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Abstract

Multigrid methods with nested subspaces and inherited forms are analyzed in
an abstract framework that permits application to linear systems of the type that
have to be solved at each time level in time-stepping methods for finite element
approximations of parabolic problems. Convergence rates that are independent of
the space and time steps are obtained in an appropriate time step dependent norm.

1. Introduction

In this article we discuss the solution of linear systems of equations

Au = f (1.1)

by iterative methods of multigrid type. We are particularly interested in equations of
the kind that arise when a parabolic problem, such as

Ut(x, t)−∆U(x, t) = g(x, t), x ∈ Ω, t > 0, (1.2)

together with initial and boundary conditions, is discretized with respect to the time
variable by a time-stepping method, and with respect to the spatial variable by a finite
element method. The operator A is then typically of the form A = zI−k∆h, where z is
a complex number with Re z > 0, k is a small positive parameter (the local time step)
and ∆h is a discrete version of the Laplacian generated by a finite element method with
spatial mesh size h. For instance, if the backward Euler method with time step k is
used, then (1.2) is first replaced by

(Un − Un−1)/k −∆Un = gn, Un ≈ U(nk),

or
(I − k∆)Un = Un−1 + kgn,

and the finite element discretization of this elliptic problem has the form (1.1) with
A = I−k∆h. Analogous equations are obtained in connection with other time-stepping
methods such as A-stable onestep or multistep methods, see Section 3 below.
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We first formulate iterative methods of multigrid type for solving (1.1), and demon-
strate convergence results within an abstract framework that permits application to
the situation described above, where the special feature is the presence of the small
parameter k. The framework is essentially that used in [3], where applications to el-
liptic problems are analyzed under weak assumptions, and our results and their proofs
are close to those of earlier work, e.g., [1], [2], [4], and [7]. We restrict our discussion
here to the case of nested subspaces and inherited forms, and we make regularity as-
sumptions that are satisfied for convex polygonal domains Ω. This makes it possible
to organize the theory in straightforward and compact manner, basing on three simple
assumptions, and to make our paper selfcontained.

Our convergence results for parabolic problems are expressed in a certain k-dependent
energy norm and show rates of convergence that are uniform with respect to h and k.
They are of the form required in the analysis of incomplete iterations in [10] and [5].
By combining our results with those of [10] and [5] one may obtain estimates of the
total error caused both by the discretization and the iterative solution of the algebraic
equations.

Various issues concerning multigrid methods for parabolic problems have been ad-
dressed in earlier work, for example, in [1], [8], [9], [12], [13], [14] [16], but in most cases
(except [1] and [16]) the convergence analysis is restricted to model problems with a
uniform mesh, where Fourier methods can be applied.

2. Abstract Multigrid Analysis

In the first subsection we define the multigrid algorithm and prove some convergence
results in the context of symmetric equations in an abstract framework. In the second
subsection we extend the analysis to a non-symmetric equation with a special structure.

2.1. Symmetric equations. Let M be a finite dimensional Hilbert space with
inner product (·, ·) and norm ‖ · ‖ = (·, ·)1/2 and let A(·, ·) be a symmetric, positive
definite bilinear form on M . With the linear operator A : M → M defined by

(Au, v) = A(u, v), ∀u, v ∈ M, (2.1)

our concern is to solve the equation

Au = f, for f ∈ M . (2.2)

Our multigrid method for (2.2) is then the iterative method

ul = ul−1 −B(Aul−1 − f), l = 1, 2, . . . , (2.3)

where B : M → M is defined as follows. We assume that we are given a nested sequence
of subspaces M1 ⊂ . . . ⊂ Mj ⊂ Mj+1 ⊂ . . . ⊂ MJ = M , and define the local version
Aj : Mj → Mj of A by

(Aju, v) = A(u, v), ∀u, v ∈ Mj . (2.4)



On Multigrid Methods for Parabolic Problems 195

The algorithm then defines Bj : Mj → Mj recursively for j = 1, . . . , J , starting with
B1 = A−1

1 , and finally sets B = BJ .
Assuming that Bj−1 is at our disposal and g ∈ Mj , we define Bjg ∈ Mj in three

steps, referred to as pre-smoothing, correction, and post-smoothing. The basic ingredi-
ent in the first and third steps is a so-called smoothing operator Rj : Mj → Mj , which
has the property that the corresponding operator I − RjAj reduces particularly well
the error components with high frequencies. In the middle step the lower frequencies
are reduced by projecting the residual onto Mj−1 and iterating with the aid of Bj−1.
With R

(l)
j = Rj , if l is odd, R

(l)
j = Rt

j , if l is even, where Rt
j is the adjoint of Rj , and

denoting by Qj : M → Mj the orthogonal projection, the algorithm is defined more
precisely as follows.

The Multigrid Algorithm. Let p, r, s be integers with p ≥ 1 and r + s ≥ 1. Set
B1 = A−1

1 and let 2 ≤ j ≤ J . Assume that Bj−1 : Mj−1 → Mj−1 has been defined, and
let g ∈ Mj . Then Bjg ∈ Mj is defined by

(i) r pre-smoothing iterations: set x0 = 0 and

xl = xl−1 −R
(l+r)
j (Ajx

l−1 − g), for l = 1, . . . , r,

(ii) p correction iterations: set q0 = 0 and

qi = qi−1 −Bj−1

(
Aj−1q

i−1 −Qj−1(Ajx
r − g)

)
, for i = 1, . . . , p,

(iii) s post-smoothing iterations: set y0 = xr − qp and

yl = yl−1 −R
(l)
j (Ajy

l−1 − g), for l = 1, . . . , s.

Finally, set Bjg = ys.
If instead of x0 = 0 we set x0 = w in step (i) of the algorithm, then we obtain

ys = w −Bj(Ajw − g), which is of the form required in step (ii) and in (2.3).
Note thus that in the second step we first project onto Mj−1 the residual ρ = Ajx

r−g

of the error remaining after the pre-smoothing in Mj , and then apply the analog of the
iteration (2.3) in Mj−1 to the equation Aj−1q = Qj−1ρ to solve for a correction qp,
which in the final step is interpreted as an element of Mj .

The reduction of error in each step of the iteration (2.3) is determined by the op-
erator D = I − BA, and the purpose of the convergence analysis is thus to estimate
some norm of D. In order to do so we introduce some more notation. Since A(·, ·)
is symmetric, positive definite we may define an inner product [·, ·] = A(·, ·) and a
corresponding norm | · | = [·, ·]1/2. We use the same notation for the induced operator
norm, and let T ∗ denote the adjoint of a linear operator T with respect to [·, ·]. More-
over, we let Pj : M → Mj denote the orthogonal projection with respect to [·, ·] and
λj = λ max (Aj) the largest eigenvalue of Aj .

Noting that the error reduction operators of the smoothing iterations alternate
between Kj = I−RjAj and K∗

j = I−Rt
jAj , we now show that Dj = I−BjAj satisfies

the recursion

Dj = K∗
j,s(I − Pj−1 + Dp

j−1Pj−1)Kj,r, j = 2, . . . , J, (2.5)
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where

Kj,m =

{
(K∗

j Kj)n, if m = 2n,

K∗
j (KjK

∗
j )n, if m = 2n + 1.

(2.6)

In fact, with g = Ajw in the definition of Bj , we have by (iii)

Djw = w −BjAjw = w − ys = (I −R
(s)
j Aj)(w − ys−1) = · · · = K∗

j,s(w − y0),

where w− y0 = qp + w− xr. Using the fact that Qj−1Aj = Aj−1Pj−1, we get from (ii)

qp = Dj−1q
p−1 + Bj−1Qj−1Aj(xr − w) = Dj−1q

p−1 −Bj−1Aj−1Pj−1(w − xr),

and hence, since q0 = 0,

qp + Pj−1(w − xr) = Dj−1(qp−1 + Pj−1(w − xr)) = · · · = Dp
j−1Pj−1(w − xr),

so that w−y0 = (I−Pj−1 +Dp
j−1Pj−1)(w−xr). Finally, by (i) w−xr = Kj,r(w−x0) =

Kj,rw, which completes the proof of (2.5).
Our analysis is based on the following three assumptions: there are positive con-

stants C1, C2, C3 such that

‖(I − Pj)v‖ ≤ C1λ
−1/2
j |(I − Pj)v|, v ∈ M, j = 1, . . . , J, (H1)

λj/λj−1 ≤ C2, j = 2, . . . , J, (H2)

|Kjv|2 ≤ |v|2 − C3λ
−1
j ‖Ajv‖2, v ∈ Mj , j = 2, . . . , J. (H3)

The assumption (H1) is an error estimate. In typical finite element applications it
is proved by means of the Aubin-Nitsche duality argument and expresses the fact that
the error in the elliptic projection Pj is smaller in the L2 norm than in the energy norm.
Assumption (H2) means that the change from Mj−1 to Mj is not too rapid. Assumption
(H3) expresses the smoothing action of Kj : if v is an eigenvector of Aj with eigenvalue
λ, then (H3) implies |Kjv|2 ≤ (1 − C3λ/λj)|v|2. High frequency eigenmodes are thus
attenuated more by Kj than low frequency modes. Note that C3 ≤ 1 with C3 = 1 for
the “perfect smoother” Rj = A−1

j and for Rj = λ−1
j I, cf. Lemma 2 below. Assumption

(H3) is satisfied in finite element applications by other smoothers of practical interest,
for example, the point and block Jacobi and Gauss-Seidel iterations, cf. [3].

By a spectral argument it follows from (H3) that |Kj | ≤ (1− C3/κ(Aj))1/2, where
in typical applications the condition number κ(Aj) = λ max (Aj)/λ min (Aj) → ∞ as
j → ∞. The convergence rate of the smoothing iteration may thus deteriorate as j

grows large. By contrast we shall show that |Dj | ≤ δ < 1 independently of j. Hence
the multigrid iteration (2.3) has a uniform rate of convergence.
The assumptions (H1), (H2), and (H3) enter our analysis combined into the inequality

|(I − Pj−1)v|2 ≤ C
(
|v|2 − |Kjv|2

)
, v ∈ Mj , C = C2

1C2/C3. (2.7)

To prove this inequality we first use (H1) to get

|(I − Pj−1)v|2 = [(I − Pj−1)v, v] = ((I − Pj−1)v, Ajv)

≤ ‖(I − Pj−1)v‖ ‖Ajv‖ ≤ C1λ
−1/2
j−1 |(I − Pj−1)v| ‖Ajv‖,
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and hence
|(I − Pj−1)v|2 ≤ C2

1λ−1
j−1‖Ajv‖2,

from which (2.7) follows in view of (H2) and (H3).
We begin by stating and proving a convergence result for the so-called V-cycle

algorithm, i.e., for p = 1, with one pre- and/or one post-smoothing iteration. Its proof
may be considered as an adaptation to our simple situation of an argument in [4].

Theorem 1. Assume that (H1), (H2), and (H3) hold. If r = s = p = 1 then

|I −BA| ≤ δ0 = 1− 1/C, where C = C2
1C2/C3.

If p = 1 and r + s = 1 then |I −BA| ≤ √
δ0.

Proof. If r = s = p = 1 then the recursion (2.5) becomes

Dj = Kj(I − Pj−1 + Dj−1Pj−1)K∗
j . (2.8)

This is an identity in Mj for j = 2, . . . , J . We extend its scope to all of M by setting

D̃j = I − Pj + DjPj = I −BjAjPj ,

K̃j = I − Pj + KjPj = I −RjAjPj ,

K̃∗
j = I − Pj + K∗

j Pj = I −Rt
jAjPj ,

and find that
D̃j = K̃jD̃j−1K̃

∗
j .

In fact, restricted to Mj this is the same as (2.8), and restricted to the orthogonal
complement of Mj with respect to [·, ·] its left and right sides reduce to the identity
operator. Since D̃1 = I − P1, we hence have

D̃J = K̃J · · · K̃2(I − P1)2K̃∗
2 · · · K̃∗

J ,

and with E1 = I − P1, and Ej = K̃jEj−1 for j = 2, . . . , J , this yields

I −BA = D̃J = EJE∗
J . (2.9)

Note that E∗
J and EJ are the error reduction operators of the non-symmetric algorithms

with r = 1, s = 0, and r = 0, s = 1, respectively. Since |I − BA| = |EJE∗
J | = |E∗

J |2
and |E∗

J | = |EJ | it therefore suffices, in all the cases considered, to estimate the latter
norm. In order to do so we take v ∈ M and consider the expressions

|Ej−1v|2 − |Ejv|2 = |Ej−1v|2 − |K̃jEj−1v|2, for j = 2, . . . , J.

From the definition of K̃j and (2.7) it follows that

|K̃jw|2 = |(I − Pj)w|2 + |KjPjw|2
≤ |(I − Pj)w|2 + |Pjw|2 − C−1|(I − Pj−1)Pjw|2
= |w|2 − C−1|(Pj − Pj−1)w|2,

for w ∈ M , j = 2, . . . , J . Hence, setting w = Ej−1v,

C(|Ej−1v|2 − |Ejv|2) ≥ |(Pj − Pj−1)Ej−1v|2 = |(Pj − Pj−1)v|2,
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where in the last step we used the fact that (I−Ej−1)v ∈ Mj−1 so that (Pj−Pj−1)(I−
Ej−1)v = 0. This follows by induction and the recursion relation I−E1 = P1, I−Ej =
I − Ej−1 + RjAjPjEj−1 for j = 2, . . . , J . Hence, by summation,

C(|E1v|2 − |EJv|2) ≥
J∑

j=2

(
|Pjv|2 − |Pj−1v|2

)
= |v|2 − |P1v|2 = |(I − P1)v|2,

which, since E1v = (I − P1)v, yields

|EJv|2 ≤ δ0|(I − P1)v|2 ≤ δ0|v|2.
This implies the desired result.

We now consider a more general case of the multigrid algorithm with an arbitrary
but equal number of pre- and post-smoothings, and an arbitrary number of corrections.
The result is a generalization of a result of [2] and may be seen as a special case of a
more general result in [7].

Theorem 2. Let r = s = m ≥ 1, p ≥ 1. Assume that (H1), (H2), and (H3) hold.
Then

|I −BA| ≤ δm =
C

C + m
, where C = C2

1C2/C3.

Note that the result of Theorem 1 is slightly better than that of Theorem 2 in
the case r = s = p = 1 because δ0 = 1 − 1/C < C/(1 + C) = δ1. Note also that
the convergence is faster if m > 1, but the present argument does not show that the
performance is better for p > 1.

Proof. We shall prove, by induction on j, that |Dj | ≤ δm, for j = 1, . . . , J . Since
D1 = 0 this is clearly true for j = 1. For j ≥ 2 we use the recursion (2.5) which now
takes the form

Dj = K∗
j,m(I − Pj−1 + Dp

j−1Pj−1)Kj,m.

Taking v ∈ Mj , setting temporarily u = Kj,mv, we have

[Djv, v] = |(I − Pj−1)u|2 + [Dp
j−1Pj−1u, Pj−1u].

It follows by induction that Dj is selfadjoint and positive semidefinite with respect to
[·, ·] so that |Dj | = supv∈Mj

[Djv, v]/|v|2. Moreover, assuming that |Dj−1| ≤ δm < 1 we
have

[Djv, v] ≤ |(I − Pj−1)u|2 + δm|Pj−1u|2 = (1− δm)|(I − Pj−1)u|2 + δm|u|2.
The desired result then follows from the following lemma.

Lemma 1. Assume that Kj satisfies (2.7). Let m ≥ 1 and δm = C/(C + m).
Then

(1− δm)|(I − Pj−1)Kj,mv|2 + δm|Kj,mv|2 ≤ δm|v|2, v ∈ Mj .

Proof. Let δ ∈ [0, 1]. Setting u = Kj,mv we first use (2.7) to obtain

(1− δ)|(I − Pj−1)u|2 + δ|u|2 ≤ C(1− δ)(|u|2 − |Kju|2) + δ|u|2.
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We now want to express the norms on the right in terms of v. Recalling the definition
of Kj,m in (2.6) we find that

K∗
j,mKj,m =

{
(K∗

j Kj)2n = (K∗
j Kj)m, if m = 2n,

(KjK
∗
j )nKjK

∗
j (KjK

∗
j )n = (KjK

∗
j )m, if m = 2n + 1,

and, similarly,

(KjKj,m)∗(KjKj,m) =

{
(K∗

j Kj)m+1, if m is even,

(KjK
∗
j )m+1, if m is odd,

so that with

K̂j =

{
K∗

j Kj , if m is even,

KjK
∗
j , if m is odd,

we have |u|2 = [K̂m
j v, v], and |Kju|2 = [K̂m+1

j v, v]. Hence

(1− δ)|(I − Pj−1)u|2 + δ|u|2 ≤ |C(1− δ)(I − K̂j)K̂m
j + δK̂m

j | |v|2.
The operator K̂j is selfadjoint and positive semidefinite. Moreover, (2.7) implies that
|Kj | ≤ 1 so that |K̂j | ≤ |K∗

j ||Kj | = |Kj |2 ≤ 1 and the largest eigenvalue of K̂j is
therefore ≤ 1. Hence, by the spectral theorem we have

|C(1− δ)(I − K̂j)K̂m
j + δK̂m

j | ≤ max
x∈[0,1]

(C(1− δ)(1− x)xm + δxm).

Since (1− x)xm ≤ m−1(1− xm) for x ∈ [0, 1], we have

0 ≤ C(1− δ)(1− x)xm + δxm ≤ C

m
(1− δ)(1− xm) + δxm = δ,

provided that C(1− δ)/m = δ, that is, δ = δm = C/(C + m). This proves the lemma.
This choice of δ is optimal. In fact, the above maximum is

f(δ) = C(1− δ)(1− x(δ))x(δ)m + δx(δ)m, where x(δ) =
m

m + 1
C(1− δ) + δ

C(1− δ)
,

and it can be shown that δm = C/(C + m) is the smallest fixed point of f .
Next we discuss the non-symmetric multigrid algorithms without pre-smoothing or

without post-smoothing.
Theorem 3. Let p ≥ 1, r + s = m ≥ 1 and either s = 0 or r = 0 and assume that

(H1), (H2), and (H3) hold. Then

|I −BA| ≤
√

δm, where δm = C/(C + m) with C = C2
1C2/C3.

Proof. We first consider the case when r = m ≥ 1, s = 0. The recurrence relation
(2.5) then becomes

Dj = (I − Pj−1 + Dp
j−1Pj−1)Kj,m,

and Dj is no longer selfadjoint. But, if |Dj−1| ≤
√

δm < 1, then we have for u = Kj,mv

|Djv|2 = |(I − Pj−1)u|2 + |Dp
j−1Pj−1u|2 ≤ |(I − Pj−1)u|2 + δm|Pj−1u|2

= (1− δm)|(I − Pj−1)u|2 + δm|u|2.
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Hence Lemma 1 implies |Dj | ≤
√

δm, which is the desired result in this case.
Finally when r = 0, s = m ≥ 1 the recursion (2.5) is

Dj = K∗
j,m(I − Pj−1 + Dp

j−1Pj−1).

Taking adjoints we obtain

D∗
j = (I − Pj−1 + (D∗

j−1)
pPj−1)Kj,m,

and since |Dj | = |D∗
j | the desired result follows from the above.

Finally we remark that when p = 1 we have I−BSA = (I−BNA)∗(I−BNA), where
BS and BN , respectively, are the operators associated with the symmetric algorithm
considered in Theorem 2, and the non-symmetric algorithm considered in the first part
of Theorem 3, see (2.9). Hence |I − BSA| = |I − BNA|2 when p = 1. Moreover, the
convergence rate for p > 1 is always bounded by the convergence rate for p = 1, see [6].
Thus it actually suffices to prove either Theorem 2 or Theorem 3 for p = 1 in order to
obtain the results of this subsection.

2.2. A non-symmetric equation In this subsection we assume that M is a
complex Hilbert space of finite dimension and consider a special non-symmetric bilinear
form

A(u, v) = S(u, v) + iβ(u, v), u, v ∈ M,

where i2 = −1, β ∈ R and S(·, ·) is Hermitian, positive definite with

S(u, u) ≥ α‖u‖2, α > 0. (2.10)

Defining again the operators A,Aj by (2.1), (2.4) we want to solve equation (2.2) by the
iteration (2.3) defined by the multigrid algorithm described in the previous subsection.

In order to analyze this algorithm we now use the inner product [·, ·] = S(·, ·)
and corresponding norm | · | = [·, ·]1/2. We also define operators Sj : Mj → Mj and
Pj : M → Mj by the equations

(Sju, v) = S(u, v), ∀u, v ∈ Mj ,

A(Pju, v) = A(u, v), ∀u ∈ M, v ∈ Mj , (2.11)

and let λj denote the largest eigenvalue of Sj . Note that Aj is invertible so that Pj

exists with Pj = A−1
j QjA. Note also that Aj = Sj + iβI, where Sj is Hermitian and

thus Aj is normal with respect to [·, ·], and that λj is the largest of the real parts of
the eigenvalues of Aj .

We still want to use the assumptions (H1), (H2), and (H3) for Pj , λj , and Kj .
Concerning Kj we note that it is no longer true in general that I − Rt

jAj is equal to
K∗

j , so that alternating products of factors Kj and K∗
j would not occur as in (2.5).

We therefore restrict our discussion now to operators of the form Kj = I − µAj ,
corresponding to smoothing operators Rj = µI, where µ is a positive parameter. In
this case Kj is a normal operator with respect to [·, ·] and, as we shall see in the
convergence proof below, the spectral argument in Lemma 1 can still be applied. In
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the following lemma we first show that (H3) and (2.7) are satisfied with the proper
choice of µ.

Lemma 2. Let Rj = µI and γ = (1 + β2/α2)−1. If |µλj − γ| ≤ ε < γ, then (H3)
holds with C3 = γ2 − ε2. If, in addition, (H1) and (H2) hold, then (2.7) follows.

The optimal choice ε = 0 gives µ = γλ−1
j , C3 = γ2 and, in particular, µ = λ−1

j ,
C3 = 1 if A(·, ·) is symmetric. This is difficult to achieve exactly because λj is unknown,
but the lemma permits λj to be replaced by an estimate.

Proof. We have

|v|2 − |Kjv|2 = 2µ Re [Ajv, v]− µ2|Ajv|2.
Here |Ajv|2 ≤ λj‖Ajv‖2 and Re [Ajv, v] = ‖Sjv‖2. Since

‖Ajv‖2 = ‖Sjv‖2 + β2‖v‖2 ≤ (1 + β2/α2)‖Sjv‖2,

we conclude

|v|2 − |Kjv|2 ≥ (2γµ− µ2λj)‖Ajv‖2 = (2γµλj − (µλj)2)λ−1
j ‖Ajv‖2.

Here 2γµλj− (µλj)2 = γ2− (µλj−γ)2 ≥ γ2− ε2 from which the first part of the lemma
follows. In order to prove (2.7) we first use the definitions of Pj , Aj in (2.11), (2.4)
together with (H1) to get

|(I − Pj−1)v|2 = Re
(
A((I − Pj−1)v, (I − Pj−1)v)− iβ((I − Pj−1)v, (I − Pj−1)v)

)

= Re A((I − Pj−1)v, v) = Re ((I − Pj−1)v, At
jv)

≤ ‖(I − Pj−1)v‖ ‖At
jv‖ ≤ C1λ

−1/2
j−1 |(I − Pj−1)v| ‖Ajv‖,

since At
j = Sj− iβI, so that ‖At

jv‖ = ‖Ajv‖. Using also (H2) and (H3) we obtain (2.7).
We now show, using an argument of [1], that if the number of correction iterations

p is greater than 1, and the number of smoothing iterations is sufficiently large, then
we have a uniform rate of convergence.

Theorem 4. Assume that (H1), (H2) hold and that Rj = µI with µ chosen
according to the condition in Lemma 2. Let p ≥ 2, r = m ≥ 1, s = 0, C = C2

1C2/C3,
and σ = 1 + |β|/α. Then

|I −BA| ≤ 2
√

C/m, if m ≥ 4C(2σ)2/(p−1).

Proof. We argue by induction as in the proof of Theorem 3. The recurrence
relation for Dj is now

Dj = (I − Pj−1 + Dp
j−1Pj−1)Km

j ,

which is proved in the same way as (2.5). If |Dj−1| ≤ δ < 1, then since, as is easily
seen, |Pj−1| ≤ 1 + |β|/α = σ and, by (H3), |Kj | ≤ 1, we have

|Djv| ≤ |(I − Pj−1)Km
j v|+ σδp|v|.

Using (2.7) and the fact that Kj is normal we get with K̂j = K∗
j Kj

|(I − Pj−1)Km
j v|2 ≤ C

(
|Km

j v|2 − |Km+1
j v|2

)
= C[(I − K̂j)K̂m

j v, v].
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Since K̂j is selfadjoint, and since by (H3) its spectrum lies in the interval [0, 1], we
conclude as in Lemma 1, using the inequality (1− x)xm ≤ 1/m for x ∈ [0, 1], that

|(I − Pj−1)Km
j v|2 ≤ C

m
|v|2.

Hence
|Dj | ≤

√
C/m + σδp ≤ δ,

if, for example, we choose δ = 2
√

C/m and m so large that σδp ≤ 1
2δ, which is the

desired result.

3. Application to Parabolic Problems

In this section we illustrate how the abstract results of the previous section can be
applied to parabolic problems by considering the heat equation (1.2) with homogeneous
Dirichlet boundary conditions written in weak form: find U(t) ∈ H1

0 (Ω) for t ≥ 0 such
that U(0) = U0 and

(Ut, v) + (∇U,∇v) = (g, v), ∀v ∈ H1
0 (Ω), t > 0, (3.1)

where (·, ·) denotes the standard inner product in L2(Ω). We assume that Ω ⊂ R2 is a
bounded convex polygonal domain. For the approximation of (3.1) with respect to the
spatial variable we introduce a nested sequence M1 ⊂ . . . ⊂ Mj−1 ⊂ Mj ⊂ . . . ⊂ H1

0 (Ω)
of piecewise polynomial finite element spaces. Defining first M1 by means of a coarse
triangulation of Ω, we assume that the triangulation defining Mj with mesh-size hj is
obtained by subdividing each triangle corresponding to Mj−1 into a fixed finite number
N2 of congruent triangles so that hj−1 = Nhj .

We now consider the discretization of the time variable. Let ∆j : Mj → Mj denote
the discrete Laplacian defined by

−(∆ju, v) = (∇u,∇v), ∀u, v ∈ Mj .

In an A-stable linear multistep method with time step k one has to solve an equation
in MJ of the form

(
(α + iβ)I − k∆J

)
u = F, with α > 0, β ∈ R, (3.2)

on each time level, cf. [15]. For the backward Euler method we have α = 1, β = 0,
and for the second order backward differentiation method α = 3/2, β = 0, cf. [5]. F

depends on g, k and on the approximate solution at one or more previous time levels.
In a onestep method based on an A-stable rational approximation r(z) = p(z)/q(z)

of e−z, such as certain Padé approximations, one similarly has to solve the equation

q(−k∆J)un = p(−k∆J)un−1 + F, (3.3)

where F depends on g and k. After factorization of the denominator q(z) this reduces
to a sequence of equations of the form (3.2), since, by A-stability, r(z) has all its poles



On Multigrid Methods for Parabolic Problems 203

in the left half-plane. For the Crank-Nicolson method we have α = 2, β = 0. At the
end of this section we present an example where β 6= 0.

Setting

A(v, w) = k(∇v,∇w) + (α + iβ)(v, w), with α > 0, β ∈ R,

our aim is now to check that the assumptions of the previous section are satisfied with
constants that are independent of j and k. With

[v, w] = S(v, w) = k(∇v,∇w) + α(v, w), |v| =
(
k‖∇v‖2 + α‖v‖2

)1/2
,

it is first of all clear that S(·, ·) is symmetric, positive definite and that (2.10) holds.
Let µj be the largest eigenvalue of −∆j . Then the largest eigenvalue of Sj is

λj = α+kµj , where µj is bounded above and below by positive multiples of h−2
j . Since

hj−1 = Nhj we thus have

λj

λj−1
≤ 1 + c2kh−2

j

1 + c1kh−2
j−1

=
1 + c2kh−2

j

1 + N2c1kh−2
j

≤ C,

which is (H2).
We next consider (H1) in the case k ≤ h2

j . Here λj ≤ 1 + c2kh−2
j ≤ C and hence

‖(I − Pj)v‖ ≤ α−1/2|(I − Pj)v| ≤ Cλ
−1/2
j |(I − Pj)v|.

For k ≥ h2
j we use an adaptation of the standard duality argument. Let ψ ∈ L2 and

let w ∈ H1
0 (Ω) be the solution of

A(φ,w) = (φ, ψ), ∀φ ∈ H1
0 (Ω). (3.4)

Then, for any χ ∈ Mj , and with C = 1 + |β|/α,

((I − Pj)v, ψ) = A((I − Pj)v, w) = A((I − Pj)v, w − χ) ≤ C|(I − Pj)v| |w − χ|. (3.5)

Here, with suitable χ,

|w − χ|2 = k‖∇(w − χ)‖2 + α‖w − χ‖2 ≤ C(kh2
j + h4

j )‖w‖2
H2(Ω) ≤ Ckh2

j‖w‖2
H2(Ω).

We now show that k‖w‖H2(Ω) ≤ C‖ψ‖ uniformly in k. In fact, since

−∆w = k−1(ψ − (α + iβ)w),

we have by the standard regularity estimate for elliptic problems

k‖w‖H2(Ω) ≤ C(‖w‖+ ‖ψ‖).
But choosing φ = w in (3.4) we have

α‖w‖2 ≤ |w|2 = Re A(w, w) = Re (w, ψ) ≤ ‖w‖ ‖ψ‖,
so that ‖w‖ ≤ C‖ψ‖, which completes the proof. Thus, for χ ∈ Mj suitable,

|w − χ|2 ≤ Ck−1h2
j‖ψ‖2 ≤ Cλ−1

j ‖ψ‖2,
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since λj ≤ Ckh−2
j . Together with (3.5) this shows

‖(I − Pj)v‖ ≤ Cλ
−1/2
j |(I − Pj)v|,

and thus completes the proof of (H1).
For Rj = µI, with µ appropriately chosen, we have thus checked the assumptions

of Theorem 4, and if β = 0 the assumptions of Theorems 1, 2, and 3. In the latter
(symmetric) case we may also use smoothing iterations of Jacobi and Gauss-Seidel
type, see Chapter 5 of [3], where proofs of A.4, which is equivalent to our (H3), may be
directly adapted to our situation to show that the constant C3 is independent of the
time step k.

In these situations we thus conclude that the multigrid iteration (2.3) has a rate of
convergence which is independent of J and k. Since our results are expressed in the k-
dependent norm | · | they may be combined with the results of [10] and [5] on incomplete
iterations to obtain estimates of the total error caused both by the discretization and
the iterative solution of the algebraic equations.

We finish by presenting a detailed example: the piecewise linear discontinuous
Galerkin method, which is related to the (2,1)-Padé approximation of the exponen-
tial, cf. [11]. In this method the approximate solution of (3.1) is sought in the space of
discontinuous, piecewise linear functions of t with coefficients in MJ corresponding to
a subdivision of the t-axis into small intervals not necessarily of the same lengths. If
I = (t1, t2) is such an interval of length k = t2 − t1, then we introduce

Π1(I;MJ) =
{

v : v(t) = v1
t2 − t

k
+ v2

t− t1
k

, v1, v2 ∈ MJ

}
,

and represent functions v ∈ Π1(I;MJ) by their left and right nodal values v1, v2 ∈ MJ .
The approximation is determined on I as the solution of the variational problem: find
u ∈ Π1(I;MJ) such that

(u1, v1) +
∫

I

(
(ut, v) + (∇u,∇v)

)
dt = (u0, v1) +

∫

I
(g, v) dt, ∀v ∈ Π1(I;MJ),

where u0 is the right nodal value from the previous time interval. In order to be able
to progress in time we need to compute the right nodal value u2 on the present time
interval. Simple calculations show that

(
−k

6
∆J

[
2 1
1 2

]
+

1
2

[
1 1
−1 1

]) [
u1

u2

]
=

[
F1

F2

]
,

where F1 = QJ(u0+
∫
I g(t)(t2−t) dt/k) and F2 = QJ

∫
I g(t)(t−t1) dt/k. By elimination

of u1 we obtain

((−k∆J)2 + 4(−k∆J) + 6)u2 = −(2(−k∆J) + 6)F1 + (4(−k∆J) + 6)F2,

which is of the form (3.3). Dividing the solution into partial fractions we find

u2 = Re
(
(−k∆J + 2 + i

√
2)−1((−2 + i5

√
2)F1 + (4− i

√
2)F2)

)
,
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so that u2 = Re w, where

(−k∆J + 2 + i
√

2)w = (−2 + i5
√

2)F1 + (4− i
√

2)F2, (3.6)

which is of the form (3.2).
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