# LONG TIME ASYMPTOTIC BEHAVIOR OF SOLUTION <br> OF DIFFERENCE SCHEME FOR A SEMILINEAR PARABOLIC EQUATION (II)*1) 

Hui Feng<br>(Shenzhen University Normal College, Shenzhen 518060, China; Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O.Box 8009, Beijing 100088, China )<br>Long-jun Shen<br>(Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O.Box 8009, Beijing 100088, China)


#### Abstract

In this paper we prove the solution of explicit difference scheme for a semilinear parabolic equation converges to the solution of difference scheme for the relevant nonlinear stationary problem as $t \rightarrow \infty$. For nonlinear parabolic problem, we obtain the long time asymptotic behavior of its discrete solution which is analogous to that of its continuous solution. For simplicity, we discuss one-dimensional problem.


Key words: Asymptotic behavior, Explicit difference scheme, Semilinear parabolic equation.

## 1. Introduction

Let $\Omega=(0, l), f(x) \in H^{1}(\Omega), u_{0}(x) \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \phi(u)=u^{3}$, we consider the following initial-boundary value problem:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-\phi(u)+f(x) \quad \text { in } \quad \Omega \times R_{+}  \tag{1.1}\\
u(0, t)=u(l, t)=0 \\
u(x, 0)=u_{0}(x), \quad x \in \Omega
\end{array}\right.
$$

By the usual approach ${ }^{[1-4]}$ we can get the global existence of the solution of (1.1), furthermore, the solution of (1.1) converges to the solution of the following stationary problem (1.2) as $t \rightarrow \infty$.

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial x^{2}}-\phi(u)+f(x)=0 \quad \text { in } \quad \Omega  \tag{1.2}\\
u(0, t)=u(l, t)=0
\end{array}\right.
$$

[^0]In [6], [7], the authors considered the explicit scheme for (1.1) as $f(x)=0$ and only the estimate in $L_{2}$ for discrete solution was obtained.

In this paper we prove that the solution of explicit difference scheme for (1.1) converges to the solution of difference scheme for (1.2) as $t \rightarrow \infty$.

## 2. Finite Difference Scheme

The domain $\Omega$ is divided into small segments by points $x_{j}=j h(j=0,1, \cdots, J)$, where $J h=l, J$ is an integer and $h$ is the stepsize. Let $\Delta t$ be time stepsize. For any function $w(x, t)$ we denote the values $w(j h, n \Delta t)$ by $w_{j}^{n}(0 \leq j \leq J, n=0,1,2, \cdots)$ and denote the discrete function $w_{j}^{n}(0 \leq j \leq J, n=0,1,2, \cdots)$ by $w_{h}^{n}$. We introduce the following notations: $\Delta_{+} w_{j}^{n}=w_{j+1}^{n}-w_{j}^{n}(0 \leq j \leq J-1, n=0,1,2, \cdots)$ and $\Delta_{-} w_{j}^{n}=w_{j}^{n}-w_{j-1}^{n}(1 \leq j \leq J, n=0,1,2, \cdots)$. We denote the discrete function $\frac{\Delta_{+} w_{j}^{n}}{h}(0 \leq j \leq J-1, n=0,1,2, \cdots)$ by $\delta w_{h}^{n}$. Similarly, the discrete function $\frac{\Delta_{+}^{2} w_{j}^{n}}{h^{2}}$ $(0 \leq j \leq J-2, n=0,1,2, \cdots)$ is denoted by $\delta^{2} w_{h}^{n}$.

Denote the scalar product of two discrete functions $u_{h}^{n}$ and $v_{h}^{m}$ by $\left(u_{h}^{n}, v_{h}^{m}\right)=$ $\sum_{j=0}^{J} u_{j}^{n} v_{j}^{m} h$.

For $2 \geq k \geq 0$, define discrete norms $\left\|\delta^{k} w_{h}^{n}\right\|_{p}=\left(\sum_{j=0}^{J-k}\left|\frac{\Delta_{+}^{k} w_{j}^{n}}{h^{k}}\right|^{p} h\right)^{\frac{1}{p}},+\infty>p>1$ and $\left\|\delta^{k} w_{h}^{n}\right\|_{\infty}=\max _{j=0,1, \cdots, J-k}\left|\frac{\Delta_{+}^{k} w_{j}^{n}}{h^{k}}\right|$.

The difference equation associate with (1.1) is:

$$
\begin{equation*}
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}=\frac{\Delta_{+} \Delta_{-} u_{j}^{n}}{h^{2}}-\phi\left(u_{j}^{n}\right)+f_{j} \tag{2.1}
\end{equation*}
$$

for $j=1, \cdots, J-1$ and $n=1,2, \cdots \cdots$, where $f_{j}=f\left(x_{j}\right), j=1, \cdots, J-1$,
The boundary condition of (2.1) is of the form $u_{0}^{n}=u_{J}^{n}=0$.
The discrete form corresponding to (1.2) is:

$$
\begin{align*}
& \frac{\Delta_{+} \Delta_{-} u_{j}^{*}}{h^{2}}-\phi\left(u_{j}^{*}\right)+f_{j}=0, \quad 0<j<J  \tag{2.2}\\
& u_{0}^{*}=u_{J}^{*}=0
\end{align*}
$$

Let the discrete function $u_{h}^{n}$ and $u_{h}^{*}$ be the solution of difference equation (2.1) and (2.2) respectively. For $n=0,1,2, \cdots$, the discrete function $v_{h}^{n}=\left\{v_{j}^{n} \mid j=0,1, \cdots, J\right\}$ is defined as $v_{j}^{n}=u_{j}^{n}-u_{j}^{*}(j=0,1, \cdots, J)$. Then $v_{h}^{n}$ satisfies

$$
\begin{equation*}
\frac{v_{j}^{n+1}-v_{j}^{n}}{\Delta t}=\frac{\Delta_{+} \Delta_{-} v_{j}^{n}}{h^{2}}-\left[\left(u_{j}^{n}\right)^{3}-\left(u_{j}^{*}\right)^{3}\right] \tag{2.3}
\end{equation*}
$$

for $j=1, \cdots, J-1$ and $n=0,1,2, \cdots$ Obviously, $v_{0}^{n}=v_{J}^{n}=0, n=0,1,2, \cdots$

## 3. Preliminary Results

Lemma 1. For any discrete function $u_{h}=\left\{u_{j} \mid j=0,1, \cdots, J\right\}$ satisfying the homogeneous discrete boundary condition $u_{0}=u_{J}=0$, we have $\left\|u_{h}\right\|_{2} \leq k_{1}\left\|\delta u_{h}\right\|_{2}$, $\left\|\delta u_{h}\right\|_{2} \leq k_{1}\left\|\delta^{2} u_{h}\right\|_{2}$, where $k_{1}$ is a constant independent of $u_{h}$ and $h$.

Proof. The first inequality is from [5], since

$$
\sum_{j=0}^{J-1}\left(\Delta_{+} u_{j}\right)^{2}=-\sum_{j=1}^{J-1} u_{j} \Delta_{+} \Delta_{-} u_{j}
$$

we can get the second inequality.
By [5], we have the following Lemma 2:
Lemma 2. For any discrete function $u_{h}=\left\{u_{j} \mid j=0,1, \cdots, J\right\}$, there is $\left\|\delta^{k} u_{h}\right\|_{\infty} \leq k_{2}\left\|u_{h}\right\|_{2}^{1-\frac{2 k+1}{2 n}}\left(\left\|\delta^{n} u_{h}\right\|_{2}+\left\|u_{h}\right\|_{2}\right)^{\frac{2 k+1}{2 n}}$, where $0 \leq k<n$ and $k_{2}$ is a constant independent of $u_{h}$ and $h$.

Lemma 3. Let the discrete function $u_{h}^{*}=\left\{u_{j}^{*} \mid j=0,1, \cdots J\right\}$ be the solution of the difference equation (2.2), there are

$$
\begin{aligned}
& \left\|\delta^{2} u_{h}^{*}\right\|_{2} \leq k_{3} \\
& \left\|\delta u_{h}^{*}\right\|_{\infty} \leq k_{4}, \quad\left\|u_{h}^{*}\right\|_{\infty} \leq k_{5}
\end{aligned}
$$

where $k_{3}, k_{4}, k_{5}$ are constants independent of $h$.
Proof. From (2.2) it follows that

$$
\sum_{j=1}^{J-1}\left(\frac{\Delta_{+} \Delta_{-} u_{j}^{*}}{h^{2}}\right)^{2} h-\sum_{j=1}^{J-1} \frac{\Delta_{+} \Delta_{-} u_{j}^{*}}{h^{2}}\left(u_{j}^{*}\right)^{3} h+\sum_{j=1}^{J-1} f_{j} \frac{\Delta_{+} \Delta_{-} u_{j}^{*}}{h^{2}} h=0
$$

Since

$$
\begin{aligned}
\sum_{j=1}^{J-1}\left(u_{j}^{*}\right)^{3} \frac{\Delta_{+} \Delta_{-} u_{j}^{*}}{h^{2}} h & =-\sum_{j=1}^{J-1}\left[\left(u_{j+1}^{*}\right)^{3}-\left(u_{j}\right)^{3}\right] \frac{u_{j+1}^{*}-u_{j}^{*}}{h^{2}} h \\
& =-\sum_{j=0}^{J-1}\left(u_{j+1}^{*}-u_{j}^{*}\right)^{2} \frac{\left(u_{j+1}^{*}\right)^{2}+u_{j+1}^{*} u_{j}^{*}+\left(u_{j}^{*}\right)^{2}}{h^{2}} h \leq 0
\end{aligned}
$$

we have

$$
\begin{equation*}
\sum_{j=1}^{J-1} \frac{\Delta_{+} \Delta_{-} u_{j}^{* 2}}{h^{2}} h \leq \sum_{j=1}^{J-1} f_{j}^{2} h \tag{3.1}
\end{equation*}
$$

By (3.1) and the previous Lemmas, we complete the proof.
Lemma 4. For any discrete function $u_{h}=\left\{u_{j} \mid j=0,1, \cdots, J\right\}$ satisfying the homogeneous discrete boundary condition $u_{0}=u_{J}=0$, we have

$$
\left\|u_{h}\right\|_{\infty}^{2} \leq \frac{4}{h}\left\|u_{h}\right\|_{2}^{2}
$$

Proof. By [5],

$$
\left\|u_{h}\right\|_{\infty}^{2}=\max _{j}\left|u_{j}\right|^{2} \leq 2\left\|u_{h}\right\|_{2}\left\|\delta u_{h}\right\|_{2},
$$

it is obvious that

$$
\left\|\delta u_{h}\right\|_{2}^{2} \leq \frac{4}{h^{2}}\left\|u_{h}\right\|_{2}^{2}
$$

which implies the lemma.
Lemma 5. Let the discrete function $u_{h}^{n}$ and $u_{h}^{*}$ be the solution of difference equation (2.1) and (2.2) respectively. For given $\epsilon \in(0,1), \epsilon_{0} \in(0,1)$, if $\Delta t$, $h$ satisfy

$$
\begin{equation*}
\frac{2(1+\epsilon) \Delta t}{h^{2}} \leq 1-\epsilon_{0} \tag{3.2}
\end{equation*}
$$

there exist positive constants $k_{6}$ and $\alpha$ independent of $h, n, \Delta t$ such that $\left\|u_{h}^{n}-u_{h}^{*}\right\|_{2}^{2} \leq$ $k_{6} e^{-\alpha n \Delta t}$.

Proof. Similar to [6] and [7].
Lemma 6. Let the discrete function $u_{h}^{n}$ be the solution of difference equation (2.1). If $\Delta t, h$ satisfy (3.2), there exists constant $k_{7}>0$ independent of $h, n, \Delta t$ such that $\left\|u_{h}^{n}\right\|_{\infty} \leq k_{7}$.

Proof. Define the discrete function $w_{h}^{n}, n=0,1,2, \cdots$ such that

$$
u_{j}^{n}=w_{j}^{n}+a x_{j}\left(l-x_{j}\right),
$$

where $a \geq \frac{\|f\|_{\infty}}{2}$. It is evident that

$$
\frac{w_{j}^{n+1}-w_{j}^{n}}{\Delta t}=\frac{\Delta_{+} \Delta_{-} w_{j}^{n}}{h^{2}}-2 a-\left(u_{j}^{n}\right)^{2}\left(w_{j}^{n}+a x_{j}\left(l-x_{j}\right)\right)+f_{j},
$$

this inequality is equivalent to

$$
\begin{align*}
w_{j}^{n+1}= & \frac{\Delta t}{h^{2}}\left(w_{j+1}^{n}+w_{j-1}^{n}\right)+\left(1-\frac{2 \Delta t}{h^{2}}\right) w_{j}^{n}-2 a \Delta t+f_{j} \Delta t-\left(u_{j}^{n}\right)^{2}\left(w_{j}^{n}+a x_{j}\left(l-x_{j}\right)\right) \Delta t \\
= & \frac{\Delta t}{h^{2}}\left(w_{j+1}^{n}+w_{j-1}^{n}\right)+\left(1-\frac{2 \Delta t}{h^{2}}-\left(u_{j}^{n}\right)^{2} \Delta t\right) w_{j}^{n} \\
& -2 a \Delta t+f_{j} \Delta t-\left(u_{j}^{n}\right)^{2} a x_{j}\left(l-x_{j}\right) \Delta t . \tag{3.3}
\end{align*}
$$

By Lemma 4,

$$
\left(u_{j}^{n}\right)^{2} \leq 2\left(\frac{4}{h}\left\|v_{h}^{n}\right\|_{2}^{2}+k_{5}^{2}\right)
$$

then if $\Delta t, h$ satisfy (3.2), from Lemma 5 ,

$$
\begin{equation*}
1-\frac{2 \Delta t}{h^{2}}-\left(u_{j}^{n}\right)^{2} \Delta t \geq 0 \tag{3.4}
\end{equation*}
$$

It follows from (3.3) and (3.4) that

$$
\begin{equation*}
w_{j}^{n+1} \leq\left(1-\left(u_{j}^{n}\right)^{2} \Delta t\right) \max \left\{w_{j-1}^{n}, w_{j}^{n}, w_{j+1}^{n}\right\} . \tag{3.5}
\end{equation*}
$$

The inequality (3.5) yields

$$
\max _{1 \leq j \leq J-1} w_{j}^{n+1} \leq\left\{\begin{array}{ll}
\max _{1 \leq j \leq J-1} w_{j}^{n}, & \text { when } \max _{1 \leq j \leq J-1} w_{j}^{n} \geq 0  \tag{3.6}\\
0, & \text { when } \max _{1 \leq j \leq J-1} w_{j}^{n}<0
\end{array} .\right.
$$

By (3.6), there is a constant $T_{1}$ independent $\Delta t, h, n$ such that

$$
\begin{equation*}
\max _{1 \leq j \leq J-1} w_{j}^{n} \leq T_{1} \tag{3.7}
\end{equation*}
$$

Similarly, there is a constant $T_{2}$ independent $\Delta t, h, n$ such that

$$
\begin{equation*}
\min _{1 \leq j \leq J-1} w_{j}^{n} \geq T_{2}, \tag{3.8}
\end{equation*}
$$

the Lemma follows from (3.7) and $(3,8)$.
A simple computation shows that
Lemma 7. Suppose the sequence $\left\{a_{n}\right\}$ satisfies

$$
a_{n+1} \leq e^{-c_{1} \Delta t} a_{n}+c_{2} e^{-c_{3}(n+1) \Delta t} \Delta t,
$$

where $a_{n} \geq 0, \forall n \in N, c_{i}>0, i=1,2,3$, then there exist $c_{4}>0, \sigma>0$ such that $a_{n} \leq c_{4} e^{-\sigma n \Delta t}$.

## 4. Asymptotic Behavior of Explicit Difference Solution

In this section, we intend to study the asymptotic behavior of solution of (2.1). By difference equation (2.3), we have

$$
\left\|\delta v_{h}^{n+1}\right\|_{2}^{2}-\left\|\delta v_{h}^{n}\right\|_{2}^{2}+2 \Delta t\left\|\delta^{2} v_{h}^{n}\right\|_{2}^{2}=2 \Delta t \sum_{j=1}^{J-1}\left(\left(u_{j}^{n}\right)^{3}-\left(u_{j}^{8}\right)^{3}\right) \frac{\Delta_{+} \Delta_{-} v_{j}^{n}}{h^{2}} h+\left\|\delta\left(v_{h}^{n+1}-v_{h}^{n}\right)\right\|_{2}^{2}
$$

From Lemma 1 it follows that there exists $\theta>0$ such that

$$
\begin{aligned}
\left\|\delta v_{h}^{n+1}\right\|_{2}^{2} & -\left\|\delta v_{h}^{n}\right\|_{2}^{2}+\left(2-\frac{\epsilon+\epsilon_{0}}{2(1+\epsilon)}\right) \Delta t\left\|\delta^{2} v_{h}^{n}\right\|_{2}^{2}+\theta \Delta t\left\|\delta v_{h}^{n}\right\|_{2}^{2} \\
& \leq 2 \Delta t \sum_{j=1}^{J-1}\left(\left(u_{j}^{n}\right)^{3}-\left(u_{j}^{*}\right)^{3}\right) \frac{\Delta_{+} \Delta_{-} v_{j}^{n}}{h^{2}} h+\left\|\delta\left(v_{h}^{n+1}-v_{h}^{n}\right)\right\|_{2}^{2}
\end{aligned}
$$

Notice that $\left\|\delta\left(v_{h}^{n+1}-v_{h}^{n}\right)\right\|_{2}^{2} \leq \frac{4 \Delta t^{2}}{h^{2}}\left\|\frac{v_{h}^{n+1}-v_{h}^{n}}{\Delta t}\right\|_{2}^{2}$, if $\Delta t, h$ satisfy (3.2), we have

$$
\begin{aligned}
\left\|\delta v_{h}^{n+1}\right\|_{2}^{2}- & \left\|\delta v_{h}^{n}\right\|_{2}^{2}+\left(2-\frac{\epsilon+\epsilon_{0}}{2(1+\epsilon)}\right) \Delta t\left\|\delta^{2} v_{h}^{n}\right\|_{2}^{2}+\theta \Delta t\left\|\delta v_{h}^{n}\right\|_{2}^{2} \\
\leq & 2 \Delta t \sum_{j=1}^{J-1}\left(\left(u_{j}^{n}\right)^{3}-\left(u_{j}^{*}\right)^{3}\right) \frac{\Delta_{+} \Delta_{-} v_{j}^{n}}{h^{2}} h+\frac{4 \Delta t^{2}}{h^{2}}\left[\left\|\delta^{2} v_{h}^{n}\right\|_{2}^{2}\right. \\
& \left.+\sum_{j=1}^{J-1}\left(v_{j}^{n}\right)^{2}\left[H\left(u_{j}^{n}, u_{j}^{*}\right)\right]^{2} h-2 \sum_{j=1}^{J-1}\left(\left(u_{j}^{n}\right)^{3}-\left(u_{j}^{*}\right)^{3}\right) \frac{\Delta_{+} \Delta_{-} v_{j}^{n}}{h^{2}} h\right] \\
\leq & 2 \Delta t \sum_{j=1}^{J-1}\left(\left(u_{j}^{n}\right)^{3}-\left(u_{j}^{*}\right)^{3}\right) \frac{\Delta_{+} \Delta_{-} v_{j}^{n}}{h^{2}} h+\frac{2\left(1-\epsilon_{0}\right)}{1+\epsilon} \Delta t\left[\left\|\delta^{2} v_{h}^{n}\right\|_{2}^{2}\right. \\
& \left.+\sum_{j=1}^{J-1}\left(v_{j}^{n}\right)^{2}\left[H\left(u_{j}^{n}, u_{j}^{*}\right)\right]^{2} h-2 \sum_{j=1}^{J-1}\left(\left(u_{j}^{n}\right)^{3}-\left(u_{j}^{*}\right)^{3}\right) \frac{\Delta_{+} \Delta_{-} v_{j}^{n}}{h^{2}} h\right]
\end{aligned}
$$

$$
\begin{equation*}
\leq\left(2-\frac{\epsilon+\epsilon_{0}}{1+\epsilon}\right) \Delta t\left\|\delta^{2} v_{h}^{n}\right\|_{2}^{2}+C \Delta t \sum_{j=1}^{J-1}\left(v_{j}^{n}\right)^{2}\left[H\left(u_{j}^{n}, u_{j}^{*}\right)\right]^{2} h \tag{4.1}
\end{equation*}
$$

By Lemma 3 and Lemma 6, $H\left(u_{j}^{n}, u_{j}^{*}\right) \leq 2\left\|u_{h}^{n}\right\|_{\infty}^{2}+2\left\|u_{h}^{*}\right\|_{\infty}^{2} \leq 2\left(k_{7}^{2}+k_{5}^{2}\right)$, then by (4.1), there exists constant $\mu$ independent of $h, n, \Delta t$ such that

$$
\begin{equation*}
\left\|\delta v_{h}^{n+1}\right\|_{2}^{2}-\left\|\delta v_{h}^{n}\right\|_{2}^{2}+\frac{\epsilon+\epsilon_{0}}{2(1+\epsilon)} \Delta t\left\|\delta^{2} v_{h}^{n}\right\|_{2}^{2}+\theta \Delta t\left\|\delta v_{h}^{n}\right\|_{2}^{2} \leq \mu \Delta t\left\|v_{h}^{n}\right\|_{2}^{2} \tag{4.2}
\end{equation*}
$$

From (4.2) and Lemma 5, there is constant $\rho$ independent of $h, n, \Delta t$ such that

$$
\begin{equation*}
\left\|\delta v_{h}^{n+1}\right\|_{2}^{2}-\left\|\delta v_{h}^{n}\right\|_{2}^{2}+\theta \Delta t\left\|\delta v_{h}^{n}\right\|_{2}^{2} \leq \rho \Delta t e^{-\alpha n \Delta t} \tag{4.3}
\end{equation*}
$$

Therefore by Lemma 7, we have
Theorem 1. Let the discrete function $u_{h}^{n}$ and $u_{h}^{*}$ be the solution of difference equation (2.1) and (2.2) respectively. If $\Delta t, h$ satisfy (3.2), there exist constants $M_{1}>$ $0, \beta>0$ independent of $h, n, \Delta t$ such that $\left\|\delta\left(u_{h}^{n}-u_{h}^{*}\right)\right\|_{2}^{2} \leq M_{1} e^{-\beta n \Delta t}$.

By (4.2), it suffices to show that from Theorem 1:
Theorem 2. Let the discrete function $u_{h}^{n}$ and $u_{h}^{*}$ be the solution of difference equation (2.1) and (2.2) respectively. If $\Delta t, h$ satisfy (3.2), for any positive integer $s$, there exist constants $M_{2}>0, \lambda>0$ independent of $h, n, \Delta t$ such that

$$
\sum_{i=0}^{s}\left\|\delta^{2}\left(u_{h}^{n+i}-u_{h}^{*}\right)\right\|_{2}^{2} \Delta t \leq M_{2} e^{-\lambda n \Delta t}
$$

Remark. Let $u^{*}$ be the solution of (1.2), $\phi_{h}=\left\{\phi_{j} \mid j=0,1, \cdots, J\right\}$ be the discrete function satisfies $\phi_{j}=u^{*}\left(x_{j}\right), j=0.1, \cdots, J$. By the well-known energy method, there is $C>0$ such that $\left\|\delta\left(u_{h}^{*}-\phi_{h}\right)\right\|_{2} \leq C h^{2}$.

The authors are grateful to Prof. Zhou Yulin for his suggestions.

## References

[1] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
[2] D. Henry, Geometric Theory of Semilinear Parabolic equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, New York, 1981.
[3] Q.X. Ye, Z.Y. Lee, Introduction to Reaction-Diffusion Equations, (in Chinese) Chinese Science Press, Beijing, 1990.
[4] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1988.
[5] Y.L. Zhou, Applications of Discrete Functional Analysis to the Finite Difference Method, International Academic Publishers, Beijing, 1990.
[6] C.M. Elliott, A.M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal., 30:6 (1993).
[7] J.M. Sang-serna, A.M. Stuart, A note on uniform in time error estimates for approximations to reaction -diffusion equations, IMA. J. Numer. Anal., 12 (1992), 457-462.


[^0]:    * Received July 5, 1996.
    ${ }^{1)}$ The Project is supported by China Postdoctoral Science Foundation and the Science Foundation of Academy of Engineering Physics of China

