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Abstract

This paper presents a random numerical method which combines the random
vortex method and the random choice method. A random choice method 18 used

for the modeling reaction-diffusion system. The splitting of source terms in two di-
mensions for the random choice method is tested. A hybrid random vortex method

is used for solving the Navier-Stokes equation which governs the fluid motion. With
the assumption of incompressibility, the fluid motion can be uncoupled from the
chemistry. The method is applied to a flow passing a circular cylinder which 1is
kept cold or heated. In both cases the method demonstrates an ability to resolve
turbulent effects on flame front propagation.

§1. Introduction

A. Equations of Fluid Motion
Consider a two-dimensional Navier-Stokes equation in a domain D with boundary

aD:

Su+ (u-V)u = Re 1Au - E—}-), . 2,
g
div (‘H) — 0,_ in -D:
u = (0,0), on 3D (1.1)

where u = (u,v) is the velocity vector, r = (z,y) is the position vector, t is time,
A = V? is the Laplacian operator, P is pressure, p is density and Re is the Reynolds
number associated with flow.

Equation (1.1) is difficult to solve by a finite-difference method, particularly at large
Reynolds numbers. Chorin ([5],[8]) has developed a grid-free method for modeling
turbulent flow. In that method, the random vortex method, the creation of vorticity
along boundaries is modeled by creation of vortex blobs, discrete quantities of vorticity.
The vortex blobs themselves are not vortices but elements whose unions form vortices.
The motion of the fluid flow is modeled by considering the interaction of these blobs.
The random vortex method and vortex sheet method are described in Section 2.

* Received August 1, 1990.
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B. Equations of Combustion

Combustion is governed by a complicated interaction of advection, diffusion and

reaction. For simplicity, we consider a single step reaction given by A — B which

describes a premixed combustible or an oxidation reaction where either fuel or oxidizer
is present in small quantities. When written in dimensionless variables, the equations
governing this combustion process are

p(8,Y4 + (u - V)Ya) = Le AYa ~ pK sY e~ N4/7,
o(8,T + (u-V)T) = AT + pQaKaYae ¥4/T (1.2)

where T is temperature, p is density, Y, is mass fraction of chemical spices A,u is the
velocity vector of fluid flow, Ley is the Lewis number associated with the mixture and
Q 4 is the heat released by the reaction. The reaction rate is determined by N4, the
activation energy, and K4, the pre-exponential factor. In this form, 0 < Y4 <1 and
in absence of external heat T, < T < T}, + ¢ with T}, = 1 4+ T,,, where T, 1s ambient
temperature, T} is burning temperature, ¢ 18 to accommodate slight overshoot of T
possible for a reactién which is much faster than diffusion.

To solve equation (1.2) numerically, difficulties arise due to the difference in time
scales, especially in a fast reaction. A very small time step is necessary in order
to maintain the stability of the solution (Dwyer and Otey[11]). The random choice
method of Glimm|[12] has successfully modeled the system of hyperbolic conservation
laws (Chorin[6], Sod[19]) and is suitable for solving differential equations_ which have
steep gradients in the solution profiles. Sod[22] has shown how the random choice
method can be extended to solve reaction-diffusion equations. The applications of the
method can be found in Sod [23] [24].

We combine a hybrid vortex method with the random choice method to model the
turbulent combustion phenomina. The combustion model is applied to the ignition of
a flow pussing a circular cylinder. The flow produces vortices behind the cylinder; the
flame profiles show that the correct modeling of vortices is important as propagation
of the flame. | |

§2. Vortex Methods

A. The Random Vortex Method
We introduce the vorticity £ = v x u = J;v — ,u. By taking the curl (7 x) of
equation (1.1), we obtain the scalar vorticity transport equation

8,6 + (u-V)¢ = Re ' Lé, div(u) =0. (2.1)

The vorticity field & gives rise to a velocity field u which transports it. A stream
function ¢ is introduced which satisfies

u= 0y, v=-079. (2.2)
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Using the definition of vorticity, we obtain a relationship between ¢ and ¢&:
DAY=~ m D,

The vortex method is based upon this stream function-vorticity formulation. The
construction of the vortex blob method consists of four steps:

Stepl. First assume the flow is inviscid, that is, R;1 = 0 and there are no
boundaries. Equation (2.1) reduces to the inviscid Euler equations
DE/Dt=0, A¢=-¢ (2.3)

where D /Dt denotes the total derivative. Consider a collection of N point vortices
with circulations £;,£2,- - ,&n located at points ry,r2,---,rn respectively and total
vorticity 1s £ = 2?;1 £;. We may write the vorticity field in the form

N
E(r) =) &ibo(r — ), (2.4)

1=
where {y(r) is an approximation of Dirac delta function é(r) proposed by Chorin [5]:
’ = el
r|| < o,
fo(r) = { 27Ili7l (2.5)
0, 7}l 2> o;

here o is a cut-off value to be determined later.
Solving the stream function, we have

1
~5—lIrll + constant, ||r|| < o,
T
Yo(r) = y - (2.6)
—ghl”"‘ﬂi Ir]| > .
The velocity field from (2.2) is
(Sralilr 2regiey) Il <@
up(r) = - . (2.7)
- .
(2ol BpE) Il 2

The velocity field induced by the vorticity field £(r) in (2.4) is

N
u(r) = Z&un(r —r;), (2.8)

Step 2. Consider the normal boundary condition 1 - n = 0 where n is an outward
pointing unit normal to d1). This condition is satisfied by adding a potential flow to
the flow field induced by the vorticity field.

Step 3. Neglect the boundary and consider R;1 # 0. Consider the diffusion

equation

3t£ = RE_I A E
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In this, viscosity is included by adding a random walk component to the discrete

solution of the Euler's equation.

Step 4. We reintroduce the boundaries and consider the tangential boundary
condition:

u-6=0, on 8D (2.9)

where u = u; + up from Steps 1 and 2, and 4 is the unit vector in tangential direction.
Simulating the way in which the vorticity is created in flows,Chorin [5] proposed a
vorticity creation algorithm on 8D. Vortex blobs are introduced at points on 0D,
equally spaced a distance Ah apart, with vorticity u - Ah so that the induced velocity
as the vortex blob moves of 8D will satisfy u - s = 0.

Combining the previous steps, the discrete approximation is

2Pt = 2P 4 At{u + up) + 71,
yr =yl + At(v; + vp) + M, (2.10)

where (u;,v;) is frony Step 1 in (2.8) and (ups, vpi) potential flow ftom Step 2. (71, 72)
is an independent Gaussian random variable with mean 0 and variance 2At [ Re.

B. Vortex Sheet Method

The rate of convergence near 8D is slow with the method of vorticity creation
presented above. Chorin [8] introduced a new vorticity generation technique, the vortex
sheet method, based on the fact that, within the boundary layer, the Navier-Stokes
equation can be approximated by the Prandtl equation (Schlichting [18]):

8i€ + (u- V)¢ = Re™ '8¢, | (2.11a)
§ = —dyu, (2.11b)
div(u) = 0, (2.11c)

where u = (u,v), u is tangential to 8D and v is normal to 8D. Computational element
vortex sheet S; is tangential to the boundary of length Ak and centered at r; = (z:,9:).
The intensity &; of vortex sheet is defined such as

&= —(u(yl) — u(y; ),

the jump of the velocity as y crosses the vortex sheet S;. Equation (2.11b) can be
integrated in the form

u(z,y) = Ux(2) — Lm E(z,T)dr (2.12a)
and equation (2.11c) yields |
v(z,y) = —0; /: £(z,T)dr. (2.12b)

It can be readily seen that if £ is known, u = (u,v) can be calculated by (2.12).

o
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Consider a collection of N segments 5; of vortex sheets of intensities £; and centered
ri,t=1,.--,N. The velocity u; = (u;,v;) of 5; is obtained by discretizing (2.12):

1
u; = Uoo(2s) — 56 = Y &id; (2.13)
IF#1
where d; = 1 2 ; hzil and the summation is taken over all j such that y? > y* and
dj > 0.
v; = —(Iy — I_)/Ah (2.14)
where

I = Um(zi) — Eﬂ:fjd}hy;r

AV
d} =1-lz; &+ S z;|/ Ok,

y; — mj-n(yir yj)*

The sum ¥, (resp. X_) is over §; such that d;' <1 (resp. d; <1).
From (2.13) and (2.14), the position of the vortex sheets are moved according to

A z.' + Atu;, y}‘“ =y.' + Atv; + n;

¥
where o; is a Gaussian distribution with mean 0 and variance 2 A t/R., which only

applies to y-component since diffusion in the z-direction is neglected on the Prandtl
boundary layer approximation.

§3. The Random Choice Method

A. The Random Choice Method for a Reaction-Diffusion System
Consider the reaction-diffusion system of equations

OV + 8. F(V) =88V + G(V), V(z,0)= f(z) (3.1)

where v = (v1,v2,--,vp),% = diag (vy,vq, - ,0p), Withv; > 0,i=1,--.,p, G is a
nonlinear reaction or source term and the Jacobian of F, 9 F;/8v; has real and distinct

eignvalues. |
Ifv=0and G =0, (3.1) reduces to a system of hyperbolic conservation laws:

atﬂ + 3IF(H) =. (. (32)

A random choice scheme was proposed by Glimm [12] to construct solutions to
(3.2) and prove existence under the condition that the total variation of the initial
data is sufliciently small. The method was developed as a computational technique
by Chorin([6], [7]), Colella([10]) and Sod ([19], [21]). For the numerical solution of
(3.1), the general flow can be decomposed into elementary waves (3.2) and steady
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waves (Sod[22]), as in the method developed by Liu([14](15]) using a boundary value
problem to obtain the steady waves. The steady waves reduce to the system of ordinary

differential equtions
8. F(v) = #0%v + G(v). (3.3)

Given the approximate solution uf to v(ih,ik), where h is the space step size and k
is the time step length. Firstly, (3.3) is solved as a two-point boundary value problem 1n
each interval [ih, (i + 1)R) to obtain a steady state solution v* with boundary conditions

v*(ih) = u}, v*((i+1)h) = ul},. , (3.4)

The solution on [ik, (i + 1)h] is sampled at the midpoint to produce a piecewise

constant approximation
v(z,nk) = ul , = v°((i+ 1/2}h), th<z < (i+1)h

The conservation laws (3.2) are solved using Glimm’s method for nk < ¢ < (n+1)k,

with the piecewise constant states as initial conditions

> wv(z,nk)=ul,,y th<z< (z+ 1) A.

Thus, a sequence of Riemann problems 1s produced centered at the grid points

¢ = ih. If the CFL condition is satisfied, that is, h/k = 2)-'1(1?)

i=1,2,.--,p, of Jacobian of F(v), the waves generated by the individual Riemann
problem will not interact. Hence, each is solved separately and the solutions can be
combined by superposition into a single exact solution , denoted by v¢(z,t) defined for
nk < t < (n+ 1)k. Define the approximate solution for (3.1) at the next time level by

wttl = v%((i + €n)h, (n + 1)E)

. for all eigenvalues A;,

where £, is an equidistributed random variable in the interval (-1/2, 1/2).
By applying the random walk solution to the diffusion equation, Sod [22} showed
that for a single scalar coefficient equation

Ov + cO,v = vd2v,

the condition
k = h*/8v (3.5)

is necessary to provide the consistent amount of diffusion. For a system of equations,
the extension of (3.5) requires that

2 hz
o s it

8v; 8vy,

which is impossible to satisfy unless a different grid spacing h; is used for each different
value of v;, such that
_ B2

¥
8v;

k=

T L
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7

The two-point boundary value problems then can be solved on the finest grid, with
boundary values interpolated at that gird. The initial values for the Riemann problems
are interpolated from the solution to (3.4) on the finest grid.

The computation required i1n solving the large number of boundary value problems
could be prohibitive. However, Sod [20] proposed the use of a dictionary. Equation
(3.3) can be reduced by omitting the advection term

Voiv +G(v)=0

which is independent of z and ¢ and the solution is only needed at the midpoint.
Therefore, it 1s necessary to consider different possibilities for the boundary values
(3.4) and solution for other boundary values can be obtained by using a dictionary and
linear interpolations.

B. Application to Combustion

Let v = (Y4,7T). Then, (1.2) can be written as

8w + (u - Vv = pAv + G(v) (3.6)

where 5 = diag{Le;*,1). (3.6) is an equation of the form (3.1) except that it is not
in conservation form. However, u 1s known at each grid point from the Navier-Stokes
equation and so can be treated as a piecewise constant. The CFL condition becomes

k .2 1
h — 2max ||u]|

In the applications, a general boundary condition 1s often considered:

av + cg—: = b{(t) on 0D, (3.7)

where a and ¢ are constants.
To demonstrate how the boundary conditions are implemented, without loss of

generality, consider the z-sweep with 8D = {z|z = 0} and (3.7) becomes
av(0,t) + c8,v(0,t) = b(t), on OD.

Approximating 3, by a centered difference, we have

n u? — ur—ll n
= J.8
R (38
with t = nk,b" = b(nk). The grid point corresponding to : = —1 lies outside the
physical domain. We may solve (3.8) for u™,
2h
uL, = u; + —;—(uug — b*). (3.9)

In order to find the approximate solution at the next time level at the boundary
z = 0, we need to establish a left and a right state for the Riemann problem associated
with this point. The appropriate two-point boundary value problem is solved on the
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interval [-h,0] with the left boundary condition given by (3.9}, and an appropriate two-
point boundary value problem is solved on the interval [0, h]. If ¢ = 0, the solution is
known at z = 0 and a Riemann problem is not needed at this point.

§4. A Test Problem for the Random Choice Method

For physical problems in two or more space dimensions, extenion of the random
choice method requires splitting the source terms into an z-sweep followed by a y-
sweep. To test the splitting of the source term, we consider

8w = 8%v + 3:,1: + v (4.1a)
with initial condition
v(z,y,0) = sin(z + y) (4.1b)
where D = {z,y|0 < z,35 < 7}. The equation has an exact solution
g v(z,y,t) = e *sin(z + y). (4.2)

In the text problem, Dirichelet boundary conditions are applied by taking values

from this exact solution on dD.
In this case, splitting of the source term G = v is required for decomposing equation

(4.1a) into

1 1

Eﬂ;v = 82v + b (4.3a)
1 g
Eﬁt‘u = g,v + 5 (4.3b)

Table 1. Maximum errors for the test of operator splitting

Maximum errors
Entry Time 40 x 40 gnd 80 x 80 grid
1 t = 0.10 6.6946E-02 3.2655E-02
2 =0.20 6.3831E-02 3.0818E-02
3 t = 0.30 5.7108 E-02 2.9676E-02
4 t = 0.40 5.1835EK-02 2.4805E-02
5 t = 0.50 4.6590E-02 2.3323E-02
6 t = 0.60 4.2024E-02 2.0306E-02
7 t = 0.70 3.7256 E-02 1.8536E-02
8 t = 0.80 3.3752E-02 1.6625E-02

Equation (4.3a) is solved by an z-sweep and followed by a y-sweep for (4.3b). Figure
1 shows the exact and numerical solutions for z = y at times ¢t = 0.2 and 0.8 on a 80 x 80
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gird. The maximum errors of the numerical solution for (4.1) are shown in Table 1. It
can be seen that gird spacing is important in this application.
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(a) & =:0.2 " (b}t = (;.8
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Fig. 1, Exact and numerical solutions of equation (4.1) on z = y

§5. Numerical Results

Consider a circular cylinder of radius 1, immersed in an incompressible gas fluid of
density 1, to which is imparted at time t = 0 constant velocity of magnitude U,,. We
should study the development of the flow by the vortex method and the propagation
of the flame in two cases: 1) the cylinder is cold; 2) the cylinder is heated.

A. Hydrodynamics

~ We use the hybrid vortex method for hydrodynamics. Near the boundary the
computational elements are vortex sheets; outside the boundary layer we use vortex
blobs. Sheets moving out of the boundary layer become blobs with £yop = Ok * & peet.
However, sheets which cross the boundary are reflected back to preserve the vorticity.

In Step 2 of the vortex method, potential flow can be replaced by the method
of images using the circle theorem (Milne-Thomson[16]). The free stream velocity at
infinity with components (U.,,0). The complex potential in the absence of the cylinder
is Jooz, and with the cylinder present becomes w = Uy + Uxa?/z and the stream
function of this complex potential is

a’

m’+y2)'

#(z,3) = Tmage (&) = Uiy (!

Then the free stream velocity (u,7,vp) in (2.10) has to be modified:
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U = (5.1)
- Ow I [ 3 '
P78z 2 4 gt
Let a point vortex of strength x at the point z = zg, for which the complex potential
1K

s w = > lr.':-g(z — 2zp). In the presence of the circular cylinder, the complex potential
(z — zp)zY .. ; . ;

becomes w = — — lng{ } Since the image system consists of a point vortex
a? — 2z

of strength x at the origin and one of strength —« at the point z = a?/z, inverse to
the position of the original vortex, in the formula (2.10) (u;,v;) become

! (yj + yj £ =1
=) 57 +
. 1#£] 211'1',;:; . i#] s i’j)z Ej £ ] 277 A

i#3 Py ij vy
a’z;
r —(z; — z:) f¥(32+y2_mt) K.
g AT 1 7 J )
== Z 2712, St E 2xo(r..)? it Z 27T S
1?ﬁj i} 1?’:3 L) 1?53 18

g 270T;; o Qircr(rij =
3 2
a“r; 2 a y; 2
where r; = (z;—2:) +(y;- %)%, () = (55 -=) +(o3 ) rh = 2ty
1] J i J 1) 1\ "1y 2 2 t ' 2 2 Tt} v 3l 1 1)
+ Y "

Y/ is taken over r;; > o and ¥ over ry; < IfT
To choose the numerical parameters, the boundary of the circle is divided into

ANy
M = 20 pieces, each of length Ah = 27/M, and cut-off o is chosen to be — (Cheer{31).

The Reynolds number is chosen from 500 to 10000. The time step size for the vortex

method is chosen as At = 0.1. |
One of the very important quantities is the drag coefficient. We use the following

formula to calculate Cp (Chorin[5]):

where C, is the skin drag and C, is the form drag, given by

C, = - s Ea-.siﬁﬂdf_?,u (ip = Pscos 8d6
oD | al
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where rcos8 = z, rsinf = y, {5 is the vorticity on 8D and p; is the pressure on 8D:

é
Py(8) = —-/6:. On€ds + constant.

The average drag can be calculated by
| t

Cu(t, T} = Cp(t)dt.
t—T

Figure 2 depicts the drag coefficient Cp and average drag Cp(t,0) for Re = 2000
(marked lines A, B} and Re = 5000 (marked lines C, D) which are in excellent agree-

ment with experimental values (Schlichting[17]). The drag coefficient for the Reynolds
number 2000 starts at a higher value. Because of the impulsive start of the cylinder,

many vortex sheets are created on the boundary. Averaging over the time from ¢ = 0 to
t = 12, we get an average drag coefficient of Cp = 0.933 which agrees with the experi-
mental result very well. As we increase the Reynolds number, we find that Cp = 1.04
at Ke = 5000; this rise is also experimentally observed.

% T | T T T T | [ | i ' | T
WY " -
1.3 =
1.2 | =
?\ ;
1=.*|'t---7<}%:7 -
= /\'\ﬁ - 2
% e o
= el 7 \/- "“‘\“‘ﬂ%«a-—-“"ﬂ ———:—-——-M
s f / \/: ’_\*L.T
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W N ey =
L
W & -
L
S .8 %
&
2 e 4
-t
3
A i
b =
.5,'_ L | 1 I L | L | I | L A

1
2 4 & 2 il 12 14 16

X
Fig. 2. Drag Coefficient for Re = 2000, Re = 5000
A-denote Cp(t) and B-denote Cp(t,0) for Re = 2000.
C—denote Cp(f) and D-denote C'p(¢,0) for Re = 5000.

Figures 3a-d depict the velocity profile at times t = 4.0,6.0,8.0 and 10.0 for
He = 5000. At the early time stage, large symmetric vortices behind the circle are
developed, and small vortices near the boundary are observed near the boundary due
to the vorticity creation to satisfy the no-slip condition. But while this condition per-
sists in front of the cylinder, where the fluid is accelerated, backward flow would push



124 YU SONG

the particles near the boundary into the main stream, the symmetry is lost. This has
very good agreement with the experimental results (see Batchelor [2], Lewis [13]).
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Fig. 3. Velocity Profile of flow passing a circular cylinder
B. Combustion
In our first numerical experiment of combustion, we assume that the cylinder 1s kept
cold (ambient temperature) and the premixed gas has been ignited at z = —oo and the
flame reaches the circular cylinder at ¢ = 0. That gives us the following initial-boundary

value problem on domain D = {z,y|-1.5 <z < 12,-3.0< y < 3.0,z2%2 4y > 1}, with
boundary conditions:

T =1T,, for z = ~-1.5, all y;
T =T,, for 8D, ie. 2% +y*=1;
8Y,/8n = 0, for all boundaries,

and initial conditions
Y4 = 1, every where except on the circle;
T = T,, every where except on z = —1.5.

We choose K4 = 2.5 x 10%,Q4 = 1,N4 = 4,T, = 0.2,Ley = 1, and grid spacing
h = 0.05 so that the time step size is k = 0.0003125 by (3.5).
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Flame propagation: The temperature contour profiles are compared. with a) potén-
tial flow velocity (no viscosity), b) velocity calculated by the vortex method.

Figures 4a—b depict the flame profiles from case a) at times 6.0 and 10.0. Figures
5a-b depict the results from case b) at the same time levels.

In case (a), the flames move fast at earlier times, and have a very smooth flame
propagation front, but the flame front can not get close to the front of the cylinder. By
contrast, in case (b}, the effect of vortices behind the circle is that they initially slow
the burning into the front of the circle and later they help the flame front get close to
the cylinder. This comparison demonstrates the importance of viscous effect in such a

geometry.

(a) t = 6.0 (b) ¢t = 10.0

Fig 4. Flame propagation temperature contour in a cold cylinder
with potential flow
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(a) t = 6.0 (b) t =10.0

Fig 5. Flame propagation temperatire contour in a cold cylinder
with the vortex method

In a systematic series of experiments, Mullen et al. [17] have studied the ignition
of streams of fuel-air mixtures that pass electrically heated cylindrical rods. For the
numerical study of the experiments, we consider following the initial-boundary value

problem. Boundary conditions:

T=T,, for 2 = -2.5, ally:
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T =Ty, for 2* +y* < 1;
dY /6, = 0, for all boundaries.
Initial conditions:
Y4 = 1, every where except on the cylinder;
T = Ty, every where except on the cylinder

The temperature contour profiles are compared with a) low free stream velocity:
Uss = 20, and b) high free stream velocity: U, = 40. Figure 6 depicts the flame
profiles from case a) at times 4.0 and 6.0. Figure 7 depicts the results from case b) at
the same time levels.

Along the surface of a hot cylinder in a cold stream, the rate of heat transfer is the
largest in the two regions of maximum stream velocity where the stream is tangent to
the surface.

In these regions the results show that the surface temperature is much lower than
the temperature neat the stagnation points.

The eddy zone behind a hot cylinder is made up partly of well-heated gas that has
‘been in dose contact with the surface,and partly of much cooler gas that swirls back
toward the cylinder from considerable a distance downstream.

|
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(a) £ = 4.0 (b) t = 6.0

Fig. 6. Flame propagation contour with a heated cylinder at U, = 20.
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(a) t = 4.0 (b)) t=6.0

Fig. 7. I';la.me propagation contour with a heated cylinder at U/, = 40.

§5. Conclusions

We have presented a random numerical method. For the application in combustion
of the ignition of a flow passing a circular cylinder, the desirable results were obtained.
The vortices in front of the cylinder were observed to have a significant effect on the

shape of the flame profiles.
The major assumption made in this model is the incompressibility of the fluid. This

restricts the applicability of the method to reaction involving reactants which exhibit
small thermal expansion. The next step in the improvement of this method will be
to use a compressible vortex method to allow for the effects of compressibility and
to solve reaction-diffusion equations involving temperature and species densities where

total density is no longer constant.
There also exists a possibility of extending this model to three dimensional flows,

with appropriate modification on the random vortex method (Anderson (1], Chorin [9]).
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