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Abstract

In this paper, the unitarily invariant norm ‖·‖ on C
m×n is used. We first discuss

the problem under what case, a rectangular matrix A has minimum condition
number K(A) = ‖A‖ ‖A+‖, where A+ designates the Moore-Penrose inverse of
A; and under what condition, a square matrix A has minimum condition number
for its eigenproblem? Then we consider the second problem, i.e., optimum of
K(A) = ‖A‖ ‖A−1‖2 in error estimation.
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1. Introduction

Since 1984, several chinese mathematicians have obtained many results bout matrix
operator norm condition number[11,12,18].

Two kinds matrix condition numbers [9] are :
(1) If A ∈ C

n×n is nonsingular, the number Kα(A) = ‖A‖α‖A−1‖α is called the
α-norm condition number of A for its inverse, where ‖ · ‖α is some matrix norm, such
as the 2-norm, Hölder-norm, F-norm, etc..

Furthermore, we can generalize the inverse condition number to rectangular matrix
case [1], [8], K(A) = ‖A‖α‖A+‖β, and allows α 6= β.

(2) For a square matrix A ∈ C
n×n, set

VA = {X | X ∈ C
n×n, X−1AX = JA, a Jordan form of A}. (1.1)

Then the number
Jα = inf

X∈VA

{‖X‖α‖X−1‖α} (1.2)

is called the α-norm condition number of A for its eigenproblem.
Wilkinson[9] pointed out that a) If matrix A is normal, then J2(A) = 1. b) If A is

unitary, then K2(A) = 1.
Zheng[11,12] obtained the necessary and sufficient conditions for minimizing two

kinds of p-norm condition numbers (1 ≤ p ≤ ∞).
Zheng and Zhao[8] obtained the structures of p-norm isometric matrix A ∈ C

m×n

and the bounds of Kp(A) = ‖A‖p‖A+‖p (1 ≤ p ≤ ∞); Wang and Chen obtained
the structures of a rectangular matrix A with minimum p-norm condition number
(1 ≤ p ≤ ∞, p 6= 2).
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All the above results are concerned with matrix operator norms.
Other results associated with matrix operator norm condition number are given

by Yang[10], i.e., the optimum of K(A) = ‖A‖ ‖A−1‖ in the error estimation of linear
equation Ax = b and the process of computing A−1.

In this paper, another important kind matrix norm, the unitarily invariant norm on
C

m×n (UIN) is discussed, and some results associated condition number are obtained.
The rest of the paper is arranged as follows. Section 2 is preliminary. In Section

3, the structures of the rectangular matrices with minimum UIN condition number
K(A) = ‖A‖ ‖A+‖ are discussed. In Section 4, the condition for a square matrix A
possesses minimum UIN condition number for its eigenproblem is obtained. Finally,
Section 5 is used to describe some results about the optimum of K(A) = ‖A‖ ‖A−1‖2

in error estimation, where ‖ · ‖ designates a UIN.

2. Preliminaries

Definition 2.1[6,7]. A norm ‖ · ‖: C
n×n → R is called unitarily invariant (UIN) if

it satisfies :

(1) ‖UAV ‖ = ‖A‖, ∀A,U, V ∈ C
n×n, and UHU = V HV = In.

(2) ‖A‖ = ‖A‖2 if rank(A) = 1.

Definition 2.2[6,7]. A norm Φ : R
n → R is called a symmetric guage function (SG)

if it satisfies :
(1) For any permutation matrix P , Φ(Px) = Φ(x), ∀x ∈ R

n.

(2) Φ(|x|) = Φ(x), where x = (ξ1, · · · , ξn)T , and |x| = (|ξ1|, · · · , |ξn|)T .

(3) Φ(e1) = 1, where e1 is the first column of In.

The conception of unitarily invariant norm can be generalized to the rectangular
matrix case [6], [7, p. 79], and many properties of the UIN can be found in [6] [7] etc..

Lemma 2.1. Let Φp : R
m → R be a function defined by

Φp(x) = ‖x‖p =
(

m
∑

i=1

|ξi|p
)1/p

, (1 ≤ p ≤ ∞). (2.1)

Then Φp is a SG on R
m.

Proof. It is obvious that Φ is the Hölder norm on R
m [5], and satisfies (1) (2) (3)

of Definition 2.2. 2

If A ∈ C
k×l, Φ is a SG on R

n, m = min{k.l} ≤ n, σ1, · · · , σm are the singular values
of A. Then a UIN on C

k×l may be defined by [6, p. 79]

‖A‖Φ = Φ(σ1, · · · , σm, 0 · · · , 0). (2.2)

It is easy to see that[6] ‖A‖Φ0
= ‖A‖2, and ‖A‖Φ2

= ‖A‖F .

Definition 2.3. If Φp is defined by (2.1), ‖ · ‖Φ is defined by (2.2). Then ‖ · ‖Φp is

called a pUIN on C
k×l.

Lemma 2.2. Suppose 0 6= A ∈ C
m×n, ‖ · ‖ is a UIN family. Then

K(A) = ‖A‖ ‖A+‖2 ≥ 1, and K(cA) = K(A) when c 6= 0. (2.3)
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Proof. From [7] [6, p. 80] we know that ‖A‖ ≥ ‖A‖2 and ‖A+‖ ≥ ‖A+‖2. Lemma

2.6 of [8] tells us that K(A) ≥ K2(A) ≥ 1. From [1] we obtain (cA)+ =
1

c
A+, when

c 6= 0. Thus K(cA) = K(A), when c 6= 0. 2

Definition 2.4. A matrix A ∈ C
m×n is called 2-norm isometric if it satisfies

‖Ax‖2 = ‖x‖2, ∀x ∈ C
n. (2.4)

Lemma 2.3[5,11]. A matrix A ∈ C
m×n is 2-norm isometric if and only if

AHA = In. (2.5)

Lemma 2.4. For a UIN family, set

L(m,n, r) = inf
A∈C

m×n
r

{K(A) = ‖A‖ ‖A+‖}. (2.6)

If r > 0, then

1 ≤ L(m,n, r) ≤ r2, (2.7)

where A ∈ C
m×n
r means m-by-n matrix A has rank(A) = r.

Proof. From Lemma 2.2, L(m,n, r) ≥ 1 when r > 0. Take a particular matrix A0 =
(

Ir 0
0 0

)

∈ C
m×n
r . Then A+

0 =

(

Ir 0
0 0

)

∈ C
n×m
r . Assume Φ is a SG satisfies Φ(A) =

‖A‖. Then K(A0) = ‖A0‖ ‖A+
0 ‖ = (Φ(1, · · · , 1, 0, · · ·, 0))Φ(1, · · · , 1, 0, · · · , 0)) ≤ r2. So

we have L(m,n, r) ≤ r2.2
Lemma 2.5[7,pp.321−322]. Suppose A + E = B ∈ C

n×n, ‖ · ‖ is a UIN on C
n×n,

‖A−1‖2‖E‖2 < 1. Then B is nonsingular and

(‖B−1 − A−1‖)/(‖A−1‖) ≤ K‖E‖2/(γ‖A‖), (2.8)

where

K = ‖A‖‖A−1‖2, γ = 1 − K‖E‖2/‖A‖ = 1 − ‖A−1‖2‖E‖2 > 0. (2.9)

Lemma 2.6. Suppose A,B ∈ C
n×n. Then there exists a unitary matrix H such

that

‖AHB‖2 = ‖A‖2‖B‖2. (2.10)

Proof. Assume the SVD of A,B are

A = UΣAV and B = WΣBR (2.11)

respectively with ΣA =diag (σ1, · · · , σn) and ΣB =diag (τ1, · · · , τn), here σ1 ≥ σ2 ≥
· · · ≥ σn, and τ1 ≥ · · · ≥ τn. Then ‖AHB‖2 = ‖ΣAV HWΣB‖2. Set H = V HW H , we
obtain ‖AHB‖2 = ‖ΣAΣB‖2 = ‖ diag (σ1τ1, · · · , σnτn)‖2 = σ1τ1 = ‖A‖2‖B‖2.2

Lemma 2.7. Suppose ‖ · ‖ is a UIN family, A ∈ C
m×n
r , r > 0. Then

1 ≤ ‖A‖
‖A‖2

≤ r. (2.12)

Proof. Using the corresponding SG of ‖·‖ we obtain ‖A‖ = Φ(σ1, · · · , σr, 0 · · · , 0) ≤
rΦ(σ1, 0, · · · , 0) = r‖A‖2.2
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Lemma 2.8 [7, p. 323]. Suppose ‖ · ‖ is a UIN on C
n×n, A ∈ C

n×n
n , x is a soluttion

of equation Ax = b, B = A + E, ‖A−1‖2‖E‖2 < 1. Then B ∈ C
n×n
n and the solution y

of equation By = b satisfies

(‖y − x‖2)/‖x‖2 ≤ K‖E‖2/(γ‖A‖). (2.13)

Lemma 2.9 [7, pp. 342-343]. Suppose B = A+E ∈ C
n×n,△ = ‖A−1‖2‖E‖2 < 1.

Then B is nonsingular and

(‖B−1 − A−1‖)/‖A−1‖2 ≤ ‖E‖K/(‖A‖(1 −△)), (2.14)

where

K = ‖A−1‖2‖A‖. (2.15)

3. Rectangular Matrix with Minimum pUIN condition number

Theirem 3.1. Suppose ‖ · ‖ is a pUIN family. Then (i) L(m,n, r) = r2/p when

r > 0, 1 ≤ p ≤ ∞. (ii) When rank (A) = r > 0,

K(A) = ‖A‖ ‖A+‖ = r2/p ⇔ σ1(A) = · · · = σr(A) > 0. (3.1)

Proof. Take

A0 =

(

Ir 0
0 0

)

∈ C
m×n
r . (3.2)

Then A+
0 =

(

Ir 0
0 0

)

∈ C
n×m
r and

K(A0) = ‖A0‖Φp‖A+
0 ‖Φp = r2/p when r > 0. (3.3)

For any A ∈ C
m×n
r with its SVD A = U

(

Σr 0
0 0

)

V H . Two possible cases need to

be considered.
Case (a) 1 ≤ p < ∞. In this case we have

Kp(A) = ‖A‖p
Φp

‖A+‖p
Φp

=

∥

∥

∥

∥

Σr 0
0 0

∥

∥

∥

∥

p

Φp

∥

∥

∥

∥

Σ−1
r 0
0 0

∥

∥

∥

∥

p

Φp

= (σp
1 + · · · + σp

r )(σ
−p
1 + · · · + σ−p

r )

= ((σ
p/2
1 )2 + · · · + (σp/2

r )2)((σ
−p/2
1 )2 + · · · + (σ−p/2

r )2).

From the Cauchy-Schwartz inequality we see that Kp(A) ≥ r2, and equality holds if
and only if σ1 = · · · = σr.

Case (b) p = ∞. In this case we have K(A) = ‖A‖Φ∞
‖A+‖Φ∞

= Φ∞(σ1, · · · , σr, 0 · · ·,
0)Φ∞(σ−1

1 , · · · , σ−1
r , 0, · · ·, 0) = σ1/σr ≥ 1, and equaliy holds if and only if σ1 = σr.

Thus Theorem 3.1 is proved.2
From Theorem 3.1, we obtain the following corollaries.
Corollary 3.1. Suppose ‖ · ‖ is a pUIN family, A ∈ C

m×n. Then K(A) =
‖A‖ ‖A+‖ = n2/p if and only if

AHA = cI with a costant c = ‖A‖2
2 > 0. (3.4)
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or equivalently

K2(A) = ‖A‖2‖A+‖2 = 1. (3.5)

Proof. Theorem 3.1 means (3.4) holds if and only if K(A) = ‖A‖ ‖A+‖ = n2/p.

(3.4) means
1√
c
A is a unitary matrix, and

( 1√
c
A

)+
=

1√
c
AH . Thus (3.4) means (3.5)

holds.
Conversly, from Theorem 2.2 of [8], A/‖A‖2 is 2-norm isometric when (3.5) holds.

Lemma 2.3 tells us (3.4) holds.2
Corollary 3.2. Suppose ‖ ·‖ is a pUIN family, A ∈ C

m×n
r and 0 < r < min{m,n}.

Then

K(A) = ‖A‖ ‖A+‖ = r2/p (3.6)

if and only if there are two matrices F and G such that

A = FG (3.7)
with

F ∈ C
m×r
r and G ∈ C

r×n
r , (3.8)

and

K(F ) = ‖F‖ ‖F+‖ = r2/p, K(G) = ‖G‖ ‖G+‖ = r2/p. (3.9)

Proof. Necessity. Assume the SVD of A is

A = U

(

Σr 0
0 0

)

V H = U1ΣrV
H
1 .

From Theorem 3.1 we have Σr = cI, c > 0. Set F = cU1, and G = V H
1 , then (3.7)–(3.9)

hold.
Sufficiency. Assume the SVD of F and G are

F = W

(

Σ̃r

0

)

SH , G = Q(Σ̂r, 0)Z
H . (3.10)

From Theorem 3.1 and (3.9), we have

A =FG = W

(

cf Ir

0

)

SHQ(cgI, 0)ZH

=WS̃HQ̃

(

cf cgIr 0
0 0

)

ZH , S̃HQ̃ =

(

SHQ 0
0 I

)

∈ C
m×m. (3.12)

(3.12) means σ1 = · · · = σr = cf cg > 0, and K(A) = r2/p.2

4. Square Matrix with Minimum pUIN Condition Number for Its

Eigenproblem

Theorem 4.1. Suppose A ∈ C
n×n, ‖ · ‖ is a consistent matrix norm on C

n×n[5].

Then there exists a matrix X̃ ∈ VA such that

Kα(X) = ‖X̃‖α‖X̃−1‖α = Jα(A). (4.1)
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Notice that if ‖ · ‖ is a pUIN, using Theorem 3.1, we can easily prove Theorem 4.1.
And a pUIN is a consistent matrix norm.

Proof. For any ǫ > 0, there exists a matrix X ∈ VA such that Jα(A) ≤ Kα(X) ≤
Jα(A)+ǫ. Without loss of generality, assume ‖X‖α = 1. Otherwise take X ′ = X/‖X‖α,
then we have ‖X ′‖α = 1, X ′ ∈ VA. Set ǫ1 > ǫ2 > · · · > ǫk > · · ·, and lim

k→∞
ǫk = 0.

Correspondingly, we obtain a matrix sequence {Xk} such that

Jα(A) ≤ Kα(Xk) = ‖X−1
k ‖α ≤ Jα(A) + ǫk. (4.2)

Notice that each eigenvalue λ(l) of Xk satisfies[5]

|λ(l)| ≥ 1

‖X−1
k ‖α

≥ 1

Jα(A) + ǫk
≥ 1

Jα + ǫ1
= δ > 0, (4.3)

and both {X−1
k } and {Xk} are bounded. So there exist subsequences of {X−1

k } and
{Xk} such that

lim
ki→∞

X−1
ki

= X̃−1 and lim
ki→∞

Xk = X̃. (4.4)

From (4.2) and (4.4) we obtain Jα(A) = Kα(X̃) = ‖X̃‖α‖X̃−1‖α.2

Theorem 4.2. Suppoe A ∈ C
n×n, ‖ · ‖α is a pUIN on C

n×n. Then

Jα(A) = n2/p (4.5)

if and only if there exists a unitary matrix U such that

UHAU = JA, a Jordan form of A. (4.6)

Proof. Necessity. Since each UIN is a consistent matrix norm[6,7], Theorem 4.1
means there exists a matrix X ∈ VA such that Kα(X) = ‖X‖α‖X−1‖α = Jα(A) = n2/p.
From Theorem 3.1, X has singular values σ1 = · · · = σn > 0. Set U = X/‖X‖2, we
obtain U ∈ VA and UHU = In, and UHAU = X−1AX = JA. Sufficiency. From
Theorem 3.1 we obtain Kα(U) = ‖U‖α‖U+‖α = n2/p.2

5. Optimum of K(A) = ‖A‖‖A−1‖2 in Error Estimation With Respect

to UIN

Theorem 5.1. Suppose ‖ · ‖ is a UIN on C
n×n, A ∈ C

n×n. If there exists a ǫ0 > 0
such that when ‖A−1‖2‖E‖2 < 1 and ‖E‖ < ǫ0, then E satisfies

‖A−1 − (A + E)−1‖
‖A−1‖ ≤ µ

‖E‖2

A
/
(

1 − µ
‖E‖2

‖A‖
)

, (5.1)

where µ > 0 is independent of E. Then we have

K(A) = ‖A‖ ‖A−1‖2 ≤ ‖A−1‖
‖A−1‖2

µ ≤ nµ. (5.2)
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Proof. From Lemma 2.5 or [5], A+E is nonsingular, and we have
‖A−1 − (A + E)−1‖

‖A−1‖
≤ K

γ

‖E‖2

‖A‖ , K = ‖A‖ ‖A−1‖2, γ = 1 − ‖A−1‖2‖E‖2. Using Lemma 2.6, we can find a

matrix H with ‖H‖2 = 1 such that ‖A−1HA−1‖2 = ‖A−1‖2
2.

Set E = ǫH, we obtain ‖A−1HA−1‖2 = ǫ‖A−1‖2
2. When ‖A−1‖2‖E‖2 < 1, we

have[5]

(A + E)−1 = (I + A−1E)A−1 =
∞
∑

k=0

(−A−1E)kA−1. (5.3)

‖A−1 − (A + E)−1‖ =
∥

∥

∥

∞
∑

k=1

(−A−1E)kA−1
∥

∥

∥ ≥ ‖A−1EA−1‖2 − ‖A−1‖3
2‖E‖2

2

·
∞
∑

k=0

‖(A−1E)k‖2 = ǫ‖A−1‖2
2 − ǫ2‖A−1‖3

2

∞
∑

k=0

‖(A−1E)k‖2.

K(A) = ‖A‖ ‖A−1‖2 =
‖A‖ ‖A−1‖2

2

‖A−1‖2
=

‖A‖
‖E‖2

‖A−1EA−1‖2

‖A−1‖2
(5.4)

≤ ‖A‖
‖E‖2

‖A−1 − (A + E)−1‖ + ‖A−1‖3
2‖E‖2

2

∞
∑

k=0

‖A−1E‖k
2

‖A−1‖
‖A−1‖
‖A−1‖2

.

Let ǫ = ‖E‖2 → 0, we obtain K(A) ≤ µ
‖A−1‖
‖A−1‖2

. From Lemma 2.7, ‖A−1‖‖A−1‖2 ≤
n.2

Theorem 5.2. Suppose ‖ · ‖ is a UIN on C
n×n, A ∈ C

n×n
n , B = A + E and

‖A−1‖2‖E‖2 < 1. If there is a ǫ0 > 0 such that when ‖E‖2 < ǫ0, the solutions x, y of

equations Ax = b, Bx = b satisfy

‖x − y‖2

‖x‖2
≤

δ‖E‖2

‖A‖

1 − δ‖E‖2

‖A‖

, (5.5)

where δ is independent of E. Then

K(A) = ‖A‖ ‖A−1‖2 ≤ δ. (5.6)

Proof. From Lemma 2.8, we obtain

‖x − y‖2

‖x‖2
≤ K

‖E‖2

‖A‖ /(1 − K
‖E‖2

‖A‖ ) =
K

γ

‖E‖2

‖A‖ .

So (5.6) means that K(A) = ‖A‖ ‖A−1‖2 = K is optimum in error estimate equation
(5.5).

From (5.3) we obtain

x − y = [A−1 − (A + E)−1]b = x −
∞
∑

k=0

(−A−1E)kx



128 D.S. ZHANG

= −
∞
∑

k=1

(−A−1E)kx = A−1Ex − (A−1E)2
∞
∑

k=0

(−A−1E)kx. (5.7)

Let B = (x, 0, · · · , 0) ∈ C
n×n. For any C ∈ C

n×n we have ‖A−1CB‖ = ‖A−1CB‖2.
From Lemma 2.6, there exists a matrix H such that ‖H‖2 = 1 and ‖A−1Hx‖2 =
‖A−1HB‖2 = ‖A−1HB‖ = ‖A−1‖2‖B‖2 = ‖A−1‖2‖x‖2. Take E = ǫH, ‖E‖2 = ǫ.

From (5.7) we obtain ‖x − y‖2 ≥ ‖A−1Ex‖2 − ‖A−1‖2
2‖E‖2

2‖x‖2

∞
∑

k=0

‖A−1E‖k
2 . Hence

K(A) = ‖A−1‖2‖A‖ =
‖A‖
‖E‖2

‖A−1Ex‖2

‖x‖2

≤ ‖A‖
‖E‖2

‖x − y‖2 + ‖A−1‖2
2‖E‖2

2‖x‖2

∞
∑

k=0

‖A−1E‖k
2

‖x‖2

≤ δ/
(

1 − δ
‖E‖2

‖A‖
)

+ ǫ(‖A−1‖2
2

∞
∑

k=0

‖A−1E‖k
2). (5.8)

Thus we obtain K(A) ≤ lim
ǫ→0

( δ

1 − δ‖E‖2/‖A‖ + ǫ
(

‖A−1‖2
2

∞
∑

k=0

‖A−1E‖k
2

))

= δ.2

Notice that Lemma 2.9 enables us to prove another theorem analogue to Theorem
5.1.
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