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Abstract

By using wave splitting method the formulation of the two-dimensional po-
tential inversion problem is set up in terms of the coupled system for downgoing
and upcoming wavefields. The boundary counditions on the characteristic surface
needed for solving the problem are derived by singularity analysis. Two stabil-
ity theorems are given for the direct problems of the system treated as Cauchy
problems in the direction of depth.
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1. Introduction

In this paper the following potential inversion problem is considered

[ ∂2

∂t2
−

∂2

∂x2
−

∂2

∂z2
+ v(x, z)

]

p(x, z, t) = 0, x ∈ R, z > 0, t > 0, (1.1)

p(x, z, 0) =
∂p

∂t
(x, z, 0) = 0, (1.2)

p(x, 0, t) = δ(t), (1.3)

∂

∂z
p(x, 0, t) = h(x, t). (1.4)

That is, giving an impulse at the surface z = 0, to determine the wavefield p and

potential v from the impulse response h.

In one-dimensional case, by factorizing the wave operator, the wavefield can be split

into upcoming and downgoing waves, so the wave equation can be easily reduced to a

coupled first-order system. The direct problem and the coefficient-inversion problem

can be treated as Cauchy problems in time and in the direction of depth regarded as

the time-like variable[1]. These problems are well-posed because the time and space
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variables are exchangeable in one-dimensional case. The numerical solutions for wave-

fields and unknown coefficients in inverse problems can be obtained layer-by-layer by

finite difference methods. There are two difficulties to extent this technique into multi-

dimensional case. The first consists in the ill-posedness of the problems, both direct and

inverse, treated as Cauchy problems in the direction of depth, which is non-time-like

in the multi-dimensional case. Another lies in the factorization of the wave operator,

because the so-called square-root operator is not a differential one.

There are some approaches to get rid of these difficulties. A.E. Yagle and P. Raad-

hakrishan (1992) [2] used the clipped filter for some cutoff wave number of the lateral

variable in order to avoid instability. V.H. Weston (1987) [3] used the relationship

between the Dirichlet and Neumann data of the wave to construct the square-root op-

erator. The square-root operator was considered also in L. Fishman (1991) [4] as Weyl

pseudo-differential operator.

In this paper we treat only the radiation part of wavefield by neglecting the evanes-

cent wave, which vanished rapidly with increasing of depth. In this case the square-root

operator can be represented as an integral of a parameter-dependent operator. Using

this representation, the two-dimensional wave equation can be reduced also to a cou-

pled system, as in one-dimensional case, in which the two main equations describe the

propagation of downgoing and upcoming wavefields and their coupling. The principal

parts of these equations are exactly the one-way wave equations, familiar in geophysics

for migration problems. Other equations in the system, needed for determining the

auxiliary functions involved in the main equations, are one-dimensional wave equa-

tions only in the lateral variable. All these equations can easily be approximated and

discretized by finite difference methods

The boundary conditions on the characteristic surface needed for solving the system

of equations are derived by analyzing the propagation of the singularity.

We also give two theorems on the stability of the direct problems of the coupled

system treated as Cauchy problems in the direction of depth.

2. Approximation of Square-root Operator and Wavefield Splitting

The two dimensional wave operator can be factorized as follows [5]:

∂2

∂t2
−

∂2

∂x2
−

∂2

∂z2
=

(

Λ +
∂

∂z

)(

Λ −
∂

∂z

)

,

where Λ is a pseudo-differential operator, so-call square-root operator, with the “sym-

bol”

λ(kx, ω) = i

√

ω2 − kx
2.

We treat only the radiation part of wavefield and neglect the evanescent wave, that is,

we consider only the case of ω2 ≥ kx
2. In this case, the following formula is true

1

π

∫ 1

−1

√

1 − s2
k2

xds

ω2 − s2k2
x

=
1

ω
(ω −

√

ω2 − k2
x).
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So the square-root operator Λ can be represented in the integral form

Λ =
∂

∂t
(I − R),

where R is a pseudo-differential operator which is defined as

R =
1

π

∫ 1

−1

√

1 − s2Q(s)ds, (2.1)

and q(s, x, z, t) = Q(s)p(x, z, t) satisfies

( ∂2

∂t2
− s2 ∂2

∂x2

)

q =
∂2

∂x2
p. (2.2)

We define the upcoming wave U1 and downgoing wave D1 by

U1 =
∂U

∂t
=

1

2

(

Λ +
∂

∂z

)

p, (2.3)

D1 =
∂D

∂t
=

1

2

(

Λ −
∂

∂z

)

p. (2.4)

Then the two dimensional wave equation (1.1) can be transformed into the coupled

system of one-way wave equations

∂

∂t

(

Λ −
∂

∂z

)

U +
1

2
vp = 0, (2.5)

∂

∂t

(

Λ +
∂

∂z

)

D +
1

2
vp = 0, (2.6)

∂p

∂z
=

∂U

∂t
−

∂D

∂t
, (2.7)

and the corresponding auxiliary equations

( ∂2

∂t2
− s2 ∂2

∂x2

)

qU =
∂2U

∂x2
, (2.8)

( ∂2

∂t2
− s2 ∂2

∂x2

)

qD =
∂2D

∂x2
. (2.9)

Now the potential inversion problem can be reformulated to determine the upcom-

ing wave U1 and downgoing wave D1, wavefield p and the unknown potential v(x, z),

satisfying the system (2.5)–(2.9) in the domain Ω = {(x, z, t), x ∈ R, z > 0, t > z},

with the necessary initial and boundary conditions.

By using the Gaussian quadrature formula the square-root operator can be approx-

imated by [5] [6]

Λn =
∂

∂t
−

∂

∂t

n
∑

k=1

akQ(sk), (2.10)

where

sk = cos
( kπ

n + 1

)

, ak =
1

n + 1
sin2

( kπ

n + 1

)

.
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3. Singularity Analysis

In order to solve the inverse problem, the boundary conditions on the character-

istic surface t = z + 0 should be derived. The impulse condition is p(x, 0, t) = δ(t),

the singularity of wavefield will propagate along the characteristic surface t = z. By

singularity analysis, the impulse condition can be transformed into the conditions on

the characteristic surface.

The general solution of our problem can be written as [7]

p(x, z, t) = δ(t − z) + a(x, z, t)H(t − z), (3.1)

where H is the Heaviside function and a(x, z, t) is a regular function. Substituting (3.1)

in (1.1) we get

H(t − z)
( ∂2

∂t2
−

∂2

∂x2
−

∂2

∂z2

)

a(x, z, t) + 2(at + az)δ(t − z)

+ v(x, z)[δ(t − z) + a(x, z, t)H(t − z)] = 0.

Analyzing the singularity in the above expression we have

at + az = −
v(x, z)

2
, ∀t = z, (3.2)

( ∂2

∂t2
−

∂2

∂x2
−

∂2

∂z2

)

a(x, z, t) + v(x, z)a(x, z, t) = 0, ∀t > z.

So

p(x, z, t = z + 0) = a(x, z, t = z + 0) = −
1

2

∫ z

0
v(x, y)dy

.
= g(x, z), (3.3)

( ∂

∂t
+

∂

∂z

)( ∂

∂t
−

∂

∂z

)

a(x, z, t) =
[ ∂2

∂x2
− v(x, z)

]

a(x, z, t).

Integrating the above expression along the line t = z + 0, we have

( ∂

∂t
−

∂

∂z

)

p(x, z, t = z + 0) =

∫ z

0

[ ∂2

∂x2
− v(x, y)

]

g(x, y)dy −
∂

∂z
p(x, 0, t = +0)

.
=gD(x, z) − h(x, z, t = +0). (3.4)

From (3.2) and (3.3) we get

( ∂

∂t
+

∂

∂z

)

p(x, z, t = z + 0) = −
v(x, z)

2
. (3.5)

Suppose the function q(x, z, t) in (2.1) can be expanded as

q(x, z, t) = Aq(x, z)δ(t − z) + A(1)
q (x, z)H(t − z) + A(2)

q (x, z, t)H1(t − z), (3.6)

where H1(t) =
t+ | t |

2
, and H ′

1 = H. Substituting (3.1) and (3.6) into equation (2.2)

we get

Aqδ
′′ + A(1)

q δ′ + A(2)
q δ + 2

∂A
(2)
q

∂t
H +

∂2A
(2)
q

∂t2
H1
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− s2 ∂2Aq

∂x2
δ − s2 ∂2A

(1)
q

∂x2
H − s2 ∂2A

(2)
q

∂x2
H1 =

∂2a

∂x2
H.

Comparing the coefficients of δ′′, δ′, δ on the both sides of this equation we know

Aq(x, z) = 0, A(1)
q (x, z) = 0, A(2)

q (x, z, t = z + 0) = 0.

So (3.6) becomes

q(x, z, t) = A(2)
q (x, z, t)H1(t − z).

This yields

q(x, z, t = z + 0) =
∂q

∂t
(x, z, t = z + 0) = 0. (3.7)

Substituting (3.5),(3.7) into the definition (2.3) of upcoming wave we obtain

∂U

∂t
(x, z, t = z + 0) = −

v(x, z)

4
. (3.8)

Substituting (3.4),(3.7) into the definition (2.4) of downgoing wave we obtain

∂D

∂t
(x, z, t = z + 0) =

1

2
gD(x, z) −

1

2
h(x, t = +0). (3.9)

Suppose D(x, z, t) can be expressed as

D(x, z, t) = AD(x, z)δ(t − z) + A
(1)
D (x, z)H(t − z) + A

(2)
D (x, z, t)H1(t − z).

Substituting this expression and (3.1),(3.7) into the definition (2.4) of downgoing wave

we have

D(x, z, t = z + 0) = a(x, z, t = z + 0) = p(x, z, t = z + 0) = g(x, z). (3.10)

Suppose the function qD in equation (2.9) can be expanded as

qD(x, z, t) = AqD
(x, z)δ(t − z) + A(1)

qD
(x, z)H(t − z) + A(2)

qD
(x, z, t)H1(t − z).

Substituting this expansion and (3.10) into (2.9) yields

qD(x, z, t = z + 0) =
∂qD

∂t
(x, z, t = z + 0) = 0. (3.11)

4. New Formulation of Potential Inversion Problem

By summarizing the above discussion, we reduce the potential inversion problem as

follows

∂

∂t

( ∂

∂t
−

∂

∂z

)

U −
∂2

∂t2

[

n
∑

k=1

akqU(sk)
]

+
vp

2
= 0, (4.1)
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∂

∂t

( ∂

∂t
+

∂

∂z

)

D −
∂2

∂t2

[

n
∑

k=1

akqD(sk)
]

+
vp

2
= 0, (4.2)

∂p

∂z
=

∂U

∂t
−

∂D

∂t
, (4.3)

( ∂2

∂t2
− s2

k

∂2

∂x2

)

qU(sk, x, z, t) =
∂2

∂x2
U(x, z, t), (4.4)

( ∂2

∂t2
− s2

k

∂2

∂x2

)

qD(sk, x, z, t) =
∂2

∂x2
D(x, z, t). (4.5)

The boundary conditions at z = 0 are

∂U

∂t
(x, 0, t) = −

∂D

∂t
(x, 0, t) =

1

2
h(x, t), p(x, 0, t) = 0, ∀t > 0 (4.6)

which are obtained from conditions (3) (4) and the definitions of
∂U

∂t
and

∂D

∂t
. As

the results of singularity analysis we get the conditions on the characteristic surface

t = z + 0

D(x, z, t = z + 0) = −

∫ z

0

v(x, y)

2
dy = g(x, z), (4.7)

∂D

∂t
(x, z, t = z + 0) =

1

2

∫ z

0

[ ∂2

∂x2
− v(x, y)

]

g(x, y)dy −
1

2
h(x, 0), (4.8)

qD(x, z, t = z + 0) =
∂qD

∂t
(x, z, t = z + 0) = 0, (4.9)

v(x, z) = −4
∂U

∂t
(x, z, t = z + 0). (4.10)

In order to limit the behavior of the upgoing wave U1 (and U) which is related to the

behavior of v(x, z), we should impose some conditions on t → ∞. For example all

upcoming waves U(x, z, t), U1(x, z, T ) and qU(x, z, t),
∂qU

∂t
(x, z, t) will tend to 0, which

consistent with sommerfeld radiation condition. For convenience in numerical solution

we transfer these conditions to sufficient large value T .

U(x, z, T ) =
∂U

∂t
(x, z, T ) = qU(x, z, T ) =

∂qU

∂t
(x, z, T ) = 0. (4.11)

The problem of (4.1)–(4.5) with conditions (4.6)–(4.11) is closed by giving appropriate

boundary conditions on the direction x.

The system of (4.1)–(4.5) is different from that proposed by Zhang and Song (1993)

[8]. The coupling term is treated more simple and more convenient to numerical im-

plementation.

If taking different values of n in (2.10),we can get different orders of approximate

one-way wave equations.For example,if taking n = 1 we get the so-called 15◦ approxi-

mate equations.And if taking n = 2 we get the so-called 45◦ approximate equations.

It is important to point out that the order of all above equations is no more than

two for all values of n. So it is very simple to discrete the equations and to do some
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theoretical analysis for the corresponding difference equations.On the other hand,the

forms of all equations are the same for all values of n,so it is possible for us to handle

them in a uniform manner.All of these features are valuable for practical computations.

5. Theorems of Stability

The potential inversion problem is an initial value problem in the direction z. In

multi-dimensional case it is ill-posed in the original formulation with the wave equa-

tion. In order to get rid of this difficulty we factorized the wave operator approximately

and split the wave equation into a coupled system of one-way wave equations. In this

section we give two theorems of energy estimates which show that the direct problems

of the above coupled system in the direction z are stable. Although it is very difficult

to prove the stability of inverse problem, our proof demonstrates that there are essen-

tial differences between the system of one-way wave equations and the original wave

equation.

For convenience we take n = 1 in (2.10). The system of one-way wave equations

(4.1)–(4.5) becomes

( ∂2

∂t∂z
−

∂2

∂t2
+

1

2

∂2

∂x2

)

U −
vp

2
= 0, (5.1)

(
∂2

∂t∂z
+

∂2

∂t2
−

1

2

∂2

∂x2

)

D +
vp

2
= 0, (5.2)

∂p

∂z
=

∂

∂t
(U − D). (5.3)

Denote

Ω1 = {(x, z, t), x ∈ R, z > 0, 0 < t < T}, and Ω = {(x, z, t), x ∈ R, t > z > 0}.

We consider the initial-boundary value problem of the above system in Ω1 with the

specified values of p,
∂U

∂t
,

∂D

∂t
at z = 0, the specified values of D,

∂D

∂t
at t = 0, and the

specified values of U,
∂U

∂t
at t = T . Then we have the following stability theorem:

Theorem 1. Suppose p, U,D are solutions of the above problem, and p,
∂U

∂t
,
∂U

∂x
,

∂D

∂t
,
∂D

∂x
are square integrable in x ∈ R, then the following energy estimate is valid.

∫ T

0
dt

∫

dx
{

p2 +
1

2

[(∂U

∂t

)2
+

(∂D

∂t
)2

]}

(x,Z, t)

≤
{

∫ T

0
dt

∫

dx
{

p2 +
1

2

[(∂U

∂t

)2
+

(∂D

∂t

)2]

}(x, 0, t) +
A

2

}

· exp

∫ Z

0

[

2 +
1

2
V (z)

]

dz.

where

V (z) =max{|v(x, z)|, x ∈ R},

A =

∫ Z

0
dz

∫

dx
[(∂U

∂t

)2
+

1

2

(∂U

∂x

)2]

(x, z, T )
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+

∫ Z

0
dz

∫

dx
[(∂D

∂t

)2
+

1

2

(∂D

∂x

)2]

(x, z, 0).

Proof. Multiplying equation (5.1) by 2
∂U

∂t
, integrating it with respect to x, taking

part integration for the third term, and noticing that
∂U

∂t
,
∂U

∂x
are square integrable in

x ∈ R, we get

∫

dx
[ ∂

∂z

(∂U

∂t

)2
−

∂

∂t

(∂U

∂t

)2
−

1

2

∂

∂t

(∂U

∂x

)2]

−

∫

vp
∂U

∂t
dx = 0. (5.4)

In the same manner we get the following equation from (5.2)

∫

dx
[( ∂

∂z

(∂D

∂t

)2
+

∂

∂t

(∂D

∂t

)2
+

1

2

∂

∂t

(∂D

∂x

)2]

+

∫

vp
∂D

∂t
dx = 0. (5.5)

Integrating the above two equations respectively in the domain z ∈ [0, Z], t ∈ [0, T ],

we obtain
∫ T

0
dt

∫

dx
(∂U

∂t

)2
(x,Z, t) +

∫ Z

0
dz

∫

dx
[(∂U

∂t

)2
+

1

2

(∂U

∂x

)2]

(x, z, 0)

=

∫ T

0
dt

∫

dx
(∂U

∂t

)2
(x, 0, t) +

∫ Z

0
dz

∫

dx
[(∂U

∂t

)2
+

1

2

(∂U

∂x

)2]

(x, z, T )

+

∫ Z

0
dz

∫ T

0
dt

∫

vp
∂U

∂t
dx, (5.6)

∫ T

0
dt

∫

dx
(∂D

∂t

)2
(x,Z, t) +

∫ Z

0
dz

∫

dx
[(∂D

∂t

)2
+

1

2

(∂D

∂x

)2]

(x, z, T )

=

∫ T

0
dt

∫

dx
(∂D

∂t

)2
(x, 0, t) +

∫ Z

0
dz

∫

dx
[(∂D

∂t

)2
+

1

2

(∂D

∂x

)2]

(x, z, 0)

−

∫ Z

0
dz

∫ T

0
dt

∫

vp
∂D

∂t
dx, (5.7)

Adding the above two equations we have

∫ T

0
dt

∫

dx
[(∂U

∂t

)2
+

(∂D

∂t
)2

]

(x,Z, t) +

∫ Z

0
dz

∫

dx
[(∂U

∂t

)2
+

1

2

(∂U

∂x

)2]

(x, z, 0)

+

∫ Z

0
dz

∫

dx
[(∂D

∂t

)2
+

1

2

(∂D

∂x

)2]

(x, z, T )

=

∫ T

0
dt

∫

dx
[(∂U

∂t

)2
+

(∂D

∂t

)2]

(x, 0, t) + A +

∫ Z

0
dz

∫ T

0
dt

∫

vp
(∂U

∂t
−

∂D

∂t

)

dx

≤

∫ T

0
dt

∫

dx
[(∂U

∂t

)2
+

(∂D

∂t

)2]

(x, 0, t) + A

+

∫ Z

0
dzV (z)

∫ T

0
dt

∫

dx
{

p2 +
1

2

[(∂U

∂t

)2
+

(∂D

∂t

)2]}

.

where

V (z) = max{|v(x, z)|, x ∈ R}
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A =

∫ Z

0
dz

∫

dx
[(∂U

∂T

)2

+
1

2

(∂U

∂x

)2]

(x, z, T ) +

∫ Z

0
dz

∫

dx
[(∂D

∂t

)2
+

1

2

(∂D

∂x

)2]

(x, z, 0).

So we have

∫ t

0
dt

∫

dx
[(∂D

∂t

)2
+

(∂D

∂t

)2]

(x,Z, t) ≤

∫ T

0
dt

∫

dx
[(∂U

∂t

)2
+

∂D

∂t

)2]

(x, 0, t) + A

+

∫ Z

0
dzV (z)

∫ T

0
dt

∫

dx
{

p2 +
1

2

[(∂U

∂t

)2
+

(∂D

∂t

)2]}

, (5.8)

On the other hand, Multiplying (5.3) by 2p yields

∂

∂z
(p2) = 2p

(∂U

∂t
−

∂D

∂t

)

.

Integrating it in the domain (x, z, t) ∈ {x ∈ R, z ∈ [0, Z], t ∈ [0, T ]}, we get

∫ T

0
dt

∫

p2(x,Z, t)dx =

∫ T

0
dt

∫

p2(x, 0, t)dx +

∫ Z

0
dz

∫ T

0
dt

∫

2p
(∂U

∂t
−

∂D

∂t

)

dx

≤

∫ T

0
dt

∫

p2(x, 0, t)dx

+ 2

∫ Z

0
dz

∫ T

0
dt

∫

dx
{

p2 +
1

2

[(∂U

∂t

)2
+

(∂D

∂t

)2]}

.

(5.9)

Denote that

F (Z) =

∫ t

0
dt

∫

dx
{

p2 +
1

2

[(∂U

∂t

)2
+

∂D

∂T

)2]}

.

Adding
1

2
(5.8) to (5.9) we get the following inequality

F (Z) ≤ F (0) +
A

2
+

∫ Z

0

[

2 +
1

2
V (z)

]

F (z)dz.

So we get the energy estimate

F (Z) ≤
[

F (0) +
A

2

]

· exp

∫ Z

0

[

2 +
1

2
V (z)

]

dz.

The theorem is proved.

Corresponding to the inverse problem (1.4)–(2.4), we consider the direct initial

boundary value problem of system (2.5)–(2.7) in Ω with the specified values of p,
∂U

∂t
,
∂D

∂t

at z = 0, the specified values of U,
∂U

∂t
at t = T , and the specified value of D at t = z+0.

In a similiar way we can prove the following theorem:
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Theorem 2. Suppose p, U,D are solutions of the above problem, and p,
∂U

∂t
,
∂U

∂x
,

∂D

∂t
,
∂D

∂x
are square integral in x ∈ R, then the following energy inequality is true.

∫ T

z

dt

∫

dx
{

p2 +
1

2

[(∂U

∂t

)2
+

(∂D

∂t

)2]}

(x,Z, t)

≤
{

∫ T

0
dt

∫

dx
{

p2 +
1

2

[(∂U

∂t

)2
+

(∂D

∂t

)2]}

(x, 0, t) +
B

2

}

· exp

∫ Z

0

[

2 +
1

2
V (z)

]

dz.

where

V (z) = max{|v(x, z)|, x ∈ R},

B =

∫ Z

0
dz

∫

dx
[(∂U

∂t

)2
+

1

2

(∂U

∂x

)2]

(x, z, T )

+

∫ Z

0
dz

∫

dx
(∂D

∂x

)2
(x, z, z).

In contrast with the ill-posed direct initial value problem in the direction z for the

original two-dimensional wave equation, the above theorems proved that the corre-

sponding direct initial value problem in the direction z for the system of one-way wave

equations with sufficient regular v(x, z) is well-posed. But the well-posedness of the

potential inversion problem for the system remains to be proven.
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