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Abstract

A new column recurrence algorithm based on the classical Greville method and

modified Huang update is proposed for computing generalized inverse matrix and

least squares solution. The numerical results have shown the high efficiency and

stability of the algorithm.

1. Introduction

Numerical method of a generalized inverse matrix and corresponding with the linear

least squares is a standard tool for solving such problems as control, state evaluation

and identification. Let A be an m×n real matrix. A real n×m matrix G is called the

M-P generalized inverse matrix of A if G satisfies the following conditions:

(I) AGA = A, (II) GAG = G,

(III) (AG)T = AG, (IV) (GA)T = GA. (1)

Usually, we write G

A+ = G.

The linear least square problem is defined as the minimization of the norm of the

residual vector

min
x

‖Ax − b‖2
2, (2)

where b is an m-vector and x is an n-vector. Thus, the least square solution of the

minimum norm of problem (2) is

x = A+b.

One of the major stability indices for computing generalized inverse matrix or linear

least squares problem is

κ(A) = ‖A‖‖A+‖.
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An ill-conditioned matrix A, i.e. matrix with large κ, is quite common in control

and identification problem[5]. It is thus important to have computational procedures

suitable for solving ill-conditioned problem. An excellent survey on linear least square

has been given in Björck[1].

Since the Greville scheme[6] is relative simple and is called G-method, it is adopted

frequently for computing generalized inverse matrix in some cases. Computational

practice and theoretical analysis show, however, when A is an ill-conditioned matrix,

that the solution computed by G-method may bear no resemblance to the true solution.

On the other hand, modified Huang method, one of the ABS class, may be more stable

than that of some classical matrix factorization method[2]. But this method is only fit

for solving the problem where m ≤ n.

Our aim of this paper is to describe a new modification of the classical Greville

method, which retains the main advantages of the classical scheme but in many cases

is more stable.

Throughout this paper, let ‖ · ‖ stand for the 2-norm of a matrix or a vector.

2. Greville Method and Its Modification

Let A be a matrix of order m × n and will be denoted by

A = [a1, a2, · · · , an] ∈ Rm×n,

where ai ∈ Rn and m ≥ n. By convention, we assume rank (A) = n.

Denoted by

A1 = [a1], Ak = [Ak−1, ak] ∈ Rm×k, k ≤ n. (3)

We have known that G-method is an electable method for computing generalized

inverse matrix if A is not too ill-conditioned. The G-method proceeds as follows[6].

G-method:

Set

A+
1 = aT

1 /(aT
1 a1).

For k=2:n Compute

dk = A+
k−1ak, ck = ak − Ak−1dk;

Take

yT
k =

{

c+
k ck 6= 0

(1 + dT
k dk)d

T
k A+

k−1 ck = 0 .

Compute

A+
k =

[

A+
k−1 − dky

T
k

yT
k

]

.

Set

A+ = A+
n .



A Column Recurrence Algorithm for Solving Linear Least Squares Problem 303

This algorithmic scheme is known as the Greville recurrence procedure. It is easy to see

that the scheme is very compact and the numerical result is acceptable to well-behavior

matrix.

Denote by R(A) and R(A)⊥ the range of A and corresponding orthogonal comple-

ment, respectively. Since

ck = ak − Ak−1dk

= (Im − Ak−1A
+
k−1)ak, (4)

ck is an orthogonal projection vector of ak onto R(Ak−1)
⊥. The following lemma thus

can be obtained directly[6].

Lemma. The orthogonal projection ck = 0 in G-method iff ak is a linear combina-

tion of the vector system a1, a2, · · · , ak−1, i.e.

ak ∈ R(Ak−1).

In [4] the relation between the G-method and classical Gram-schmidt process is

analyzed and the G-method for computing M-P inverse matrix, when rank(A) = n ≤ m,

is entirely equivalent to Gram-schmidt process from a purely theoretical viewpoint. In

other words, we can prove the following relations to G-method[4].

Theorem. If c1, c2, · · · , cn are obtained by G-method, then

1. cT
k aj = cT

k cj = 0, k = 1, 2, · · · , n; j = 1, 2, · · · , k − 1;

2. cT
i ai = cT

i ci, i = 1, 2, · · · , n;

3. (Im − Σk−1
l=1 clc

+
l )aj = (Im − Σk−1

l=1 clc
+
l )cj = 0, j = 1, 2, · · · , k.

Proof. By induction.

From the above discussion, we have known that G-method is equivalent to classical

Gram-schmidt process. Therefore, its numerical stability is relatively weak for ill-

conditioned problem. In general, the modified Gram-schmidt process is more stable

than that of classical scheme. Based on the analogous idea, we can obtain the following

modified Greville method.

Take

A+
1 = a+

1 ,

Compute

d
(j)
2 = A+

1 aj, j = 2, 3, · · · , n.

Let

d2 = d
(2)
2 .

Then using the relations

d
(j)
3 = A+

2 aj =

[

A+
1 − d2y

T
2

yT
2

]

aj
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=

[

d
(j)
2 − (yT

2 aj)d2

yT
2 aj

]

,

we can compute d
(j)
3 , j = 3, 4, · · · , n.

Set

d3 = d
(3)
3 = A+

2 a3.

· · · · · ·

At the beginning of k-th (k ≤ n) step, assume that d
(j)
k−1, j = k, k + 1, · · · , n, have

already been computed. Then compute

d
(j)
k = A+

k−1aj =

[

d
(j)
k−1 − (yT

k−1aj)dk−1

yT
k−1aj

]

, (5)

j = k, k + 1, · · · , n.

Set

dk = d
(k)
k = A+

k−1ak.

We can see that the vector system c1, c2, · · · , ck, k ≤ n, obtained by G-method must

be in R(Ak). Therefore,

AkA
+
k ci = ci i = 1, 2, · · · , k. (6)

This means that the eigenvectors of AkA
+
k associated with eigenvalue 1 are ci, i =

1, 2, · · · , k. It follows from the spectral decomposition that

AkA
+
k = c1c

+
1 + c2c

+
2 + · · · + ckc

+
k .

Let

c
(j)
k = (Im − AkA

+
k−1)aj

= (Im − Σk−1
l=1 clc

+
l )aj

= c
(j)
k−1 − ck−1c

+
k−1aj

= c
(j)
k−1 −

(cT
k−1aj)ck−1

cT
k−1ck−1

j = k, k + 1, · · · , n. (7)

Take

ck = c
(k)
k .

Based on the above discussion, we can lead the modified Greville method, called

the MG-method, which is equivalent to modified Gram-schmidt process. To ensure the

numerical stability of G-method, a pivoting strategy is often performed in the size of

‖ck‖.

MG-method:

Compute

A+
1
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For k = 2 : n,

1. Compute

d
(j)
k =

[

d
(j)
k−1 − (yT

k−1aj)dk−1

yT
k−1aj

]

, j = k, k + 1, · · · , n.

2. Compute

c
(j)
k = c

(j)
k−1 −

(cT
k−1aj)ck−1

cT
k−1ck−1

, j = k, k + 1, · · · , n.

Pivoting strategies:

cmax = ‖c
(j0)
k ‖ = max

k≤j≤n
(‖c

(j)
k ‖)

Interchanging:

aj0 ↔ ak, c
(j0)
k ↔ c

(k)
k , d

(j0)
k ↔ d

(k)
k

Let

ck = c
(k)
k , dk = d

(k)
k .

3. Take

yT
k = c+

k .

4. Compute

A+
k =

[

A+
k−1 − dky

T
k

yT
k

]

.

Set

A+ = A+
n .

Furthermore, the numerical experiments show that the updating precision of ck, k =

1, 2, · · · , n, makes great influence on the numerical stability in the G-method. On the

other hand, the ABS methods for proceeding successively to orthogonal bases of R(A)

have been obtained for the case where m ≤ n [2].

ABS-updating:

Let H1 be an arbitrary n × n nonsingular matrix. For i=1,2,· · · ,n, compute

(i) pi = Hizi,

where zi ∈ Rn is arbitrary, subject to zT
i pi 6= 0;

(ii) Hi+1 = Hi − Hiwia
T
i Hi/(a

T
i Hiwi),

where wi ∈ Rn is arbitrary, subject to aT
i Hiwi 6= 0.

The vector system p1, p2, · · · , pk obtained by this algorithm satisfy

pT
k aj = 0, j = 1, 2, · · · , k − 1.
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Among the particular algorithms in the ABS class obtained by making specific choices

of the parameters, the modified Huang method is of special interest:

H1 = In.

For i = 1, 2, · · · , n. do

zi = Hiai, wi = zi/z
T
i zi,

pi = HT
i zi,

Hi+1 = Hi − Hiaiw
T
i Hi.

This algorithm is numerically more stable than that of the Huang method or its

analogues for the determined or underdetermined problem[2].

Here we wish to extend the modified Huang updating to overdetermined problem. It

is to say that the orthogonal projection vector system c1, c2, · · · , cn, can be obtained by

the modified Huang updating in the MG-method. Based on this idea, we can comprise

a numerical method, called MHG-method, for computing the M-P generalized inverse.

MHG-method:

1. Set H1 = Im. and compute A+
1 ,

2. For k = 2 : n compute

2.1

d
(j)
k =

[

d
(j)
k−1 − (yT

k aj)dk−1

yT
k aj

]

, j = k, k + 1, · · · , n,

dk = d
(k)
k .

2.2

zk = Hkak, wk = zT
k zk,

ck = HT
k zk,

Hk+1 = Hk − Hkakw
T
k Hk.

2.3

A+
k =

[

A+
k−1 − dkc

+
k

c+
k

]

.

3. Set

A+ = A+
n .

In many cases, above the algorithm is much stabler than that of the G-method or

MG-method for ill-conditioned problems.

3. Solution of Linear Least Squares Problem

Applying the above given MHG-method for computing the generalized inverse, we

here can directly extend to solving overdetermined linear least squares problem

min
x

‖Ax − b‖2, (8)



A Column Recurrence Algorithm for Solving Linear Least Squares Problem 307

where A is an m × n matrix,m ≥ n, and b is an m-vector.

Assume that A+
k−1 has been computed at the beginning of k-th step. Then we can

form

xk−1 = A+
k−1b

and

Ak = [Ak−1, ak].

Therefore, we have

xk = A+
k b =

[

A+
k−1b − (yT

k b)dk

yT
k b

]

=

[

xk−1 − x
′

kdk

x
′

k

]

,

where

x
′

k = yT
k b

and yk, dk are computed by the MHG-method.

To be more compact, the new algorithm takes the vector b in the right hand side

of the above equality as (n+1)th column of A. Based on the above idea, the following

algorithm has been given, called the MHGS-method, for solving the linear least squares

problem.

MHGS-method:

1. Set [A
...b] = [a1, a2, · · · , , an+1] ∈ Rm×(n+1),H1 = Im, R = [rij ] = 0 ∈ Rn×(n+1), a

working array of the upper triangular matrix;

2. For i = 1, 2, · · · , n do

zi = Hiai,

wi = zi/z
T
i zi,

ci = HT
i zi

If i=1 then r1j = cT
1 aj/c

T
1 c1, j = 2, · · · , n + 1;

else for j = i + 1, · · · , n + 1 do

for k = 1, 2, · · · , i − 1 do

rkj = rkj −
cT
i

aj

cT
i

ci
rki,

rij =
cT
i

ai

cT
i

ci
.

Hi+1 = Hi − Hiaiw
T
i Hi.

3. xi = ri.n+1, i = 1, 2, · · · , n.

x = (x1, x2, · · · , xn)T is the least squares solution of the minimum norm of (8).
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4. Numerical Experiments

The algorithm described in previous sections has been implemented and has been

run in double precision on VAX computer of the University of Trento. The considered

linear least squares problems,

min
x

‖Ax − b‖2,

have the following data.

Problem 1. (ill-conditioned problem)

A = [aij] = [1.0/(i + j − 1.0)] ∈ Rm×n,

b = (b1, b2, · · · , bm)T ∈ Rm,

bi = Σn
j=1aij , i = 1, 2, · · · ,m.

Problem 2. (mid-conditioned problem)

A = [aij ] = [max(i, j)] ∈ Rm×n

b = (b1, b2, · · · , bm)T ∈ Rm,

bi = Σn
j=1aij , i = 1, 2, · · · ,m.

Problem 3. (mid-conditioned problem)

A =

























n n − 1 n − 2 . . . 2 1

n − 1 n − 1 n − 2 . . . 2 1

n − 2 n − 2 n − 2 . . . 2 1

. . . . . . . . . . . . . . . . . .

2 2 2 . . . 2 1

1 1 1 . . . 1 1

























= [aij ] ∈ Rn×n,

b = (b1, b2, · · · , bn)T ∈ Rn,

bi = Σn
j=1aij , i = 1, 2, · · · , n.

Algorithm:

G-method: Column Greville method,

CGLSP2)-method : Algorithm given in [5],

2) Modified conjugate gradient method for least squares problem
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MHGS-method: Algorithm obtained in this paper.

The following tables present the computed precision with three different algorithms

for the given problems. These results indicate that the new method (MHGS-method)

obtained in this paper is fairly efficient, especially as an ill-conditioned least square as

problem 1. The index of the relative accuracy is defined by

P =
‖x − x∗‖2

‖x∗‖2
,

where x∗ is the true solution and x is a computed solution.

The condition numbers of the given matrices, cond(A), are computed by MATLAB.

Table 1. The relative accuracy P of Problem 1 (m = n).

m Cond(A) G-method CGLSP-method MHGS-method

5 4.7661E+05 1.1666822E-07 2.9090133E-05 2.1568097E-12

10 1.6025E+13 >1 3.7835974E-04 6.1374327E-09

15 3.3634E+17 >1 1.1718496E-03 7.3047523E-09

20 4.0020E+19 >>1 5.2199944E-04 2.4599253E-08

25 1.7138E+18 >>1 8.5164341E-04 1.0516242E-08

30 4.5397E+18 >>1 1.2079764E-03 2.2723464E-08

35 5.8601E+18 >>1 1.5771304E-03 2.0508478E-08

40 7.2654E+18 >>1 6.1066032E-04 5.0091549E-08

Table 2. The relative accuracy P of Problem 2 (m = n).

m Cond(A) G-method CGLSP-method MHGS-method

5 7.0766E+01 7.3474726E-14 4.7808928E-16 2.5225527E-16

10 2.8919E+02 1.7468340E-11 9.9344994E-16 3.2823535E-15

15 6.4639E+02 1.8298022E-07 1.4754814E-15 6.2574871E-15

20 1.1425E+03 3.3819112E-04 4.3725890E-15 1.5046502E-14

25 1.7775E+03 0.2837466E+00 5.6821201E-15 1.9495403E-14

30 2.5515E+03 >1 9.2010109E-15 2.2474395E-14

35 3.4644E+03 >1 1.1894571E-14 4.6867962E-14

40 4.5163E+03 >1 1.6454910E-14 5.3042908E-14
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Table 3. The relative accuracy P of Problem 3 (m = n).

m Cond(A) G-method CGLSP-method MHGS-method

5 4.5455E+01 0.0000000E+00 1.4057041E-16 0.0000000E+00

10 1.7508E+02 3.6570011E-16 3.3419257E-16 0.0000000E+00

15 3.8582E+02 4.1579343E-15 6.8814798E-16 0.0000000E+00

20 6.7762E+02 1.4859172E-14 1.6301262E-15 0.0000000E+00

25 1.0505E+03 1.6141173E-14 3.4069208E-15 0.0000000E+00

30 1.5044E+03 3.4304422E-14 3.9338318E-15 0.0000000E+00

35 2.0394E+03 2.7719791E-14 8.5910155E-15 0.0000000E+00

40 2.6554E+03 4.8073519E-14 9.9144612E-15 0.0000000E+00

Table 4. The relative accuracy of the MHGS-method

for the ill-conditioned problem 1 (m > n).

m n Cond(A) relative accuracy P

150 100 1.5173E+18 3.3504126E-08

150 110 2.1010E+18 4.0557843E-08

150 120 2.5797E+18 4.6187279E-08

150 130 4.0761E+18 5.2436966E-08

150 140 1.0964E+19 9.6172765E-08

150 150 1.9002E+20 2.0729776E-07

200 150 2.7419E+18 4.8961957E-08

500 10 9.9475E+09 1.6412854E-09

500 100 6.1819E+17 3.7023077E-08
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