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Abstract

This paper develops an optimal-order multigrid method for the TRUNC plate
element.

This paper will cBnsider the multigrid method for the TRUNC element proposed
by Bergan et al. and developed further by Argyris et al. The numerical experiences
show that the element has very good convergence(cf. [1,2]). The mathematical proof
of convergence of the TRUNC element is also given by Shi Zong-ci in [7]. An optimal
multigrid method for the element is given in this paper and the method consists of
presmoothing and correction on coarser grids.

1. The TRUNC Element

Given a triangle K with vertices a; = (2;,%;),1 = 1,2,3, we denote by A; the area
coordinates for the triangle and put |

fir=z2—23, Lx=23-25, £3=121— 2z,
M~=Ya =3 =MW~ ThHB- W~}
The nodal parameters of the element are the function values and the values of the two

first derivatives at the vertices of the triangle K. According to (7], on the triangle K
the shape function is an incomplete cubic polynomial,

w =b1 A1 + bada + bads + bgdi Az + bsAz A + beAad; + br(A2A; — A A2)
+ bg(AZA5 — AaAd) + bo(AZA; — A3?), (1.1)

which 1s uniquely determined Ey the nine nodal parameters w;, w;(1), wy(z),2 = 1,2, 3.
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The coefficients b; are determined as follows:

'bl-::w,;, i=1,2,3,

ba = =5 {(w=(1) - wa(2))és + (w(1) = wy (D)),

-

by = — o {(wa(2) — wa(3)6s + (wy(2) — wy(3))m},

b = — 5 {(wa(3) — wa(1))éa + (wy(3) — wy(1))ms}, (1.2)
br = wy — wy — (wa(1) + wa(2))s ~ 3(wy(1) + wy(2))rs,

be = wz — s~ (wa(2) + wa(3))é — 3(w,(2) + w, (),

bo = wy — wy = 2(wa(3) + wa(1))2 — 5(wy(3) + wy(1))7.

The shape form {1.1) with (1.2) is another Zienkiewicz's element. This element 1s
a C? element,, nonconforming for plate bending problems, which converges to the true
solution only fgr very special meshes. The TRUNC element is obtained by modifying
the variational formulation.

Let §2 be a convex polygon in R?, f € L?(Q?). Consider the plate bending problem
with the clamped boundary conditions,

NAlu=f in Q,

| du . | - (1.3)
ulon = ==| =0.

T 8N o

The weak form of the problem (1.3) is to find u € H;(§2) such that
a(u,v) = (f,v), Vv € Hg(Q), (1.4)

where
a(u,v) = /(&u&.v + (1 — 0 )(2UayVsy — UzzUyy — UyyVzz)) d2dy,
{1

(1.5)
(fiv) = ] fvdzdy,
L}

and 0 < o < % is the Poisson ratio.

Let {X*}22, be a family of subdivisions of § by triangles, where K*+1 is obtained
by connecting midpoints of the edges of the triangles in X*. Let h; = max kextdiam K.
Then hj_, = 2h; and there exist positive constants C;,Cs, independent of k, such that

C:hi < |K| < C1h}, VYK € K%, (1.6)

where | K| is the area of the triaﬁgle K. Throughout the paper, C' with or without
subscript denotes generic positive constants independent of k.
For k = 1,2, - - -, defining on each triangle K € KX* the shape function in the form of
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(1.1) and (1.2), we obtain the finite element space V}.. Define, for w,v € HE(Q) + Vi,

ar(w,v) = ) / [&tu&v + (1 — 0)(2WeyVay — WazVyy — WyyVsz )] dzdy. (1.7)
Kek*

For v € Vi, it can be written in two parts,

v = U + v, (1.8)
with -
Uil = biA1 + b2Az + b3Az + bgAi Az + bsAzAz + bsAsAs,
{'ULlK = b7(AZX2 — A1 A2) + bg(A3 A3 — A2A3) + bo(AZA1 — A3Ad). -
Now we define another bilinear form on Vi,
bi(w,v) = ap(w, ?) + ap(w',v'), VYw,v € Vi, (1.10)

The mathematical description of the TRUNC element is to find u, € V), such that

bi(uy,v) = (f,'u), Vv € V.. (1. 11)
For 0 <m < 3, define semi-norm | - |1 as follows:
' ﬂll T Z | m K (1,12)
Kex*

where | - |m. i is the Sobolev semi-norm of H™(K ). From Lemma 3.3 in (7], we have

Clvl3x < bi(v,v), Vve W, (1.13)

|Olak + [V |2k € Clvlak, Vv € Vi (1.14)

Let w € H*(Q) and II;w be the interpolation of w. Then from Lemma 3.2 in {7], the
following estimates are true for m = 0,1,2,3:

w — Iwm i < Chy ™|wls,
lw — Tew|mi < Chy ™ |wls, (1.15)

|(ka)’|m.k < Chi‘"‘|w|3,

where |w|; is the Sobolev semi-norm of w.
From Theorems 3.8 and 3.12 in [7], we have

|u — uxllo + Arfu — o < hiluls, (1.16)

w.her,e u is the solution of (1.4) and wuy is that of (1.11).
Define D = (8;,8,)" . For vi,wi € Vi, define

(v, W o, E Z[u;(a,)w;,(a,) + hLDvL(a‘)DwL(a.,)]hz, (1.17)
Kexki=1

1

lloxlllog = (v, vkdoe : (1.18)
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loelle = X_ D (Ive(a:) — vela;) — Dur(a;)(a; — a;)|?

Kek* 123,053

1£7
+ (Dvr(as) — Dve(a;))(Dui(a;) — Dur(a;))hi)h; . (1.19)
It 1s easy to show that the following inequalities are true for Vv € V.
Calllvelllor < llvallo < Cslllvelllok (1.20)
Col{ve]le < |vilze < Csllve]la- | (1.21)

§2. The Multigrid Method

Since (-, )ox is an inner product on V;, there exist, from the spectral theory, eigen-

values 0 < p1 < pp < -0 <K Hon, and EiSEHIMCtiDns ¢1:¢2: e 1¢ﬂ:;, = Vk&(¢i1 ﬁbj)ﬂ,k =
b;; (=the Kronecker delta), such that b;(%;,v) = ui(¥;,v)os for all v € Vi. From the

inverse estimates, there exists a constant Cy such that
» fny < Cohpt. (2.1)

For v, € V4, we can write vy, = %, v;4);. The norm |||vy|||,.x is defined as follows:

1y
y.
loelllox = (z 2! )
=1

Obviously, |||vk||]§1k = bi{vi,vr) £ Clvg); . From the Schwarz inequality, we have

bi(v, w) < |[|vfll2+enlllwlilz-e.x (2.3)

forallt € (—oc0,00) and v,w € V;.

2.1. The intergrid transfer operator. To develop a multigrid method we have
to choose an intergrid transfer operator I,":_I : V-1 — Vi because Vj,_; € Vi.

For v € Vj._4, I{:_lv is defined as follows. For K € X*~1 denote the four triangles
obtained by connecting the midpoints of the edges of X by K;.1 < i < 4. Let by1,bs, b4
be the vertices of K;. Then I}  v(b;) = v(d;) for j = 1,2,3. If b; is also a vertex
of K, then DIf . v(b;) = Duv(b;). If b; is the midpoint of the edge aja; of K, then
DI;_,v(4;) = 3(Dv(ax) + Dov(ay)).

2.2. The kth-level iteration. The kth-level iteration with initial guess z yields
MG(k, 20, G) as an approximate solution to the following problem:

(P)  Find z € Vi, such that bi(z,v) = G(v), Yv € Vi, where G€ V. (2.4)

For ¥ = 1, MG(1, 20,G) is the solution obtained from a direct method. For k > 1,

there are two steps.
Pre-smoothing Step. Let z; € Vi. (1 < ¢ < m) be defined recursively by the equations

1
Z

(2.2)

(2: — zi—1,V)ok = Il—{G(t.r) ~ bp(2i—1,v)), Yve V. (2.5)
k
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Here A, = C’m.}':,:'4 and m is a nonnegative integer to be determined later.
Correction Step. Let G € V/_, be defined by

G = GUIE_v) = b{zm, If_1v) = bi(z — Zm, I¥_qv), Vo € Vi1
Let q; € Vi—1(0 <t < t,t = 2 or 3) be defined recursively by
go=0, ¢=MGk- 1,¢9i_1,G).

Lot 2o i = 2 £ If_lq:- Then MG(k, z9,G) is defined to be z,,,4;.

2.3. The full multigrid algorithm. For k& = 1, the approximate solution @; of
(1.11) is obtained by a direct method. For k = j with j > 2, the approximate solutions
ti; are obtained recursively by

’H% - Ij-]uj—li
uf = MG(j,u‘f_l,F), l1<i<r, Flu)= ]/n foPdzdy,

7 AP, |
U; = u.

where = is a positive integer to be determined.
”»

§3. Convergence Analysis of the Multigrid Method

To analyze the multigrid algorithm, we first give some estimates about the intergrid

transfer operator If_,.
Lemma 1. There exists a constant C independent of k, such that

1I5_1vllo < Cllvllo, (3.1)

CHojap-1 < ClIE_1vl2k < [l24-1, (3.2)
- .

Y hilv — Ii_yvfik < Chilv|zx-1 (3.3)
et

for Yv € Vi_; and k > 2.

Proof. From the definition of I{_, and inequalities (1.17) to (1.21), we can get (3.1)
and (3.2) easily. Let v € Vj_; and K be a triangle in K*~1. If v|x € P3(K), then
v|g = I ,v|x. Noticing that If_.v|x is uniquely determined by v|x, we get inequality
(3.3) from the interpolation theory (cf. {5]).

Lemma 2. If w € H3(Q)n HE(R), then for k > 2,

2
3 hijw — L T qwlig < Chjwla. (3.4)

2=0

Proof. Let 0 < i < 2. Then from (3.3) and (1.15) we have

w— I g Mgwlip < lw =M whigor + Meyw — B The_awlig

< C(R3T | wls + Y Moy wis k—1)-
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From the fact that hy.; = 2h; and |Mi_yw|3 k-1 < Clw|s, inequality (3.4) follows.
Lemma 3. For any v € V)., we have

Hlvillie < Clols. (3.5)

Proof. Let P : L*(§t) — Vi be the L2(Q1) orthogonal projection operator, i.e., for
Vw € L3(Q),
(Pw,v) = (w,v),Vv € V;.

Then we have

IPwlllox < CllPwllo < Cllwllo, Yw € L*(),

lw — Pwllo < Cllwllo, Yw e L*(RQ).
From (1.15), we get
Jw - Pwllo < ChYllwlls, Yw € H(R).
Then from the interpolation theory of the Hilbert spaces in [6], we have
’ lw — Puwllo < Chillw|l2, Yw € H3(SQ).
For each K in K*, define Px : L?(K)} — Ps(K) as the L?(K) orthogonal projection

operator. Then

2
> hilv— Pxvlix < hllvllzkx, Vv € HYK).
1=0 '

From the above two inequalities and the inverse estimates, we have, for w € H2(§),

1Pwllizx < ClPwi3, < C Y (|Pw— Prwl|}yx +|Pxwl| k)

KeKk
<C Z (hi%|Pw — Prwlf g + |wl3 4)
KeK*

<C{ ¥ h*(lw- Pxwldx + |w - Pwld ) + Jwl?)

Kek*
< c{h;‘uw - Pwlj+ ) jw- Pxwld )+ \wl%}

KeKk

<C{ 3 |wfk+w}} = Cluw?.

Kexk

From the interpolation theory of Hilbert spaces (cf.[6]), we have
1 Pw|lhx < Clwh, Ywe Hy().

Inequality (3.5) follows from the fact that for Vv € Vi, v € Hj(?) and Pv = v.
Now we turn to the convergence analysis of the kth-level iteration. Let z be the exact

solution of {(P). Let e; =z — 2;,0<2<m+ 1 Thene,11 =2 — 241 = €, — It__lqt.
Let ¢ € Vj._, satisfy |

b;l._l(q,il) = G('U) — bk(Ef,,,Iﬁ_lv), Vv € Vk-l* (36)
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Define Zpn41 = zm + Ifj__lq and €n41 = 2 — Zn+1.
Lemma 4.

eml2,6 < Cleo|z,k, (3.7)
llemlllax < ChZH(1 4+ m)™/#|eg|z. (3.8)
Proof. Inequality (3.7) follows from the fact that in each relaxation step ||| - |||, « i8

not increased. The proof of inequality (3.8) is similar to the one in [3].
Lemma §5. |

|em+1l2.6 < Chelllem]l)a.x- (3.9)
Proof. Let ¢ € V},_, satisfy
bi(Ti1§, Ik_1v) = be(em, i_yv), Vv € Viy. (3.10)
From inequality (3.2), we see that § exists uniquely. From (3.5) and (3.10) we have

bk(em T Iﬁ—lérem i It—lg) = bk(em:Em S Iif-lé)
(3.11)

< Memllizplllem = ZE_1dlllix < Clllemlllsilem — Zi_ydha.
For w,v € H!(Q), define

(w,v) = /(w,v, + wyvy, ) dedy. (3.12)
{1

Let n € HZ($2) N H3(RR), ;. € Vi satisfy
a(1,0) = (em — I_yd, 001, Vo € HY(R),
{bk(ﬂksﬂ) = (e — If-lﬁ, vh, Vv€E V.
Then we have
lem — TE_1G13 =bilm, em — Ti-1@) = bilme — Ti_TMe—1m, €m — Ii_1§)
<Clm: — Ii 1M1l klem — T5_1l2.4

<C(|m — nlag + 17 = Ii_1Mecanlzg)lem — Ig 112,
From the following inequalities:

{ Nagn < Clem — If_1§h,
n-— T}L-|2,k < CthEm — If_ﬁh,

and inequalities (3.4), we get
lem ~ Ti_1dl} < Chilem — I_1dhlem — Ti_1dl2-
It follows from (51 1) that
jem = IE_ydlax < Chelllemllls.e. (3.13)
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Let fi € Vi, fi—1 € Vi satisfy

(fkrv)l = bk(Emrv)i Yv € Vi, (314)
(.fk—l:v)l = bk(emi Ij’:—1v)1r Vv € Vk—l- (315)
From inequalities (3.3} and (3.5), we have

£l < Wemlllsxlll filllie < Clliemllls el fih,s

k
fre-11? < NemlllaglllTe_y Fre-1lllie € Clllemlllaplli-1 f-1lt < Clilem|llax|felh-

Therefore,
|feli < Clllemlllaes  [fe-ala £ Clllemlllsk- (3.16)

Let { € H3(Q) N HZ(Q) be determined by

a(¢,v) = (fu-1,vh1, Vv € Hg(R).
From (3.5) and (3.6) we have

bi-1(q,v) = (fr—1,v)1, VYve Vi_4.

Then from thg inequality
| [{la < Clfi-1h

and (1.16), (3.16) and the inverse estimates, we have

9lsx < Cllleml]lak. (3.17)

The following is obvious:
|Iij§—1(q - §)|§,n = bk(ft-l(q — E)Jf-—l(q -§)) = bk“}f-ﬁ = q'rIt-l(q ~ §))
+ bi(g — It 18, I5_1(q — 9)). (3.18)
From the Schwarz inequality and (3.3) and (3.17), we have
BTy — 0, TE 1 (g — D) € Cla — I8 yglaelTE_1 (g ~ @)z

< ChylllemllsxlTi-1(g — P2+ (3-19)
Let £ € H3 ()N H3(N),§ € Vi._, satisfy
a(6,v) = (fuuv)1, Vo€ HY(R), (3.20)
br.—1(d,v) = (fx,vh, VveE Vi_1. (3.21)
Then
€]z < Clfelr < Clllem]||s ks - (3.22)
€ = Glan < Ch| fals- | (3.23)

Noticing that IY_,§ is the finite element approximate solution to { in [/ t__le_l, by
I{:"_IV;:_I C V. and inequality (3.4), we have

€ — Ii_1dl2x < Chyléla. (3.24)
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By (3.3), (3.16) and (3.21) and inverse estimates for polynomials, we have
14— ql3u-1 < Be-r(d - 0,4 - 9) = (furd— ¢~ i1 (d - )
< filild = ¢ = Lioa(d = @)l < Chalfelild — alzge.

Therefore,
|§ — ql2,k-1 < Cheficls- (3.25)

Combining (3.16) and (3.22) with (3.25), we have
b — Ii_1@, Ii_1(d — @) € ClE_1§ = ql2selTk_1(d — 9)l2.x
< Chilllemlls il Ie_1(d — @)l2.%- (3.26)

Noticing émt1 = € —If_19 = e —IF_§+IF_.(§—gq), we obtain (3.9) from (3.13),
(3.18), (3.19) and (3.26).

Now we give convergence of the kth-level iteration. To simplify the nutatibn, we
define the following statement:

(Sz) When the kth-level iteration is applied to problem (P), we have

’,
|z — MG(k,z0,G)|ax < 7|z — 20|21

Lemma 6. There erist ¥ € (0,1) and integer m large enough, both independent of
the mesh parameter k, such that

(Sk—1) = (Sk)-
Proof. From (3.6), (3.7) and (3.2), we havs
|gl20 < Cleo|z.x- (3.27}
From (3.2}, (3.8), (3.9), (3.27) and (Sx_1), we have
|z = MG(k,20,G)ax < lemsrlon € Clémarlan + [ IE_1(9 — )2k
< C(l T m)_l"ﬂﬂulz,k + Clg — '?t|2.k-1 <C(1+ m)_1/4|ED|2,k T C‘}'thﬂz,k—l
< (C(1+ m) Y% + Cvh)leoax-

If ¥ € (0,1) is small enough, then Cy* < ¥ (since ¢ > 1). If m is large enough, then

C(m+ 1)y < 2. For such choices we have
IZ b MG(kw ZG:G)|2,.L- E 7|EU|2,13-

Since the first-level iteration is a direct method, the following theorem is a trivial
consequence of Lemma 6. '

Theorem 1. If the number of smoothing steps m s large enough, then the kth-
level iteration is a contraction for the norm |- |2 . Moreover, the contraction number
is independent of the mesh parameter k.

Inequalities (1.15), (1.16), (3.2) and (3.4) imply the following lemma.
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Lemma 7. Let u; be the solution of (1.11). Then
e ~— If_jup_1|2x < Chiluls (3.28)

where u is the solution of (1.4).

A standard argument yields the convergence of the full multigrid algorithm from
the estimates in (3.28).

Theorem 2. If the parameter r in the full multigrid algorithm is chosen large
enough, then there exists a constant C' such that

i — il Gl i (3.29)

Finally, we note that since the number of nonzero entrics in the stiffness matrices,
the smoothing iteration matrices and the intergrid transfer matrices are all proportional
to ng, and since ¢ = 2 or 3, the cost for obtaining 4, is O(ny). For the method of proof,
we refer the reader to [3].
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