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THE HERMITE SCHEME FOR SEMILINEAR SINGULAR
PERTURBATION PROBLEMS"!)

Relja Vulanovi¢ Dragoslav Herceg
(Institute of Mathematics, Try Dositeja Qbradovica 4,
21000 Nowvi Sad, Yugoslavia)

Abstract

A numerical method for singnlarly perturbed semilinear boundary value prob-
lems is given. The method uses the fourth order Hermite scheme on a special
discretization mesh. Its stability and convergenice are mnvestigated in the discrete
L! norm.

§1. Introduction

We shall consider the following singularly perturbed boundary value problem:
T o= i clz,u) =0, z € I={0,1],

u(0) = u(1) = 0, (1)

where € € (0,¢] (usually £* << 1). Throughout the paper we shall assume:
c € C°(I x IR), (2.a)
cu(z,u) > 7%, (z,u) e Ix IR, v > 0. (2.b)

These conditions guarantee that the problem (1) has a unique solution u,, v, € CP (I x
IR), which exhibits two boundary layers at the endpoints of I. In particular, the
following estimates hold, see [22]:

ul¥)(2)] < M1 + e *(exp(—vz/e) + exp(y(z ~ 1)/e))], z € I, k=0(1)6, (3)

where M does not depend on «.

Because of such a behaviour of u, it is necessary to use special methods to sclve
the problem numerically. We shall use a finite-difference scheme on a special non-
equidistant discretization mesh which is dense in the layers. The mesh will guarantee
that the local truncation errors of the scheme will be uniform (by “uniform” we shall
always mean “uniform in ¢”); hence the discretization will be uniformly consistent
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with the continuous problem. Then the uniform convergence (the convergence of the
numerical solution towards the restriction of U, on the mesh) will follow if we show
that our discretization is uniformly stable. Usually, as in Doolan, Miller, Schilders (7],
Herceg, Vulanovié [13], Herceg [8, 9, 10], Herceg, Petrovi ¢ 112], Herceg, Vualnovi¢,
Petrovi¢ [14], Vulanovié, Herceg, Petrovié [26], Vulanovi ¢ [21, 22, 23], the stability
18 shown in the maximum norm; hence the pointwise uniform convergence follows. The
order of the convergence depends on the scheme used. Higher order convergence was
Proved in Vulanovié, Herceg, Petrovié [26], Herceg, Vulanovié | Petrovi é (14] and
Herceg [9], while Herceg [10], and Herceg, Petrovi¢ [12] used higher order schemes
in the layers only. These Papers, as well as Vulanovié [22], Herceg, Vulanovié [13]
and Vulanovié [23], use the approach of special discretization meshes. The concept of
exponential fitting was used in Doolan, Miller, Schilders [7], Herceg [8], Vulanovi ¢ (21],
and Vulanovié [23]. The method from [3] is based on piecewise linear interpolation,
and for the use of spline-difference schemes see Surla [16, 17, 18, 19]. For other papers
which deal with the numerical solution of the problem (1), see Herceg [9].

In this paper we shall use a discretization of the same type as in Herceg [9], Herceg,
Vulanovié, Pétrovié [14). Basically, the Hermite scheme is used, but at some mesh
points it is replaced by the standard central scheme. Such a switch is used in order to
Prove the uniform stability. For the same reason Herceg [9] and Herceg, Vulanovié .
Petrovi¢ [14] have a restriction on the nonlinearity of ¢(z,u). Essentially, the following
1S required:

cu(z,u) <T, 2 €1, u€IR; 5y? -2l > 0. (4)

Obviously, such an assumption is unpleasant, and our aim here will be to avoid it. We
shall prove the uniform stability in the discrete L! norm (cf. Vulanovié [24], [25] where
this norm was used for discretizations of quasilinear singular perturbation problems)
and for this (4) is not needed. Such a result was announced in Herceg [9] and Herceg,
Vulanovi¢, Petrovié [14].

Thus we shall obtain the uniform convergence in the discrete L! norm. The L!-error
will be estimated by

Mlen=% 4 n~1 exp(—pn)]

where n is the number of mesh steps, p is a positive constant independent of n and ¢,
and throughout the paper M denotes a positive generic constant independent of 1 and
¢. From this we shall get that

Mn=3 4 g1 exp(—pn)]

iIs the upper bound for the maximal pointwise error. This is worse than Mn~* from
Herceg [9]. However, we point out that the numerical method which will be given here
1s essentially the same as the method from Herceg [9] (the deferent pointwise error.
estimates result from the different norms used); hence we might expect the uniform
fourth order pointwise convergence to be still present. Qur numercical experiments

confirm that.
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Let us finally note that problems of type (1) arise in practice as models for chemical
catalysis reactions and the Michaelis-Menten process in biology, Bohl [1]. For other
applications see [2] and [3].

82. The Numerical Method

Let us introduce the discretization mesh I with the mesh points
1

Ly = }‘(ti)r t;=th, 1=0,1,---,n; h= - n=2m,me¢ m\{l}:
where A is a mesh generating function:
act
| P'(t)““'q_t: te[0,al,
At) =1 wa)t-a)+p(a), t€a,05],
1 - A{1 —1t), t € [0.5,1].

Here g is an arbitrary number from (0, 0.5) and a € (0, g/¢*]. The point « is determined

from
) p'(a)(0.5 — a) + p(a) = 0.5,

which reduces to a quadratic equation and « is easy to find:

g — vage(l — 2¢ + 2a¢)
1+ 2ac ‘

We have A € C1(I) and
0<A()< M, tel. (5)

Such a mesh generating function was introduced in Vulanovié [22]| and used in our

other papers, and in Herceg [9] in particular.
Let
hy = z; — 2,21, 1= 11, h; = (h; + hig1)/2, i=1(1)n — 1.

L

It is obvious that
hi < hipr, i=11)m -1, hi=he i1, i=1(1)m. - (6)
By w",v" etc. we shall denote mesh functions defined on I,/{0,1}. They will be

identified with IR™~1- column vectors:
wh = [wl,tUg,',-- e ,wﬂ_1]T, w; = w,.
In particular, we shall take
u = [ue(21), ue(22), ", te(Zn-1)

Let || - ||oo and || - [|; be the usual norms in IR™!. The discrete L' norm is given by

.

Jwh||? = |Hw"|i = ¥ Rilwi|, H = diag(h1, k2, ha1);
T |

see (24, 25]. The cnrrespnﬁding matrix norms will be denoted in the same way. In

particular, we have
AL = |HAH 1, A€ R0
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We shall use two approximations of the differentiations operator T : the Hermitian
approximation (see [9], [14]):
Thw; = —e°Dw; + br(t)ei—1 + bo(t)c; + ba(t)ciyr, 1= 1(1)n — 1
and the central approximation:
Tow; = —e*Dw; + ¢;, i = 1(1)n - 1.
Here 5
/ Dw; = [(wiya = wi}/hiys + (wi, — wi)/hi]/Rs,
bi(2) = (h? - hi, 1+ hihiy1)/12R;h;,
b2(i) = (ki1 — AT + hihiv1)/12hi 41k,
boli) = 1 = hy(d) - ba(),
c; = (a2, w;).
These two approximations will be combined to make a discrete problem on the mesh
Iy, corresponding to (1).
Let

, Q = g(7+\@):6.4449944~-

and
L =dz; € Iy, : g-Qh <t 1,aa or l—a <ty <1-Qh}

(note that I; may be empty). Note that [9] uses a different (smaller) value of Q. This
is the only difference between the two methods, caused by technical reasons.
The discrete problem is given by

Fu® = 0, (7)
where
THWI': ;€ Ih \I;;r
Fiwh - '
Tew;, z; € I;: 1= 1{1)n — 1.
First we shall investigate the stability of the operator F.
Theorem 1. Let ¢ € CYI x IR) and let (2b) hold. Then the discrete problem
has a unique solition w’ which is a point of attraction of SOR-Nowton and Newton-

SOR methods with the relazation parameter w & (0,1]. Moreover, the following stability
inequality holds for any w", v :

12
lw® — M} < SIIFw* — Fob)h, (8)
Y
Proof. The Trechet derivative F'(w") of F at arbitrary w” is a tridiagonal matrix:
" B, C !
A, By C O
FI(HJJ‘{) :'
O .
P An—l Bﬂ—l =
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with _ -

Ai ~ _"szhihi + al(i)cu(zi—l,wi_l )1

B; = 26%/hihyyy + ao(i)ea(zi, wi),

Cl' = _Ethl'-l-l}li + a:(i)cu(zi-i-l ) wi-{-l)!
where

bj("): z; € Ih \ I;u
aj(i) = { ao(i) = 1 — a1() — ax(1).

01 z; € I;;: j = 1!21

Let us write formally

Cu — Aﬂ = 4.
We shall show that
HF'(w*) 7 i < 12/77 (9)
and (8) will be immediate (note that || - || was used in Herceg [9] and because of that
a condition of type (4) was needed). At the same time, (9) will imply the rest of the
assertion; see Ortega, Rheinboldt [15]. ;
In order to prove (9) we shall show
0i = | By — |Cizalhi — |Aiga|higa /R 2 7%/12, i = 1(1)n - 1. (10)

This means that H F'(w")H ! is strictly diagonally dominant by columns and it follows
that
[(HF' (w*) A7) ] < 12/+%
see Varah [20]. This is in fact inequality (9) since
I(H F'(w*YH 1) L = [HF' (w™) B = || F'(w®) 7]
of. Vulanovié {24, 25]. |
Let us prove (10) for ¢ = 1(1)m (for other indices the proof is analogous by the

symmetry (6)). This proof is similar to the proof from Herceg [9]. It always holds that
B; > 0.
If 2,_1, zi, zi4+1 € I}, we have
Ci-1£0, A4;11 <0
and it easily follows that
o > 7.

Now suppose z;_1, Zi,Z;41 € I \ I} and let us consider the hardest possible situation

when
Ci-—l 2 01 Al'-l-l 2 0?

cf. Herceg [9]. Using estimates from Herceg [9] and Herceg, Vulanovié, Petrovié [14]:

_ 5 1 ; 1 : . 1
bo(2) 2 6" 82 ba(i) > 15’ ba(2) > b1(7) 2 —%
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we get '
7> lbo(i)hi = 1b1(i + lAisa - bofi - 1)hi_y]
> %;[E-B%E;H - %ii.:_l] > [g - é%?]f > 5—
The last inequality follows because we have
2h; 1 < Th;. (11)
Indeed, if t;_; > a, it holds that hii1 = h;, and if, on the other hand, t;_; < a, we use
ti-1 <¢g-Qh (12)

(which holds because z; € I, \ I} ) to get

hity » B (tiy1) p (q— t:’——l)z
q— Liy2

hi = p(tia) ~
(note that t;,, < ¢). Finally, (11) follows since (12) is equivalent to
(q = ti—1)2 < _7_

, g — tiyn 2

Note that for 7 = 1 we have Cy = 0 and that stituation is better than the one
considered. This is also true for the case when i1 € Iy \ I (2i1, 2; € I}, \ 1; ) and
zi, i1 € Iy(zi41 € I}). Thus (10) is proved and so is the theorem.

Let us mention that besides SOR-Newton methods, AOR-Newton methods (see
Cvetkovi¢, Herceg [4,5,6], Herceg, Cvetkovi ¢ [11]) may be used to solve the discrete
problem (7).

Now let us consider the consistency error

»

PP = Fu®,
Let
d=ch®*+ h- exp(—pn),
where
p= agy/Q.
Theorem 2. Let (2) hold. Then it follows that
I~*)1F < Md. (13)

Proof. We shall estimate 71,-[*.",;|, t = 1(1)m — 1, where r; are components of »*. For
t = m(1)n the estimates can be obtained analogously. We shall use (3) which reduces

to
u(2)] < M1+ e *exp(—yz/e)), 2 € [0,0.5), k = 0(1)6. (14)

As in Herceg [9], Vulanovié [22], Herceg, Vulanovi ¢, Pereovié [14] and our other
papers, we distinguish the following three cases:

1* #g 2 @,

2° t;.; < a and tic1 £ ¢g—Qh,
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3° ¢g—Q@h <ti1 < a.
In cases 1° and 2" it holds that z; € Iy \ I;. By expanding r; in the same way as in
Herceg [9], and using the same technique we can prove

hilril < Meh®. (15)
When case 3° holds we have z; € I} and the central scheme is used:

rs = Ez[tl"s(-”«i) = Duf(-":;,):.

Now we have to use a technique different from Herceg [9]. We use the following integral
representation of r;:

2 1 Lit 1 1 Ti—1 i
h;r; = "R -/;;.I (8 — zo41 ) u"l(s)ds — oh ]:::.- (3 — z;_1)*u".(s)ds.

Then from (14) and (5) we get

i 1 L4l
Rilril < M [62h7 4 T f (s — 2i41)? exp (—ys/e)ds

o | 2}11_ ~/z.~_‘.1 (s — z;_1)° exp (—‘pﬂ&)d.&]
and after two partial integrations there follows

hi|ri| < M[e*h? + h; - exp (—vzi-1/€)) < M[e*h® + h- exp(—agy/(g — ti-1))]

< M[e*h? + k- exp(—agy/Qh)) = M[e*h® + h - exp (—pn)].
Because of

g-@Qh<ti1<a<g-Mye <y,

case 3° can be true only if
Ve < Mh,

and it follows that
hilri| < M[e2h* + h - exp(—pn)].

Also note that case 3° can happen at 7 points at most. Thus we have

IP™)T < D hilril + Md, 2 € In\ I
8.1,

and from (15) we get {13).

By combining Theorems 1 and 2 we have the convergence theorem:

Theorem 3. Let (2) hold. Then it follows that

lwg — ugl < Md.
Since
"I} 2 Ballw® oo > Meh]w" oo,

we have the following

Corollary. Let (2) hold. Then it follows that
lwe = ullloo < M[A® + 7" - exp (—pn)].
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The last result is almost the third order uniform pointwise convergence, but as we
have said, we expect numerical results to show

Jwh - uhlloy < MAS,
Note that from Vulanovié [24] it follows that
lwe - ulllt < Mh

holds for the central scheme on an arbitrary locally almost equidistant mesh. The result
of Theorem 3 is much better because of the use of the special scheme on the special
mesh.

§3. Numerical Results

We shall concider the following test example, Bohl [1]:

»

~etu' + ::u =0, u(0) = u(1) =0,
It is known, Bohl [1], that 0 < u, < 4. So we have
1
=12 c.z,u) > — = +%
T > ez, u) > or = 1

Note that (4) does not hold. This problem was considered in 2], 3], (4], [5], [6], [7] as
well.

In the following Table we present the numerical order of convergence. Here we
determine numerically the order of uniform convergence of our scheme as usual when
the exact solution is not known:

log E,, — log E3,,
Opd = —p2'n 9B 5
log 2

where

En = |lug - uf|u

and for each fixed ¢,u? is the numerical solution to our problem with n = 1024 mesh
points. This solution we compare with the other numerical solutions obtained by our
method for n = 4, 8, 16, 32, 64, 128, 256, 512. The corresponding nonlinear systems
are solved by one-step Newton-Gauss-Seidel methods. For numerical solutions u we
consider the iterate u* for which

1F1*)| o < 1077 and |lu* — u*-1)|,, < 1012,

In each case the start approximation is v’ = [0, 4, 4,.-- 4, 0}7.
All computations have been carried out on the ATARI 1040 ST with 48 bits accuracy
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in floating point.
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Table

n\e 24 0—8 9—16 0—24
4 5 3 2 "
8 3.8085 6.6896 14.528 20.0523
16 4.1643 2.5064 1.5343 1.5318
32 3.7656 1.9034 2.6312 2.6157
64 3.8134 4.0804 4.5252 4.5490
128 3.9943 4.0018 4.0025 4.0026
266 4.0767 4.0170 4.0211 4.0210
012  4.0847 4.1704 4.0981 4.0980
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