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Abstract

After surveying the theoretical aspects of Huber’s M -estimator on underdeter-

mined problems, two finite algorithms are presented. Both proceed in a construc-

tive manner by moving from one partition to an adjacent one. One of the algorithm,

which uses the tuning constant as a continuation parameter, also has the facility to

simultaneously estimate the tuning constant and scaling factor. Stable and efficient

implementation of the algorithms is presented together with numerical results. The

L1-norm problem is mentioned as a special case.

1. Introduction

Huber’s M -estimator on overdetermined problems has been surveyed by many au-

thors such as Clark[3,4], Madsen and Nielsen[12,13] using various schemes. But the

underdetermined problems have not attracted much attention, although they are often

met in engineering problems. Here we want to use the most popular approaches on

the basis of iterative schemes to solve this kind of problems. In the algorithm a scaling

factor can be estimated either at the beginning of the computation or by the algorithm

at each iteration.

We are concerned with the following problem:

Problem 1.

min f(X) = ‖X‖2 =
n
∑

i=1

x2
i , (1)

s.t. AX = b , (2)

A ∈ Rm×n,m < n .

The estimator X is called the least square or L2-estimator and was shown by

Gauss[6] in 1821 to be the most probable value under the assumption that the model

has independent identical normal distribution. However, as illustrated by Tuckey[15] in
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1960 , the L2 estimator is very sensitive to quite small deviation from that assumption,

and, in particular, a few gross errors can have a marked effect.

In an effect to find a more robust estimator, Huber[10] suggested replacing the square

terms in (1) with a less rapidly increasing function:

ρ(xi) =

{

1
2x2

i for |xi| ≤ γ

γ|xi| −
1
2γ2 for |xi| > γ

(3)

where γ is a parameter to be estimated from the data. The resulting estimator was

shown by Huber [10] to be a maximum likelihood estimator for a perturbed normal

distribution and has become known as Huber’s M -estimator.

Many iterative methods can be used to obtain the M -estimator. Among those

are Huber’s method[10], Newton method[12], Beaton and Tuckey’s method[15], Clark’s

method[4]. We find the last one most attractive because of its efficiency and finiteness.

Now, let us consider Problem 1 with the replacement of (3) for the estimator. Then

Problem 1 becomes

Problem 2.

min F (X) =
n
∑

i=1

ρ(xi) =
1

2

∑

σ

x2
i +

∑

σ+

(γxi −
1

2
γ2) +

∑

σ−

(−γxi −
1

2
γ2) , (4)

s.t. AX = b , (5)

A ∈ Rm×n,m ≤ n .

where σ = {i| |xi| ≤ γ}, σ− = {i|xi < −γ}, σ+ = {i|xi > γ}.

To solve this problem, Lagrange multiplier is used to transform the constrained

problem into an unconstrained one:

F (X,Λ) =
∑

σ

1

2
x2

i +
∑

σ̄

(|xi|γ −
1

2
γ2) + ΛT (AX − b)

where Λ is a Lagrange multiplier and σ̄ = σ+ ∪ σ−.

Since F (X,Λ) is convex, the necessary and sufficient condition of minimum is

▽F (X,Λ) = 0

while

▽F (X,Λ) =

(

Dσ AT

A 0

)(

X∗

Λ∗

)

+

(

γeσ

−b

)

where Dσ is a diagonal matrix,

(D)ii =

{

1, if i ∈ σ

0, if i ∈ σ̄
(eσ)i















= 0 , if i ∈ σ

= θi , if i ∈ σ̄, x∗

i 6= 0

∈ [−1, 1] , if i ∈ σ̄, x∗

i = 0

and θi = sign(xi), X∗,Λ∗ are the optimum.



132 WANG JIA-SONG AND TANG SHENG-RONG

Because the minimizing partition is not known, the search for M -estimator is a

search for the correct partition. We find the correct partition by regarding X as a

function of γ. Starting with the L2 estimator X(∞) we prove that X is a piecewise

linear function of γ, when one or more components change status.

Another estimator which has received a great deal of attention in the quest for

robustness is the L1 estimator.

Problem 3.

∑

|xi| = min,

s.t. AX = b

The solution of the above problem can be described variously as the robust estimator

in some sense[8,17], or as the L1 estimator[17] by partition of N into σ = {i|xi = 0},

σ̄ = {i|xi 6= 0}, so that
(

eσ + AT Λ∗

AX∗−b

)

= 0

where

(eσ)i

{

= θi , if x∗

i 6= 0 ,

∈ [−1, 1] , if x∗

i = 0 .

It seems that the partition approach should throw light onto the relationship be-

tween the L1 and M -estimator.

2. Definitions and Conventions

A partition P is splitting of the set N = {1, 2, ..., n} into disjoint complementary

subsets σ and σ̄. The function associated with P is

F (X,Λ) =
1

2

∑

σ

x2
i +

∑

σ̄

(γ|xi| −
1

2
γ2) + ΛT (AX − b).

X∗ or Z denotes the minimizer of F , and F (Z,Λ) is called the value of the partition.

Define a feasible region FR = {X|AX = b,X ∈ Rn}, and note if X ∈ FR,

F (X,Λ) = F (X).

A partition is σ-feasible if |zi| ≤ γ, i ∈ σ, or σ̄-feasible if i ∈ σ̄,|zi| > γ and the

components are of assumed signs.

A partition is feasible if it is σ-feasible and σ̄-feasible.

θi will denote the sign of the ith component, θi = sign(xi).

Adjacent partitions Pa and Pb satisfy σa = σb ∪ {k} or σa = σb/{k}.

An outlier is a component xj such that j ∈ σ̄.

A degeneracy problem is that more than two components are involved in changing

status.

Define Hσ =

(

Dσ AT

A 0

)

,H =

(

I AT

A 0

)

.Then H−1
σ =

(

G T T

T U

)

σ

(see Fletcher

[5]) where G,U are symmetric matrixes.
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Subset σ after a component zk changes status is denoted by σ+.

3. Theorems

First we prove several lemmas and theorems to survey the theoretical aspect of

M -estimator on underdetermined problems. Then, we use these theorems to build up

our continuation algorithm.

Lemma 1. The minimum of

F (X,Λ) =
1

2

∑

σ

x2
i +

∑

σ̄

(γ|xi| −
1

2
γ2) + ΛT (AX − b)

is characterized by

Hσ

(

X∗

Λ∗

)

=

(

−γeσ

b

)

.

Lemma 2. If Pa, Pb are adjacent partitions with σa = σb∪{k} for any X satisfying

|xk| = γ, then Fa(X,Λ) = Fb(X,Λ).

Proof. The proof follows directly from

1

2
x2

k = γ|xk| −
1

2
γ2.

Lemma 3. If Pa, Pb are adjacent partitions with σa = σb ∪ {k} for which a

minimizer Z of one of the partitions has |zk| = γ, then Z also minimizes the other

partition.

Proof. Let us assume Z is the optimum of Pa. Then from Lemma 1,

Ha

(

Z

Λ∗

)

=

(

−γea

b

)

=⇒ Hb

(

Z

Λ∗

)

+

















0
...

zk
...

0

















=

(

−γea

b

)

=⇒ Hb

(

Z

Λ∗

)

=

(

−γeb

b

)

where ea and Ha denote eσ and Hσ for partition Pa; eb and Hb denote eσ and Hσ for

partition Pb.

A similar proof will show that if Z is the optimum of Pb, Z is also an optimum of

Pa.

Lemma 4. If σa = σb ∪ S, then Fa(X,Λ) ≥ Fb(X,Λ) with equality holding only

when |xi| = γ, i ∈ S.

Proof. The proof follows directly from

1

2
x2

i ≥ γ|xi| −
1

2
γ2.



134 WANG JIA-SONG AND TANG SHENG-RONG

the inequality being strict unless |xi| = γ.

Lemma 5. Let Pa, Pb be adjacent partitions with unique minima Za, Zb respec-

tively, and let σa = σb ∪ {k}. Then

i) |(Za)k| > γ ⇐⇒ |(Zb)k| > γ

ii) |(Za)k| ≤ γ ⇐⇒ |(Zb)k| ≤ γ .

Proof. Assume |(Za)k| > γ and |(Zb)k| ≤ γ or |(Za)k| ≤ γ and |(Zb)k| > γ. Define

X = αZa + (1− α)Zb, 0 ≤ α ≤ 1 such that |xk| = γ. Then from in turn Lemma 3, Za

minimizes Fa, Lemma 2 and convexity, we have

Fb(Za) ≤ Fa(Za) ≤ Fa(X) = Fb(X) ≤ αFb(Za) + (1− α)Fb(Zb). (6)

If α = 1, from Lemma 3, Za minimizes Fb, and if α < 1, (6) implies Fb(Za) ≤ Fb(Zb)

and again Za minimizes Fb. This contradicts the assumption of the uniqueness of the

minimizer of Fb.

Next, we want to present the first algorithm in which the solution is a continuous

piecewise linear function of γ. We first have to prove that Z is continuous with γ. Let

Fγ(X,Λ) =
1

2
XT DσX − γeT

σ X −
∑

σ̄

1

2
γ2 + ΛT (AX − b) (7)

and

Y =

(

X

Λ

)

, Y ∗ =

(

Z

Λ∗

)

; Fγ(X,Λ) = F (Y ).

Theorem 1. If Hσ is invertible, then the minimum of (7) is continuous with γ.

Proof. Define

G(γ, Y ) =
∂

∂Y
F (Y ) = HσY +

(

γeσ

−b

)

.

If Z is the optimum, from Lemma 1, G(γ, Y ) = 0 must hold. From the Implicit Function

Theorem(Th5.2.4, Ortega[14]), if ∂
∂Y

G(γ, Y ) is invertible,∂Y
∂γ

exists, and

∂Y

∂γ
= −

(

∂G

∂Y

)

−1 ∂G

∂Λ
.

But from the assumption, ∂
∂Y

G(γ, Y ) = Hσ is invertible, so we have shown the theorem.

Theorem 2. If Hσ is nonsingular for a partition, then the minimizer Z is a linear

function of γ.

Proof. Differentiating (7) with respect to Y gives

HσY +

(

γeσ

−b

)

= 0. (8)

Since Hσ is nonsigular, and (Hσ)−1 =

(

G T T

T U

)

σ

, Z = γGσeσ − T T b is a linear

function of γ.
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Theorem 3. Let Pa be a feasible partition at γ ≥ γ̄, but infeasible at γ < γ̄, which

is caused by the size of a single component (Za)k. Then the partition σb = σa \{k}(k ∈

σa) or σb = σa ∪ {k}(k ∈ σ̄a) is feasible for some γ < γ̄.

Proof. For γ < γ̄,

|(Za)k| > γ(k ∈ σa) or |(Za)k)| ≤ γ(k ∈ σ̄a).

So by Lemma 5 and observing that k ∈ σa(σ̄a) =⇒ k ∈ σ̄b(σb),

|(Zb)k| > γ(k ∈ σ̄b) or |(Zb)k| ≤ γ(k ∈ σb).

Thus, if the reduction in γ is slight enough so that |(Zb)i| 6= γ, i 6= k, Pb is a feasible

partition.

Theorem 4. If Hσ is nonsingular, then the M -estimator Z is a continuous

piecewise linear function of γ.

Proof. For any feasible partition, Z is a linear function of γ, and P will remain

feasible for a range of values of γ. Moreover, at the end of the feasible range of γ, |Zk| =

γ. The result now follows from Lemma 3, Theorem 2 and Theorem 3.

4. The Continuation Algorithm

4.1. General description

Our continuation algorithm depends on the behavior of the M -estimator as γ is

varied. We have shown in Section 3 that it is a continuous piecewise linear function

of γ. As for γ large enough, the M -estimator is the LS-estimator: this is taken as

the starting point and the value of γ is reduced until the size of some components of

Z is equal to γ. At this point the partition changes, and the rate of the M -estimate

with respect to γ has to be recalculated. Piecewise linearity now gives the estimate

on the new partition until a new tie occurs. This process is repeated until either a

predetermined number of outliers is identified or a desired value of γ is reached. The

algorithm can thus be thought of as a continuation algorithm with parameter γ. The

choice of stopping value is discussed in Section 4.6.

As γ is reduced, the normal pattern is that a component changes status from being

≤ γ to becoming > γ in size. Occasionally, the opposite situation may occur, so that

a component, which was an outlier at one range of value of γ, is not one for small γ.

Further, it is theoretically possible that more than one component could be involved in

changing status at the same value of γ. The resolution of this problem, analogous to

degeneracy in linear programming, has led to the algorithm described in Appendix.

4.2. Updating at the change of partition

When a new range of γ is entered, there will be a change of status of one or

more components. Here we show how to update dZ
dγ

in the usual case where only one

component, say zk, is involved in changing status when Z is piecewise linear in γ.
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It is well known that the LS solution of Problem 1 using Lagrange multiplier is:

X = −AT (AAT )−1b, Λ = −(AAT )−1b.

This is just the solution of Problem 2 corresponding to σ = {1, · · · , n}, Dσ = I, eσ = 0.

Differentiating (8) with respect to γ, we have

Hσ
dY

dγ
=

(

−eσ

0

)

.

If Hσ is invertible,

dY

dγ
=

(

dZ
dγ
dΛ∗

dγ

)

= H−1
σ

(

−eσ

0

)

=

(

G T T

T U

)

σ

(

−eσ

0

)

,

(dZ

dγ

)

σ
= −Gσeσ.

If only one component zk changes status, i.e. σ+ = σ∪{k} or σ+ = σ \{k}, that is,

only one diagonal element in Dσ changes status, let us denote the new matrix by Hσ+ ,

Hσ+ = Hσ ± eke
T
k .

We may use the Sherman-Morrison formula to revise matrix H−1
σ in order to obtain

the new inverse:

H−1
σ+ = H−1

σ ∓
H−1

σ eke
T
k H−1

σ

1± eT
k H−1

σ ek

and

Gσ+ = Gσ ∓
Gσeke

T
k Gσ

1± eT
k Gσek

.

In the same while only one component of eσ change status. So

(dZ

dγ

)

σ+
= −Gσ+eσ+ = −

(

G∓
Gσeke

T
k Gσ

1± eT
k Gσek

)

eσ+ (9)

As the search direction is determined, we need to know how long we can walk along

this direction until one component changes status.

Let zi be the ith component of Z in a certain iteration. We denote z+
i as the

corresponding component in the next iteration, and η as the distance that γ moves.

γ+ = γ − η.

Let

a) ∀zi, i ∈ σ+, let z+
i ∈ (σ+)+. That is

z+
i = zi − η

dzi

dγ
> γ − η.
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if
dzi

dγ
≤ 1, the inequality always holds.

if
dzi

dγ
> 1, let

η1 = min
i







zi − γ
dzi

dγ
− 1
|i ∈ σ+,

dzi

dγ
> 1







. (10)

b) ∀zi, i ∈ σ−, we let z+
i ∈ (σ+)−,

η2 = min
i







zi + γ

1 + dzi

dγ

|i ∈ σ−,
dzi

dγ
< −1







. (11)

c) ∀zi, i ∈ σ, we let z+
i ∈ σ+, that is

−(γ − η) ≤ z+
i = zi − η

dzi

dγ
≤ γ − η,

η3 = min
i







γ + zi

1 + dzi

dγ

|i ∈ σ,
dzi

dγ
> −1







, (12)

η4 = min
i







γ − zi

1− dzi

dγ

|i ∈ σ,
dzi

dγ
< 1







. (13)

Set

η = min{η1, η2, η3, η4}.

In the case that only one elememt, say ηk, let the equality hold, this is only one

component is involved in changing status, then

z+
i = zi −

dzi

dγ
η.

4.3. The algorithm

Step 1. Set j ← 1(counter)

Find the LS estimator Z0

Set
dZ

dγ
← 0

Determine k = argmax
i
{|zi|}

Let P = {N \ {k}} and γ1 = |zk|

If the stop criterion is satisfied, stop

Otherwise

Step 2. Update
dZ

dγ
using (9)
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Compute η1, η2, η3, η4 using (10),(11),(12) and (13)

Let η = min{η1, η2, η3, η4}

Calculate Z(γj+1) = Z(γj)− η
dZ

dγ

Step 3. If the stop criterion is satisfied, stop

Otherwise

Step 4. If only one component zk is involved in changing status,

define the new partition by

σj+1 = σj ∪ {k}(k ∈ σ̄)

σj+1 = σj \ {k}(k ∈ σ)

If more than one component is involved in changing status,

define the new partition as in the last section.

j ← j + 1

Goto Step 2.

4.4. Finiteness

In order to demonstrate that the algorithm is finite, we need to show that

i) cycling dose not occur at the change of partition;

ii) the number of ranges of γ is finite.

That cycling does not occur when only one component is involved in changing status

is a consequence of Theorem 3 and Z = γGσeσ − T T b.

We now show that the number of ranges of γ is finite.

Theorem 5. The number of ranges of γ is finite.

Proof. For any partition P , if Hσ is nonsingular, Z(γ, P ) is a linear function of γ.

Hence as γ decreases, once a given component has changed status, it cannot return

to its original status. The results now follow from the finiteness of the number of

partitions.

4.5. Choise of scaling factor and tuning constant

In the definition of F (X) of Problem 2, we must assume that the vector model X

is an unbiased estimator. In fact, it is not always true. So a scaling factor should be

adopted to avoid the disadvantage of the above algorithm.

Problem 4.

min F (X) =
n
∑

i=1

ρ
(xi

τ

)

s.t. AX = b,

A ∈ Rm×n,m ≤ n.

Huber[10] suggests that in the location case the best estimate of scale is given by

τ = medi{|xi −medjxj|}.



Huber’s M -Estimator on Underdetermined Problems 139

However, in the regression case the analogue of the median, the L1 estimator,

requires calculation of complexity similar to that of the M -estimate itself. Holland

and Welsch[9] suggest

τ = 1.48medi{|xi −medjxj|} = 1.48µ (14)

introducing the factor 1.48 to give an approximately unbiased estimate of scale when

the vector model is Gaussian. This factor is also cited by Birch[2] as a popular choice.

The γ is taken as 1.345 by Holland and Welsh[9] as giving 95% asymptotic efficiency

at Gaussion distribution.

Most algorithms estimate τ only once, using (14) at the initial point which is usually

the LS estimator. However, as we shall see, we can estimate τ iteratively in our

continuation algorithm with minimal extra effort.

If τ is not assumed to be unity in Problem 4, the definition of σ becomes i ∈

σ ↔ |zi/τ | ≤ γ or i ∈ σ ↔ |zi| ≤ γτ . This suggests that we can use δ = γτ as our

continuation parameter. We have dZ
dδ

= 1
τ

dZ
dγ

. Thus the rate of change of Z is calculated

as before and divided by Z.

The stopping rule now becomes δ′ > 1.48 ∗ 1.345µ′ at the beginning of a range and

δ′′ < 1.99µ′′ at the end of the range. Choose the final value of δ as δ′+(δ′−δ′′)(1.99µ′′−

δ′′)/(δ′ − δ′′) and Z = αZ(γj) + (1− α)Z(γj+1) where α =
1.99µj+1−γj+1

γj−1.99µj
.

The approach has two important advantages. First, although the scale factor is

estimated at each iteration, its use in the algorithm only affects the stopping rule.

This means the problem of convergence of τ is sidestepped. (This contrasts with the

difficulty of simultaneously estimating Z and τ in the iterative schemes; see for example

the method of Dutter[10] when τ is defined by Huber’s proposal 2 [11]. Indeed, when τ

is defined as in (14), a scheme such as Dutter’s need not converge.)

Secondly, although we have chosen (14) for τ , other choices of scaling factor can

easily be incorporated. In particular, methods of determining scale by satisfying an

auxiliary equation of the form F (X, τ, γ) = 0, such that the Huber’s proposal 2, may

be used.

4.6. Stopping rules

Several stopping rules can be used:

1. The algorithm is processed until a predetermined number of outliers is identified ,

or a desired value of γ is reached. Especially, for L1-estimator, the predetermined

number is usually m, and the desired value of γ is 0.

2. A predetermined percentage of outliers is identified for the M -estimator.

3. The stopping rule described in Section 4.5.

These rules are selected according to problems and aims.

4.7. Implementation
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A decomposition method with row pivot for the singular matrix(see Golub[7], al-

gorithm 6.4-1) is used to obtain the LS solution. The decomposition needs 2mnr −

r2(m + n) + 2r3/3 computer operations, where r = rank(A),

ΠA = RQ,

A ∈ Rm×n; Π ∈ Rm×m is a permutation matrix; R ∈ Rm×n is a left-triangular matrix;

Q ∈ Rn×n is an orthogonal matrix.

One advantage of the QR decomposition is its stability. We can eliminate dependent

rows, if some diagonal elements of R are small enough. The LS solution is

ZLS = −AT (AAT )−1b = −AT (ΠT RQQTRT Π)−1b = −(ΠA)T (RRT )−1(Πb).

During this stage we must calculate R−1 for further use. So we need another
1
6(m3 −m + 3) + m(m + 1) + nm multiplications in order to obtain ZLS.

When we find a component changing status, we use the Sherman-Morricon Formula

to revise matrix G. After dZ
dγ

and η are computed. Z+ can be obtained easily.

Because we start from the LS solution, we have Dσ = I at this time. Then

H =

(

I AT

A 0

)

, H−1 =

(

G T T

T U

)

.

From R. Fletcher[3] Section 10.3,

G = I −AT (AAT )−1A = I − (ΠA)T R−TR−1(ΠA).

We require 1
2mn(m + 1) + 1

2mn(n + 1) multiplications in this stage.

Now we have to begin the iteration stage. We only need n2 + 1 multiplications to

update dZ
dγ

[see (9)] and at most 2n divisions to obtain η [see (10),(11),(12)and(13)]. So

the total computer work in every iteration is (n2 + 1) + 2n + n.

If l ≤ m outliers are identified, i.e. normally l iterations are needed, the total work

l iterations require is l(n2 + 3n + 1).

Practically, we need m iterations to obtain the L1 solution and the program will

terminate automatically before or when we reach the L1 solution. So the work amount

to obtain M -estimator is at most

(m2n−
1

3
m3) + (

1

6
m3 + nm + m2 +

5

6
m +

1

2
)

+
1

2
mn(m + n + 2) + m(n2 + 3n + 1) = O(

3

2
mn2 +

3

2
m2n−

1

6
m3)

multiplications totally.

4.8. Numerical results and conclusions

Our program is performed on IBM 386 with both testing problems and pratical

problems. The continuation algorithm appears to be suitable for most situations. The



Huber’s M -Estimator on Underdetermined Problems 141

given implementation is stable and efficient for all real models, particularly when there

are relatively few outliers expected.

Testing problem 1.

min ‖X‖

s.t.







0 0 1 0

0 1 0 0

0.5 0.5 0.5 0.5






X =







1

1

2







XLS = (1, 1, 1, 1), XL1 = (1, 1, 1, 1).

Testing problem 2.

min ‖X‖

s.t.







2 0 2 1

2 2 2 2

1 2 2 4






X =







−2

2

7







XLS = (−1.38, 1.09,−0.57, 1.83), XL1 = (−1.8, 1.2, 0, 1.6).

Testing problem 3.

min ‖X‖

s.t.







2 0 −2 1

2 −2 2 2

1 2 2 4






X =







4

6

9







XLS = (1.294, 0.202, 0.165, 1.743), XL1 = (1, 0, 0, 2).

Testing problem 4.

min ‖X‖

s.t. x1 + 2x2 + 3x3 = 6

XLS = (3/7, 6/7, 9/7), xL1 = (0, 0, 2).

Results of the Continuation Algorithm

PROBLEM
LS SOLUTION L1-NORM SOLUTION

ACCURACY ACCURACY NUMBER OF ITERATION

1 <1.0E−15 <1.0E−15 0

2 <1.0E−10 <1.0E−10 3

3 <1.0E−10 <1.0E−07 2

4 <1.0E−15 <1.0E−15 1
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Appendix: The Partitioning Algorithm

In step 4 of our continuation algorithm we may meet the case that at least two com-

ponents are involved in changing status. This is difficult to handle by the continuation

algorithm. But we can deal with it by using the partition algorithm.

Althought the degeneracy problem can be given constructively, it arises scarcely in

practice. As no example has been found, we give only the theoretical conclusion and

the algorithm without numerical results.

This partition algorithm is designed to find a feasible partition starting from an

arbitrary partition and proceeding only by adjacent partition changes.

The partitioning algorithm:

Step 1. Starting from an initial partition do until Pj is σ̄ − feasible

σ′ = σ ∪ {k} where k ∈ σ̄ and |(Zj)k| ≤ γ

Set j = 1, σj = σ′.

Step 2. While Pj is σ̄ − feasible do

If Pj is feasible then stop; else do

σj+1 = σj \ {k} where k ∈ σj and |Zj)k| > γ, k ∈ σ̄j,

j = j + 1.

Step 3. Y j−1 = Zj−1(Zj−1 satisfies |(Zj−1)k| > γ, k ∈ σ̄j)

Until Pj is σ̄-feasible do

find

Y j = αZj + (1− α)Y j−1, 0 ≤ α < 1 to satisfy

|(Y j)i| > γ, i ∈ σ̄j and |(Y j)k| = γ for at least one k ∈ σ̄j

σj+1 = σj ∪ {k}

j = j + 1

Goto Step 2.

Here, (Zj)k denotes the kth component of Z in the jth iteration.

Theorem 6. The partition algorithm terminates finitely with a feasible partition.

Proof. The proof is analogous to that of Theorem 3.3 of Clark [4] which must

show no cycling occur in step 1 and step 2 and then show the function values of these

partitions in step 2 and step 3 decrease monotonically. Concisely, we mention it here

as a conclusion.
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