H ; ARH , theoperator EH : V H ! ARH is de�ned in the same manner. We next denote by Ih theonventional interpolation operator from C1(�
) onto V h [4℄. Now we an de�ne anintergrid transfer operator IhH : V H ! V h asIhHv = IhEHv; v 2 V H : (2.2)Clearly, for v 2 V H0 ; IhHv 2 V h0 . To apply the abstrat framework of [2℄, we proeed toonstrut some weakly overlapping subspaes. For arbitrary i, j 2 f1; 2; � � � ;Mg; i 6= j,we denote (i; j) 2 S if 
i and 
j have a ommon edge. For arbitrary (i; j) 2 S, weintrodue the following subspae:V hij = fv 2 V h0 : nodal parameters of v are zero outside (
i [ 
j)0gand the related orthogonal projetion operator:f ah(Pijv; w) = ah(v; w); v 2 V h0 ; w 2 V hij ;Pijv 2 V hij ;here, as usual for any point set B, �B and B0 denote its losure and interior point setrespetively.Then we have a spae deomposition of V h0 :V h0 = IhHV H0 + X(i;j)2S V hij : (2.3)As in [2℄, let (:; :)h and (:; :)H denote the disrete inner produts on V h0 and V H0 respe-tively, i.e., 8v; w 2 V h0 ,(v; w)h � h2Xp v(p)w(p) + h4Xm �nv(m)�nw(m); (2.4)where the summation are taken over all verties p and midpointsm of the triangulationTh; the inner produt (:; :)H is de�ned in the same way. Furthermore, we de�ne Ah :



On the Domain Deomposition Method for Morley Element... 619V h0 ! V h0 , Aij : V hij ! V hij ; AH : V H0 ! V H0 , IHh : V h0 ! V H0 and Qij : V h0 ! V hij by8>>>>>>>>><>>>>>>>>>:
(Ahv; w)h = ah(v; w); v; w 2 V h0 ;(Aijv; w)h = ah(v; w); v; w 2 V hij ;(AHv; w)H = aH(v; w); v; w 2 V H0 ;(IHh v; w)H = (v; IhHw)h; v 2 V h0 ; w 2 V H0 :(Qijv; w)h = (v; w)h; v 2 V h0 ; w 2 V hij : (2.5)Then, based on (2.3), we have the following two-level additive Shwarz preonditionedproblem: 8><>:B � IhHA�1H IHh + X(i;j)2SA�1ij Qij ;BAhuh = Bfh; (2.6)where fh 2 V h0 and (f; v) = (fh; v)h; 8v 2 V h0 :We all (2.6) the weakly overlapping domain deomposition method for (1.5).3. Estimates of the Condition NumberTo begin with, we give some standard onventions. Let G � 
 be any open subsetaligned with the �nite element triangulation Th. Then we de�ne that V h(G) � V hjG;V h0 (G) � fv 2 V h(G); v(p) = �nv(m) = 0; v; m 2 �Gg; and8>>>>>>>><>>>>>>>>:

kvkk;h;G � ( XK2Th\G kvk2k;K)1=2; v 2 V h(G);jvjk;h;G � ( XK2Th\G jvj2k;K)1=2; v 2 V h(G);ah;G(v; w) � XK2Th\G ZK [�v�w + (1� �)(2�12v�12w � �11v�22w � �22v�11w)℄dx:(3:1)Note that in order to make the following interpretation more onveniently we also applythe above de�nition for v 2 H2(G):To go on with the analysis of the ondition number of (2.6), we next reall someknown results.Lemma 3.1[2℄;[12℄;[13℄. For the intergrid transfer operator Eh(EH) de�ned in x2, wehave 8>>>>><>>>>>: 2Xi=0 hijv �Ehvji;K � Ch2jvj2; ~K ; v 2 V h; K 2 Th;2Xi=0Hijv �EHvji;e � CH2jvj2;~e; e 2 TH ; v 2 V H : (3.2)Here and in the following ~K is the union of all elements in Th, eah of whih has aommon edge (or vertex) with K, ~e is de�ned in the same way, and C(with or without



620 J.G. HUANGsubsript) denotes a generi onstant independent of H and h, it may be di�erent indi�erent plaes.Lemma 3.2[2℄;[4℄. For the operator Ih, the following estimate holds:3Xi=0 hijv � Ihvji;K � Ch3jvj3;K ; v 2 H3(K):Lemma 3.3. Let E be a oarse triangle in f
igmi=1, ARh(E) � ARhjE. Then forany v 2 ARh(E), jvj20;1;E � C[(1 + log Hh )jvj21;E +H�2jvj20;E ℄: (3.3)If there exists some point q 2 E suh that v(q) = 0, then the lower term in the aboveestimate an be anelled. Result (3.3) also holds for v replaed by �iv.The proof an be given by the arguments similar to those employed in the derivationof the Lemma 3.5 in [1℄.Lemma 3.4. Let E be any oarse triangle in f
ig mi=1, with Ek; Eij, i; j; k 2 f1; 2; 3gas its verties and edges respetively. Assume v 2 V h(E) to be disrete ah;E-biharmoni,i.e. ah;E(v; w) = 0; w 2 V h0 (E):Furthermore, the nodal parameters of v are zero on E23 and E13(inluding endpointsof the two edges). As in x2, we introdue a speial intergrid transfer operator �Eh :V h(E)! ARh(E) suh that for p 2 E12(whih is looked upon as an open set), ep 2 E12;for p 2 �E n E12, ep 2 �E nE12. Then we have the following estimates:ah;E(v; v) � C2[k�� �Ehvk2H1=200 (E12) + k�n �Ehvk2H1=200 (E12)℄;C1[k�� �Ehvk2H1=200 (E12) + k�n �Ehvk2H1=200 (E12)℄ � ah;E(v; v);where � is the unit tangent diretion along E12, and k:kH1=200 (E12) is the half norm[1℄;[10℄de�nedbykwk2H1=200 () � Z Z j(w(x) � w(y)j2jx� yj2 ds(x)ds(y) + Z(w(x))2( 1jx� b1j + 1jx� b2j)ds(x);where bi, i = 1; 2, are the two endpoints of the line segment  respetively, s(x) denotesthe dis length parameter along . In other words, the above estimates state that theenergy of the disrete ah;E-biharmoni funtion is equivalent to the related norms forthe boundary terms.Proof. After the proper hoie of the intergrid transfer operator �Eh, the proof of theabove inequalities are formal in some sense[1℄;[9℄, here, for ompleteness of this paper,



On the Domain Deomposition Method for Morley Element... 621we will present a somewhat detailed dedution, please see also similar results given in[8℄,[12℄ and [13℄. Without loss of generality, assume that diam(E) � minx;y2E jx� yj =1; results for general ase an be obtained by the sale transformation x = diam(E)x̂and standard saling argument. Let us �rst onsider the proof of the �rst inequalityin the Lemma 3.4. It is lear from the onstrution of the interpolation operator �Ehthat ~vjE12 2 H5=200 (E12), ~vj�EnE12 = 0; (�n~v)jE12 2 H3=200 (E12) and (�n~v)j�EnE12 = 0,here ~v � �Ehv; and as usual for any funtion w and any point set B, wjB means therestrition of the funtion w on B, and meanwhile, H5=200 (E12) and H3=200 (E12) denote theonventional frational order Sobolev spaes, please see e.g. [7℄, [10℄ for details. Thus,from the trae theory on polygonal domain[7℄, we an �nd some funtion ~~v 2 H3(E)suh that ~~vj�E = ~vj�E , (�n~~v)j�E = (�n~v)j�E andk~~vk3;E � C[k~vkH5=200 (E12) + k�n~vkH3=200 (E12)℄: (3.4)We next introdue the following auxiliary problem:8>><>>:�2w = 0; (E);wj�E = ~vj�E;(�nw)j�E = (�n~v)j�E : (3.5)Thus, thanks to (3.4) and the fundamental result that �2 is an isomorphism fromH3(E) \ H20 (E) onto H�1(E) when E is a onvex polygonal domain, we easily havethat problem (3.5) has a unique weak solution w 2 H3(E) and that the followingestimate holds: kwk3;E � C[k~vkH5=200 (E12) + k�n~vkH3=200 (E12)℄: (3.6)Pay attention to the fat that v is just the Morley element approximate solution of(3.5), then by the well-known error estimates for Morley element[8℄;[11℄ we obtain thatjw � vj2;h;E � Chjwj3;E : (3.7)Therefore, from (3.6), (3.7) and the inverse inequalities we see thatah;E(v; v) �C[jv � wj22;h;E + jwj22;E ℄�C[h2(k~vk2H5=200 (E12) + k�n~vk2H3=200 (E12)) + jwj22;E ℄�C[k~vk2H3=200 (E12) + k�n~vk2H1=200 (E12) + jwj22;E ℄: (3.8)Note also that from the minimal potential priniple, w(solution of (3.5)) is the uniquesolution of the following variational problem:J(w) = min�w2W J( �w); (3.9)



622 J.G. HUANGwhereW � f �w 2 H2(E) : �wj�E = ~vj�E ; (�n �w)j�E = (�n~v)j�Eg and J( �w) � 12ah;E( �w; �w):On the other hand, from the trae theory on polygonal domain[7℄ there exists some~w 2 H2(E) suh that ~wj�E = ~vj�E , (�n ~w)j�E = (�n~v)j�E andk ~wk2;E � C[k~vkH3=200 (E12) + k�n~vkH1=200 (E12)℄: (3.10)Consequently, from (1.3), (3.9) and (3.10) we knowjwj22;E �Cah;E(w;w) � Cah;E( ~w; ~w) � Ck ~wk22;E�C[k~vk2H3=200 (E12) + k�n~vk2H1=200 (E12)℄: (3.11)Therefore, ombining (3.8) and (3.11) we ahieve the �rst inequality in the Lemma 3.4.Now we proeed with the demonstration of the seond inequality in the Lemma3.4. It follows from the trae theory on polygonal domain [7℄, generalized Poinareinequality [10℄;[14℄ and the Lemma 3.1 that[k�� ~vk2H1=200 (E12) + k�n~vk2H1=200 (E12)℄ �Ck~vk22;E � Cj~vj22;E�Cjvj22;E � Cah;E(v; v):The desired result then follows in the last.We also want to borrow the following important result:Lemma 3.5[2℄. For the two-level additive Shwarz preonditioned problem(2.6) thefollowing estimate holds:Cond2(BAh) � �max(BAh)=�min(BAh) � C�;where � is a generi onstant suh that, for any v 2 V h0 , there exist v0 2 V H0 , vij 2 V hij ,suh that, v = IhHv0 +P(i;j)2S vij, andaH(v0; v0) + X(i;j)2S ah(vij ; vij) � C�ah(v; v):After the above preparations, now we an verify the following main theorem:Theorem 3.6. For the preonditioned problem (2.6), we haveCond2(BAh) � C(1 + log Hh )2:That is to say the ondition number of the problem (2.6) is quasi-optimal.Proof. Aording to the Lemma3.5 it suÆes to bound the orresponding onstant� in more details. For any v 2 V h0 , we hoose v0 = IHEhv; the onstrution of vij isompliated omparatively. Without loss of generality, we onsider a oarse triangle ein f
igmi=1, whih has three adjaent oarse triangles feig3i=1.



On the Domain Deomposition Method for Morley Element... 623Obviously, the deomposition funtions on the subdomains (e [ ei)0, when restritedon e, should satisfy that 1. the sum is �v � v� IhHv0 (Note that �v is zero at eah vertexof e); 2. they satisfy the support restrition onditions. These are also the suÆientonditions. Thus we �rst deompose the funtion �vje into the following three funtionson e, whih are assoiated with the three edges of e respetively:8>><>>: ah;e(ve[ei ; w) = 0; w 2 V h0 (e);ve[ei(p) = �v(p); p 2 ii+1; or 0; for other ases;�nve[ei(m) = �n�v(m); m 2 ii+1; or 0; for other ases; (3.12a)ve[e3 = �v � ve[e1 � ve[e2 : (3.12b)Here, i, i = 1; 2; 3; denote the three verties of e respetively, and ii+1 representsthe edge of e onneting i and i+1, and for simpliity of exposition we have alsoused the reursive index onvention, e.g., 4 = 1: Obviously, there is ertain freedomof onstrution, e.g. we an also hoose ve[e2 , ve[e3 to be disrete ah;e-biharmoniand ve[e1 is then onstruted as (3.12b) similarly. It should be pointed out that ife is a boundary element of 
, then the deomposition funtion assoiated with theedge belonging to the boundary �
 should be disrete ah;e-biharmoni funtion, at thistime, this funtion is just the zero funtion. Notie also that ve[ei denotes the relateddeomposition funtion on e, whih is assoiated with the ommon edge of e and ei.Furthermore, we an get the global deomposition funtions by pathing together thoserelated loal funtions in a proper way to ensure the ontinuity restritions. As a matterof fat, if (i; j) 2 S, then we an de�ne vij � f v
i[
j ; on �
i;v
j[
i ; on �
j: It is lear from the aboveonstrution that these funtions satisfy the above restrition onditions.Thus, in order to bound �, it suÆes to give the estimates of aH(v0; v0), ah;e(ve[e1 ; ve[e1);ah;e(ve[e2 ; ve[e2). We �rst onsider the term aH(v0; v0). In fat, from (1.3) and salingargument we have that8>>>><>>>>: aH(v0; v0) � Cjv0j22;H;
 = C( Xe2TH jv0j22;e)1=2;jv0j22;e � C 3Xi=1 j�n(v0 � I1v0)(mi)j2; (3.13)where I1 is the onventional pieewise linear onforming interpolation operator on theoarse triangulation TH , and mi, i = 1; 2; 3; denote the edge midpoints of e. Then, bythe maximum norm estimates of the Lemma 3.3, and note that �n(v0 � I1v0)(mi) =



624 J.G. HUANG�n( Ehv � I1Ehv)(mi), we know3Xi=1 j�n(v0 � I1v0)(mi)j2 �C[(1 + log Hh )jw � I1wj22;e +H�2jw � I1wj21;e℄� C(1 + log Hh )jwj22;e;here and heneforth, w � Ehv.Therefore, it follows from the Lemma3.1 thataH(v0; v0) � C(1 + log Hh )jEhvj22;
 � C(1 + log Hh )jvj22;h;
 (3.14)and ah;e(�v; �v) � C[jvj22;h;e + jIhHv0j22;h;e℄ � C[jvj22;h;e + jv0j22;~e℄: (3.15)Seondly, for the term ah;e(ve[e1 ; ve[e1), it follows from the Lemma3.4 thatah;e(ve[e1 ; ve[e1) � C[k�� �Eh�vk2H1=200 (12) + k�n �Eh�vk2H1=200 (12)℄: (3.16)For the sake of brevity, we might as well put 12 = [0;H℄�f0g, Z � �Eh�v, and Z(x1,0)is denoted by Z(x1). Thenk�� �Eh�vk2H1=200 (12) = Z H0 [ 1x1+ 1H � x1 ℄j��Zj2dx1+Z H0 Z H0 j��Z(x1)� ��Z(y1)j2jx1 � y1j2 dx1dy1:Thinking of the symmetry, it suÆes to bound RH0 j��Zj2x1 dx1 andZ H0 Z H0 j��Z(x1)� ��Z(y1)j2jx1 � y1j2 dx1dy1:From the trae theorem, we easily haveZ H0 Z H0 j��Z(x1)� ��Z(y1)j2jx1 � y1j2 dx1dy1 � Cj �Eh�vj22;e � Cj�vj22;h;e: (3.17)On the other hand, Z 2 H20 (12), applying the standard tehnique as in [1℄, [9℄, wesee Z H0 j��Zj2x1 dx1 � C(1 + log Hh )j��Zj20;1;12 � C(1 + log Hh )2j�vj22;h;e: (3.18)Now we proeed to attak the estimate of the seond term in (3.16). Note that �nZ2 H10 (12), utilizing the similar dedution as above, we knowZ H0 j�nZj2x1 dx1 � C(1 + log Hh )j�nZj20;1;12 � C(1 + log Hh )2j�vj22;h;e; (3.19)



On the Domain Deomposition Method for Morley Element... 625and Z H0 Z H0 j�nZ(x1)� �nZ(y1)j2jx1 � y1j2 dx1dy1 � Cj�vj22;h;e: (3.20)The estimate of ah;e(ve[e2 ; ve[e2) an be ahieved in the same manners. Consequently,from (3.12)-(3.20) and the quasi-uniformity and the regularity of the triangulations Thand TH , we haveaH(v0; v0) + X(i;j)2S ah(vij ; vij) � C(1 + log Hh )2jvj22;h;
 � C(1 + log Hh )2ah(v; v):Theorem 3.6 then follows in the last.4. From Weak Overlap to NonoverlapWe shall �rst give the matrix desription of the preonditioned problem (2.6) inorder to understand it more intuitively and make out the onrete struture of the in-dued preonditioner. Let 
̂, with element number j
̂j, be the interior nodal parameterset of the Morley element, on whih we de�ne a proper order; the point set 
̂ij � 
ij,with element number j
̂ijj, is de�ned as above similarly, on whih there exists the sameorder as that on 
̂. Here, for (i; j) 2 S, 
ij is the quadrilateral formed by 
i and
j. We denote by f�ig the shape basis funtions of V h0 aording to the above order,and �Ah and �Aij are the related sti�ness matries for the original and the indued loalproblems, i.e., �Ah � (ah(�i; �j))i;j2
̂, �Aij � (ah(�k; �l))k;l2
̂ij . We next introdue thefollowing extension operator Eij for (i; j) 2 S:8<:Eij : Rj
̂ij j ! Rj
̂j; for arbitrary v 2 Rj
̂ij j;Eijv(k) = v(k); k 2 
̂ij; 0; otherwise: (4.1)That is to say Eij is an extension operator whih, keeping its original order, transfersa loal expression to the related global one. For the oarse triangulation TH , 
̂H andet. are de�ned in the same way. Here and heneforth, all de�nitions for Th an also beonverted for TH . Let Dh denote the matrix desription of (�; �)h, i.e., for v, w 2 V h0 ,whih have the nodal parameters x, y 2 Rj
̂j respetively, the following equality holds:(v; w)h = [Dhx; y℄;where [�; �℄ is the eulidean natural inner produt. Obviously, Dh is a diagonal matrix.We also denote by �IhH the matrix desription of IhH , i.e., for v 2 V H0 with the nodalparameters x 2 Rj
̂H j, the nodal parameters of IhHv is just �IhH x 2 Rj
̂j; �IHh is de�nedsimilarly. Then, from their de�nitions in (2.5), we get �I Hh = D�1H (�IhH )t Dh, heret means the transpose operation. In the same way, we an also see that the matrix



626 J.G. HUANGdesription of Ah is D�1h �Ah and the related desription of �A�1ij QijAh = Pij is Eij �A�1ijEtij . Hene, we know the matrix desription of (2.6) is8><>: �B1 � �IhH �A�1H (�IhH)t + X(i;j)2SEij �A�1ij Etij ;�B1 �Ah�u = �B1 �f; (4.2)here �u is the nodal parameters of uh, and �f denotes the vetor with the omponents(f; �i), i 2 
̂. Thus, the preonditioner is �B1. After that, we proeed to simplifythis preonditioner by substituting some spetrally equivalent matries for �A�1H and�A�1ij . Suppose v 2 V H0 , with nodal parameters y 2 Rj
̂H j. Then from the proof of theTheorem3.6, we see[ �AHy; y℄ = aH(v; v) � Xe2TH 3Xi=1 j�n(v � I1v)(mi)j2 � [ �~AHy; y℄:Hene, �AH is spetrally equivalent to �~AH . Here and from now on, f � g means thatthere exist two onstants C1 and C2 independent of H and h suh that C1g � f � C2g.In pratie, we do not hange �AH for �~AH so as to keep the onveniene of programompiling. In order to disuss the other terms, we �rst give several de�nitions. Let �ij =(�
i\�
j)0(open set) denote the ommon edge of 
i and 
j. Then 
̂i, �̂ij are de�nedas before, Ei is the extension operator from 
̂i to 
̂, and E�ij is the extension operatorfrom �̂ij to 
̂, they both are de�ned by (4.1) similarly. Moreover, �Ai denotes thesti�ness matrix on 
i, i.e., �Ai � (ah;
i(�k; �l))k;l2
̂i ; �Ai;ij � (ah;
i(�k; �l))k2
̂i;l2�̂ij .Then, noting that �Aij is the loal sti�ness matrix in 
ij, by the Lemma3.4 and thestandard dedution for two-subregions domain deomposition method, we get to know�Aij is spetrally equivalent to �~Aij = 264 �Ai 0 �Ai;ij0 �Aj �Aj;ij�Ati;ij �Atj;ij Wij 375, whereWij � �Bij + �Ati;ij �A�1i �Ai;ij + �Atj;ij �A�1j �Aj;ij;and �Bij is de�ned by[ �Bijy; y℄ � k�� ( �Ehv)k2H1=200 (�ij ) + k�n( �Ehv)k2H1=200 (�ij );for any v 2 V hij ; whih is disrete biharmoni in 
i and 
j , and has nodal parametersy in �ij. The onstrution of �Bij is similar to that in [1℄.Therefore, we ahieve the following spetrally equivalent preonditioner for �B1:�B2 � �IhH �A�1H �IHh + X(i;j)2SEij �~A�1ij Etij :



On the Domain Deomposition Method for Morley Element... 627By a diret omputation, we easily have, for x 2 Rj
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