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Abstract

In this paper we prove the solution of explicit difference scheme for a semilinear
parabolic equation converges to the solution of difference scheme for the relevant
nonlinear stationary problem as t → ∞. For nonlinear parabolic problem, we ob-
tain the long time asymptotic behavior of its discrete solution which is analogous to
that of its continuous solution. For simplicity, we discuss one-dimensional problem.
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1. Introduction

Let Ω = (0, l), f(x) ∈ H1(Ω), u0(x) ∈ H2(Ω) ∩H1
0 (Ω), φ(u) = u3, we consider the

following initial-boundary value problem:




∂u

∂t
=

∂2u

∂x2
− φ(u) + f(x) in Ω×R+

u(0, t) = u(l, t) = 0
u(x, 0) = u0(x), x ∈ Ω.

(1.1)

By the usual approach[1−4] we can get the global existence of the solution of (1.1),
furthermore, the solution of (1.1) converges to the solution of the following stationary
problem (1.2) as t →∞.





∂2u

∂x2
− φ(u) + f(x) = 0 in Ω

u(0, t) = u(l, t) = 0.
(1.2)

∗ Received July 5, 1996.
1)The Project is supported by China Postdoctoral Science Foundation and the Science Foundation

of Academy of Engineering Physics of China



572 H. FENG AND L.J. SHEN

In [6], [7], the authors considered the explicit scheme for (1.1) as f(x) = 0 and only
the estimate in L2 for discrete solution was obtained.

In this paper we prove that the solution of explicit difference scheme for (1.1)
converges to the solution of difference scheme for (1.2) as t →∞.

2. Finite Difference Scheme

The domain Ω is divided into small segments by points xj = jh (j = 0, 1, · · · , J),
where Jh = l, J is an integer and h is the stepsize. Let ∆t be time stepsize. For any
function w(x, t) we denote the values w(jh, n∆t) by wn

j (0 ≤ j ≤ J , n = 0, 1, 2, · · ·)
and denote the discrete function wn

j (0 ≤ j ≤ J , n = 0, 1, 2, · · ·) by wn
h . We introduce

the following notations: ∆+wn
j = wn

j+1 − wn
j (0 ≤ j ≤ J − 1, n = 0, 1, 2, · · ·) and

∆−wn
j = wn

j − wn
j−1 (1 ≤ j ≤ J, n = 0, 1, 2, · · ·). We denote the discrete function

∆+wn
j

h
(0 ≤ j ≤ J − 1, n = 0, 1, 2, · · ·) by δwn

h . Similarly, the discrete function
∆2

+wn
j

h2

(0 ≤ j ≤ J − 2, n = 0, 1, 2, · · ·) is denoted by δ2wn
h .

Denote the scalar product of two discrete functions un
h and vm

h by (un
h, vm

h ) =
J∑

j=0

un
j vm

j h.

For 2 ≥ k ≥ 0, define discrete norms ‖δkwn
h‖p =

( J−k∑

j=0

∣∣∣
∆k

+wn
j

hk

∣∣∣
p
h
)1

p , +∞ > p > 1

and ‖δkwn
h‖∞ = max

j=0,1,···,J−k

∣∣∣
∆k

+wn
j

hk

∣∣∣.
The difference equation associate with (1.1) is:

un+1
j − un

j

∆t
=

∆+∆−un
j

h2
− φ(un

j ) + fj (2.1)

for j = 1, · · · , J − 1 and n = 1, 2, · · · · · ·, where fj = f(xj), j = 1, · · · , J − 1,
The boundary condition of (2.1) is of the form un

0 = un
J = 0.

The discrete form corresponding to (1.2) is:

∆+∆−u∗j
h2

− φ(u∗j ) + fj = 0, 0 < j < J (2.2)

u∗0 = u∗J = 0

Let the discrete function un
h and u∗h be the solution of difference equation (2.1) and

(2.2) respectively. For n = 0, 1, 2, · · ·, the discrete function vn
h = {vn

j | j = 0, 1, · · · , J}
is defined as vn

j = un
j − u∗j (j = 0, 1, · · · , J). Then vn

h satisfies

vn+1
j − vn

j

∆t
=

∆+∆−vn
j

h2
− [(un

j )3 − (u∗j )
3] (2.3)

for j = 1, · · · , J − 1 and n = 0, 1, 2, · · · Obviously, vn
0 = vn

J = 0, n = 0, 1, 2, · · ·
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3. Preliminary Results

Lemma 1. For any discrete function uh = {uj | j = 0, 1, · · · , J} satisfying the
homogeneous discrete boundary condition u0 = uJ = 0, we have ‖uh‖2 ≤ k1‖δuh‖2,
‖δuh‖2 ≤ k1‖δ2uh‖2, where k1 is a constant independent of uh and h.

Proof. The first inequality is from [5], since

J−1∑

j=0

(∆+uj)
2 = −

J−1∑

j=1

uj∆+∆−uj ,

we can get the second inequality.
By [5], we have the following Lemma 2:
Lemma 2. For any discrete function uh = {uj | j = 0, 1, · · · , J}, there is

‖δkuh‖∞ ≤ k2‖uh‖
1−2k+1

2n
2 (‖δnuh‖2 + ‖uh‖2)

2k+1
2n , where 0 ≤ k < n and k2 is a constant

independent of uh and h.
Lemma 3. Let the discrete function u∗h = {u∗j | j = 0, 1, · · ·J} be the solution of

the difference equation (2.2), there are

‖δ2u∗h‖2 ≤ k3,

‖δu∗h‖∞ ≤ k4, ‖u∗h‖∞ ≤ k5,

where k3, k4, k5 are constants independent of h.
Proof. From (2.2) it follows that

J−1∑

j=1

(∆+∆−u∗j
h2

)2
h−

J−1∑

j=1

∆+∆−u∗j
h2

(u∗j )
3h +

J−1∑

j=1

fj

∆+∆−u∗j
h2

h = 0.

Since
J−1∑

j=1

(u∗j )
3 ∆+∆−u∗j

h2
h = −

J−1∑

j=1

[(u∗j+1)
3 − (uj)

3]
u∗j+1 − u∗j

h2
h

= −
J−1∑

j=0

(u∗j+1 − u∗j )
2 (u∗j+1)

2 + u∗j+1u
∗
j + (u∗j )

2

h2
h ≤ 0,

we have
J−1∑

j=1

∆+∆−u∗j
h2

2

h ≤
J−1∑

j=1

f2
j h (3.1)

By (3.1) and the previous Lemmas, we complete the proof.
Lemma 4. For any discrete function uh = {uj | j = 0, 1, · · · , J} satisfying the

homogeneous discrete boundary condition u0 = uJ = 0, we have

‖uh‖2
∞ ≤ 4

h
‖uh‖2

2.

Proof. By [5],
‖uh‖2

∞ = max
j
| uj |2≤ 2‖uh‖2‖δuh‖2,
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it is obvious that
‖δuh‖2

2 ≤
4
h2
‖uh‖2

2,

which implies the lemma.
Lemma 5. Let the discrete function un

h and u∗h be the solution of difference equation
(2.1) and (2.2) respectively. For given ε ∈ (0, 1), ε0 ∈ (0, 1), if ∆t, h satisfy

2(1 + ε)∆t

h2
≤ 1− ε0, (3.2)

there exist positive constants k6 and α independent of h, n, ∆t such that ‖un
h − u∗h‖2

2 ≤
k6e

−αn∆t.
Proof. Similar to [6] and [7].
Lemma 6. Let the discrete function un

h be the solution of difference equation (2.1).
If ∆t, h satisfy (3.2), there exists constant k7 > 0 independent of h, n, ∆t such that
‖un

h‖∞ ≤ k7.
Proof. Define the discrete function wn

h , n = 0, 1, 2, · · · such that

un
j = wn

j + axj(l − xj),

where a ≥ ‖f‖∞
2

. It is evident that

wn+1
j − wn

j

∆t
=

∆+∆−wn
j

h2
− 2a− (un

j )2(wn
j + axj(l − xj)) + fj ,

this inequality is equivalent to

wn+1
j =

∆t

h2
(wn

j+1 + wn
j−1) +

(
1− 2∆t

h2

)
wn

j − 2a∆t + fj∆t− (un
j )2(wn

j + axj(l − xj))∆t

=
∆t

h2
(wn

j+1 + wn
j−1) +

(
1− 2∆t

h2
− (un

j )2∆t
)
wn

j

− 2a∆t + fj∆t− (un
j )2axj(l − xj)∆t. (3.3)

By Lemma 4,

(un
j )2 ≤ 2

(4
h
‖vn

h‖2
2 + k2

5

)
,

then if ∆t, h satisfy (3.2), from Lemma 5,

1− 2∆t

h2
− (un

j )2∆t ≥ 0. (3.4)

It follows from (3.3) and (3.4) that

wn+1
j ≤ (1− (un

j )2∆t)max{wn
j−1, w

n
j , wn

j+1}. (3.5)

The inequality (3.5) yields

max
1≤j≤J−1

wn+1
j ≤





max
1≤j≤J−1

wn
j , when max

1≤j≤J−1
wn

j ≥ 0,

0, when max
1≤j≤J−1

wn
j < 0,

. (3.6)
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By (3.6), there is a constant T1 independent ∆t, h, n such that

max
1≤j≤J−1

wn
j ≤ T1. (3.7)

Similarly, there is a constant T2 independent ∆t, h, n such that

min
1≤j≤J−1

wn
j ≥ T2, (3.8)

the Lemma follows from (3.7) and (3,8).
A simple computation shows that

Lemma 7. Suppose the sequence {an} satisfies

an+1 ≤ e−c1∆tan + c2e
−c3(n+1)∆t∆t,

where an ≥ 0,∀n ∈ N, ci > 0, i = 1, 2, 3, then there exist c4 > 0, σ > 0 such that
an ≤ c4e

−σn∆t.

4. Asymptotic Behavior of Explicit Difference Solution

In this section, we intend to study the asymptotic behavior of solution of (2.1).
By difference equation (2.3), we have

‖δvn+1
h ‖2

2−‖δvn
h‖2

2+2∆t‖δ2vn
h‖2

2 = 2∆t
J−1∑

j=1

(
(un

j )3−(u8
j )

3
)∆+∆−vn

j

h2
h+‖δ(vn+1

h −vn
h)‖2

2

From Lemma 1 it follows that there exists θ > 0 such that

‖δvn+1
h ‖2

2 − ‖δvn
h‖2

2 +
(
2− ε + ε0

2(1 + ε)

)
∆t‖δ2vn

h‖2
2 + θ∆t‖δvn

h‖2
2

≤ 2∆t
J−1∑

j=1

((un
j )3 − (u∗j )

3)
∆+∆−vn

j

h2
h + ‖δ(vn+1

h − vn
h)‖2

2

Notice that ‖δ(vn+1
h − vn

h)‖2
2 ≤

4∆t2

h2

∥∥∥vn+1
h − vn

h

∆t

∥∥∥
2

2
, if ∆t, h satisfy (3.2), we have

‖δvn+1
h ‖2

2 − ‖δvn
h‖2

2 +
(
2− ε + ε0

2(1 + ε)

)
∆t‖δ2vn

h‖2
2 + θ∆t‖δvn

h‖2
2

≤ 2∆t
J−1∑

j=1

((un
j )3 − (u∗j )

3)
∆+∆−vn

j

h2
h +

4∆t2

h2
[‖δ2vn

h‖2
2

+
J−1∑

j=1

(vn
j )2

[
H(un

j , u∗j )]
2h− 2

J−1∑

j=1

((un
j )3 − (u∗j )

3)
∆+∆−vn

j

h2
h
]

≤ 2∆t
J−1∑

j=1

((un
j )3 − (u∗j )

3)
∆+∆−vn

j

h2
h +

2(1− ε0)
1 + ε

∆t[‖δ2vn
h‖2

2

+
J−1∑

j=1

(vn
j )2

[
H(un

j , u∗j )]
2
h− 2

J−1∑

j=1

((un
j )3 − (u∗j )

3)
∆+∆−vn

j

h2
h
]
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≤
(
2− ε + ε0

1 + ε

)
∆t‖δ2vn

h‖2
2 + C∆t

J−1∑

j=1

(vn
j )2[H(un

j , u∗j )]
2h. (4.1)

By Lemma 3 and Lemma 6, H(un
j , u∗j ) ≤ 2‖un

h‖2∞+2‖u∗h‖2∞ ≤ 2(k2
7 +k2

5), then by (4.1),
there exists constant µ independent of h, n, ∆t such that

‖δvn+1
h ‖2

2 − ‖δvn
h‖2

2 +
ε + ε0

2(1 + ε)
∆t‖δ2vn

h‖2
2 + θ∆t‖δvn

h‖2
2 ≤ µ∆t‖vn

h‖2
2. (4.2)

From (4.2) and Lemma 5, there is constant ρ independent of h, n, ∆t such that

‖δvn+1
h ‖2

2 − ‖δvn
h‖2

2 + θ∆t‖δvn
h‖2

2 ≤ ρ∆te−αn∆t. (4.3)

Therefore by Lemma 7, we have
Theorem 1. Let the discrete function un

h and u∗h be the solution of difference
equation (2.1) and (2.2) respectively. If ∆t, h satisfy (3.2), there exist constants M1 >
0, β > 0 independent of h, n, ∆t such that ‖δ(un

h − u∗h)‖2
2 ≤ M1e

−βn∆t.
By (4.2), it suffices to show that from Theorem 1:
Theorem 2. Let the discrete function un

h and u∗h be the solution of difference
equation (2.1) and (2.2) respectively. If ∆t, h satisfy (3.2), for any positive integer s,
there exist constants M2 > 0, λ > 0 independent of h, n, ∆t such that

s∑

i=0

‖δ2(un+i
h − u∗h)‖2

2∆t ≤ M2e
−λn∆t.

Remark. Let u∗ be the solution of (1.2), φh = {φj | j = 0, 1, · · · , J} be the discrete
function satisfies φj = u∗(xj), j = 0.1, · · · , J . By the well-known energy method, there
is C > 0 such that ‖δ(u∗h − φh)‖2 ≤ Ch2.
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