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ON THE CONVERGENCE OF THE FACTORIZATION
UPDATE ALGORITHM*

| Bal Zhong-zhi Wang De-ren
(Shanghai University of Science and Technology, Shanghai, China)

Abstract

In this paper, we make a Kantorovich-type analysis for the sparse Johnson and
Austria’s algorithm given in [2], which is called factorization update algorithm.
When the mapping is linear, it is shown that a modification of that algorithm leads
to global and Q-superlinear convergence. Finally, we point out the modification is
also of local and -superlinear convergence for nonlinear systems of equations and
give 1ts correspending Kantorovich-type convergence result.

§1. Introduction

For a large sparse nonlinear system of equations
Plz) =0, F:Dc AR — R", (1.1)

Johnson and Austria gave a kind of direct secant updates employing matrix factoriza-
tions to get its solution and proved its local and @-superlinear convergence property(see
[1]). By changing the updates in matrix forms, the authors!® set up its Kantorovich-
type analysis. Since Johnson and Austria’s algorithm does not maintain the sparse
structures of the triangular factors, the authors proposed its modified version, ob-
tained a factorization update algorithm which has the sparse transitivity property of
triangular factors H and U, and proved that this algorithm is of local and Q-superlinear
convergence (see [2]).

In this paper, in order to complete the convergence theory of the factorization
update algorithm, we make a Kantorovich-type analysis paralleling the one given in
[3]. When F(z) is linear, the Kantorovich-type convergence theorem naturally leads to
global and @)-superlinear convergence for the modified factorization update algorithm.
Fimally, we show that the modified algorithm is convergent locally and Q-superlinearly
for solving the large sparse nonlinear system of equations (1.1).

In the remainder of this section, we restate the factorization update algorithm for

reference.
First, we introduce the following notations given in [2]:

* Received October 8, 1991.
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Set P, C R* x R"*, P, = {(i,)lt # j,1 < i,j < n}, for certain P C P,, subspace
EC RPRE L=4L E L(R )|L is a unit lower triangular matrix, L;; = 0, for
(,7) € P and i > j,1 < 4,7 < n}; subspace Y C R" x R™, U = {U ¢ L(R™)|U 1s
an upper trlangula.r matrix, U;; = 0 for (4,7} € Pand : < j,1 < 2,7 < n}; matrices
A= (M}), Ar = (M) € L(R™),

{ 1, if U;.:j # 0, (2) { L if H{j ?£ 0, and 2 > j,.
3§12 -

2
3 =

fl, otherwise, 0, aotherwise

and n-dimensional vectors

with

S;, if AE;} = 1, Y, if A:fl =
s(2); = y(2); =

0, otherwise, 0, otherwise

where s;,y; are the j-th components of vectors s, y, respectively.

Now, the factorization update algorithm is of the form

m{k-{—l] i ﬂ:{k} Y S{}:.]] S{k] = I_[I.:-,L—l_} o Ilf.l:]nt
(1.2)

Upst™) = —H, F(e™),

where, given an initial value ") and initial approximation H;'Uq to F'(2'9), Hg €
L, Uy € U, the matrices {H.}, {U,} are generated by

T

Hypr = Hi — 3 (o), vi(6)) T ef (Hrgn — Uies"™esm (i)

p=]
(1.3)

Upr1 = Uy +Z (or(2), vr () T el (Hryn — Uns™)eis'™(4)"

1=1

and

v = F(z¥+0) - Fa™),
{ 1A

o) = (e, - g()im1, sM(@)s, - 51 (0)),

where a® denotes 1/a for a # 0 or 0 for a = 0, respectively, (-, } denotes the Euclidean
"inner product, and e; is the i-th unit vector in B™.

In the following discussion, we always assume that F : D C R” — R" is continuously
differentiable and F' satisfies the Lipschitz condition with the Lipschitz constant 7 on
an open convex set Dy C D, and thereexist H(z) € L, U(z) c U such that H(z)F'(x) =
U(z) holds for all z € Dy. In addition, we denote ||-|| as {|-[j2, and |- ¢ as the Frobenius
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norm.
§2. Preliminaries

To simplify notations for a given iteration, no subscript will denote the current
iterate, and the subscript “+” will indicate the next iterate.

The following results are indispensable for our discussion.

Lemma 2.12l, Let triangular matrices H € £, U € U, and H, U, be defined by
(1.3). Then for any triangular matrices H € £,U € U,

| Hy —H+ U, -Ullp<||H-H+U-TUllr+|[V(Hy - Us)|, (2.1)

1 1 : }
ST TG A O fer 1< i<n

Lemma 2.2. There erxist positive constants §, p1, pa, such that when ’|1:+ —zf] < &,

where V = diag(

the mequality
1. g . 8 1<i<n (2.2)
o S =P TEEE |
holds, where s =2, ¢ z,v(i) # 0,1 <1< n,
Proof. The vector y can be expressed as

y=Y + Fi(z)s, Y =F(z;)- F(z)— F(a)s.

With the Lipschitz condition and the mean value theorem, it is easy to estimate that
1 2
Y| < 5’7”3“ -
By introducing sparse projection operators

S. = diag()«é],/\g),-u A[-l)),

Y. = diag(,\g],kg},- Am)
such that S;s = (1), Y;y = y(i), and matrix
GI — [Ff(z)Tel*r = W F;(z)Tei*-l y iy "ty Eﬂ]Tr

we can express the vector v(i) as

v(i) = y(2) + 8(i) = YiY + YiGis. (2.3)
Thus, we have the estimate
A . T
fu(i)ll < ITY [+ [%Gilllsl] < (578 + I%:Gil) sl (2.4)
where we made use of the inequality ||[Y;Y|| < ||Y||. Taking

pr = max (26 + %Gl

1<i<n V2

it follows from (2.4) that
le(@)] < palsll
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This 1s the left inequality of (2.2).
On the other hand, from (2.3), we have

Y;G;s = v(i) -~ Y.Y. (2.5)
Since the generalized inverse of matrix Y;G; always exists, from (2.5) we have

isll < IGG)F (lllv()] + |(B:G) VY]

. ) ) (2.6)
< J(Y:G:) T lv(i)]] + 575||(1'?G£)+””3||-
Let § be so small that .
L= 578 max [|(Y:Gi)*|| > .
Then from (2.6) we obtain
Isll < pallo(a)l (2.7)

where

o2 = (max [10%:G)11) /(1 - 378 max [(%:Gi)* ).

(2.7) is the right inequality of (2.2).
Lemma 2.3. Suppose the condition of Lemma 2.1 1s satisfied. Then there holds

|Hy ~H(z)+ UL - UE)r<||H-H(z)+ U - U(z)||r + %‘)’Pz\lﬂ(?)HFH-‘BH,

where p, is the same as in Lemma 2.2. |

Proof. By using inequalities (2.1) and (2.2), this result is obvious.

Lemma 2.413. There ezist positive constants ¢,d, such that

a) |1 H(z) - H()|r < ellz — gl

b) |U(2) = UW)llr < dllz - gl

Q) |H(z) - H(y) + U(z) - UW)llr < Fllz — 3l
for all z,y € Dy, where ¥ = ¢ + d.

The following result is the local and Q-superlinear convergence result for the fac-
torization update algorithm. This result was proved in [2]. _

Lemma 2.5, Let z* € D satisfy F(z*) = 0. Suppose that there exist H* €
L, U* € U such that F'(z*) = (H*)"'U", and for the initial approrimations z(®) ¢
Do, Hg € L,Uy € U, there exist positive constanis ,8p,n, such that

|29 —2*|| <&,  ||Ho~ H*+Up—U*|F < bo,

max{||E* ||z, [(H*) |z 1T | 1(T*) I} = n.

Then the sequence {2F)} generated by the algorithm locally Q-superlinearly converges
to z* provided ¢,8 are suitably chosen, and | Hil|r, | H 7, ||Usll7, ||UL '||F are uni-
formly bounded with respect to k.
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£3. Kantorovich-Type Analysis

The estimation in the following theorem shows the relationship of the error of H; U,
as an approximation to F'(z(¥)) with the error of the initial approximations. Therefore,
it 1s still important for our Kantorovich-type analysis.

- Theorem 3.1. Let the sequences {z®)} {Hi} and {Ux} be generated by the fac-
torization update algorithm. For the initial approzimations (°) ¢ Dy, Hy € L, Uy € U,
if there exist positive constants &, 8§y such that

max{||H(z)"||r, | H(2)|lF, U (@)llF} < =(Y z'€ Do)

1H (') ~ Hy + U(z™) — Uy||F < b0,

i k ; .
then as well as {)}5_, C Dy, and & (8 + a3 3 ||2!?) — 27 1|)) < 1, the inequality

i=1
- re ke 2l + £E2 k : i
|H U~ F'(2")||lF < V2 ( < ) (5n+ﬂl I 1}“)
1— @ (8o +a 3 |j2li) — 2i-1)|)) =1

| » |
1
holds, where a1 = E’ypg & + v, and pa 1s the same as defined in Lemma 2.2.

Proof. By Lemuma 2.3 we have
|Hy — H(z™) + U = U™)||p < |Hi-y — H@®) + Uiy = UEW))|F

1 o
+ srpz )iz - 2571,

and by Lemma 2.4, we also have
[Hior = H(z®) + Uiy = U(®)lr < (| Hioy — HEE V) + Uy - U D)
+ glla'™ — 21
Thus, it holds that
|Hy = H(z™) + U = U(e)||r < {|Hir = HEED) 4+ Uiy = U )) I
+a [Je!™) — 25|,
Fromn this inequality, by regressing it successively, we get
|~ H(z®) + U = U < o+ a0 3 29 = 2679
F=1
On the other hand, since

Hy — H(z®)|p < || Hr - H(zH) + U - U(V)F

A
<bpt+ag ||z - =1

j=1
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by the Banach lemma, we know that Hj, is nonsingular, and
2

1H:  F <

: .
1- = (fo+ a1 3 [l2) — 26-1)])
. =1

Finally, we obtain
|HZ Uy — F'(2™)||p < ||H Y| pmax{1, || H (=) Y g ||U ()| r}

x (I1Ux = U(™)lF + | B — H(zV)||7)

< V2 HFL + 1B (SR U )| B - BH(zY) + Uk - U@®)]|p

2 k . -
<2 L (f0 + e Y [z — 26-1]).
1— = (6{} + o E ||a:(-?) - z(-’f—l)”) =i
2=1

Now, we give the Kantorovich-type theorem, which asserts the existence of a zero
of F. The proof closely follows the techniques in [3].

Theorem 3,2. Suppose that for given initial values z(0) ¢ Do, Hy € L, Uy € U,
there ezxist positive constants a;(1 < i < 4), such that

max{||H(z)"*||7, | H(z)llF, |U(2)llr} < a1, [|Ug Hollr < a2,

| HoF(z )] < a3, [|H(z) - Ho+ U(=®) - Uollr < as.

a) Define
B o 73253(1 & ‘11-1*'14)2
1 —ajaq — \/.‘zalqzu.;(l + a?)]? ’
; 1-— ﬂ1ﬂ4[1 -+ \/ﬁﬂg(l + ﬂ%)]
= 1+ +1—2h).
T+ vas(l — a1a4) ( - )
If 0 < aaqf1 + v2ax(1 + a?)] < 1,k' < 1/2 and N(z©),+' ) C Dy, then F has a root
2* ¢ N(©,r"). If k' < 1/2, then =* is unique in N(2'?,7". )N Dy. The sequence
{2} generated by

g1 = 300 _prlEF(E'Y), k=0,1,2,---

convePges to z* from any (% € Dy N N(z(ﬁ),rfl_).
b) Define

1 -
0 = HAX {‘}’-.- §TP2H1 T T}: op=1l+ 3\/§ﬂ-2(1 + af),

Ry = 1 — ala.;p! 5 — \/fal(l + a?) 2,
Yo@1p 1 — ai(as + 70R0)
v2a1(1 + a?) azasl
= h =
PR {TD’ 1 —ai(as + ‘mRD)’TD}, (1 - 3az6)%’
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1 — 3{125
= — /1 — .
r 3arl (1 — /1 —6h)

If 3as6 < 1,h < 1/6 and N(z!%),7) C Dy, then the sequence {z'¥)} generated by the
algorithm is well defined in N(z'9,r) and converges to a solution z* ¢ N(z© r) of
F(z) = 0.

Proof. a) Define G : Dy C R* — R" by G(z) = z - U, 'HyF(z); define ¢ : R! —
R, g € C[0,t'],¢' € [r"_, 7] by g(t) =t + a f(t), where f: R! — R! is given by

\/ﬁalq(l +af)ag 1 )

@3
A il
1 — ad144 o

)

76 = 578+

Note that f is convex and quadratic and that the hypotheses guarantee two positive
real roots, /..

By direct evaluation, we can get |G(z!") — 2(Y)|| < g10) — 0 < aj. Because
|Ho — H(D)|F < ||Hy - H(z"") + Uy — U(z")iF < as,

H' exists and ||H[;'f||p < a; /(1 — ajay), as

|Hg Uo = F'(z)llp < V2 HG |1+ | H (") |1 U ()]l o

\/Eﬂr](l +- E%)ﬂ.ﬁ;
1 - 1144 *

- HE=z') + U - Uz <

So
1G'(@)||lr = [II - Uy *HoF'(z)||F < ﬂz(llfﬁ?lffu ~Fi")|g + [F'(='") = Fi(«) #)

v2a1(1 + a?)ay

< oy e - 2D € [lle — 2, )
V2ai1(l + a2)a
< asf 1IE_ ala:) = +9t) = ¢(2).

With the definition of f, we know that r’ is the unique solution of f in 0,t"), and
g(t') — t' = ay f(t') < 0. From Kantorovich’s majorizing principle it follows thatyz~ is
the only fixed point of G in N(zm],r;)ﬂ Dg, and the iterate sequence {Z*'} converges
to 2* from any (% € Dy n N(m{m,r‘;}.

b) Consider the scalar sequence {¢;.} defined by

tﬂ‘*_"‘[}r tk—{—l:tk'i'{lﬂf(tk)': k:{}*l]-ﬁgm”'w

flt) = glt:"’ e T

I L4
a» ds

—

The function f is a convex and quadratic with two real positive roots, the smaller
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of which is ». Since

1~ 31’126
2

. — 11

tpe1 — tr = ﬂz[ | (3“&-1 —
L

J
)t — taea) + SUtr — )’

, |
Jas [53(1‘& — 1 )% + (Mt + (L — tk—l}]

1
= Jay [“é‘iitk b B ) 5](&- <t )

Now, by induction, we know that #, is strictly increasing. Also, as

1 — 3(1215
a2

F—trpr =7 — b+ ao[f(r) = f(8)] = |1+ a2 (31 - ) - )

= 3as(l€ + 8§)(r — 1), t,<€<r

it is obvious that, for all &, ¢, < r and L]im t; = r. Now, we want to prove the following
» Eal

facts by induction:

25+ — 25)|| <ty — t,
for all k.

z M1)€ N(2'9, ),

For k = 0 the facts are obviously true. Suppose that for all £ < m — 1, the facts

are correct. By Theorem 3.1 we have

: ai(1+ a? ;
|B2 0 — F/(e9) | < V3 b ag + 70 3t — tio1)]
1—aifas + 70 ,Zl(t:i —tj_1)] =1
J:

1+a?) | 1
< \/i ﬂ]( il | [ﬂq "i‘""}’[}Rg] =0 + 1Ry = 3T
2

From this, we get

|H7YU; — B Uollr < |H7MU; — F'(29)|ip + || F'(z) — F'(z)]|F

V2a;(1 + a?)a,
1 — IARIT]

i .
+{IF'(z®) - H3 Vollr < 7 + 72 — 2| -
2 .

1 : 2
L — R R
_3324—7{] o+ * 3a,

Using the Banach lemma again, we get that ' U; is nonsingular and ||U; " H; ||z < 3a,.
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For k = m, because

HE[HHU I E{T”}H = |\U,, HruF( [m})H S SEZHF(E{m})”

¥r

<. 3&2['|F(m(m}) N F(E[m_“) . Fr(z{m—l])(m{m} - ;'L'{m_”')H

+ [P (™) — HoL U ||pll2t™ — 2™

1 .
£ 3{12[57”2:(1’”} G z(fﬂ—i)“ + 8+ ttm-—l]lllz(mj s E(m 1]“

1
{_: 332[§I(tru e tm—l) g It'.tr'ﬂ.wl + 6](tm e tm—l)

e

= tm-i-l e tm*r

11 +1
(m+1) _ {0} « S (7} _ L7-1) « g oot =
2 O < 3 2l = 20V < 32 (8 — t-1) = tmgr <7

These complete the induction.
These show that there exists z* € N(z!9,7) such that lim z(*) = z*, and

ke~ 00

|F(z™))| < (|1 Hy Uk — Hg Uollr + (| Hg  Uol|F]l|lz*+1) — M
2
< (—- +ar)||e®tY) — 2®|| — 0, k- oo.

Thus F(z*) = 0.
In the conditions and the process of proving the theorem, we should note that the

inequalities

| 1
m(uq-?-"}’URo){L Ro>0, r< Ry and rgri(hj‘gg)

can be derived by 3a28 < 1 and IR + & = 1/(3az).

§4. Convergence Analysis for the Linear System of Equations

If F: R* — R"™ is affine and defined by
F(z) = Az A € L(R™) nonsingular and b€ R", (4.1)

with F/(z) = A,H(z) = H” U(:c) = [I*, and the Lipschitz constants ¥,¥ are zeros,
then the following result is direct from Theorem 3.2 and Lemma 2.5.

Theorem 4.1. Let F: R® — R"™ be given by (4.1) and consider the factorization
update alporithm. For gien initial approzimations 20 € Do, Ho € L,Ug € U, there
ezist positive constants a;(1 < i < 4), such that

max{||(H*) |7, |1H*|F, |U*NIF} < a1, UG Hollr < as,

\U; HoF(2@)]| < a5, |\ H* — Ho+ U* — Vol < aa.
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If 0 < ajaq[l 4+ 3v/2a2(1 + a?)] < 1, then the factorization update algorithm canuerges
Q -superlinearly to 2* = A~b from any 2®) € R™.

Proof. If s'¥) = 0, then F(z*)) = 0 and z(*) = z*.

If s(¥) 2 0, by using Theorem 3.1 we have

1H Uk = Alle < V2 HZL L+ 1) ENU N Hegr = B + Ukyr = Ui

'li'_: \/5111114(1 ﬂ.%)}
1 — a1 a4
ad

| Hil Uksr = Hy 'Oollr < |1 H 1 Uk — Allr + 1A - Hy U0 F

< 2\/51511{14(1 -+-{1%)‘

1 — d1Q4
We know that HA+1UL+1 1s nonsingular and

ax(1 — ara4)
as[l + 2v/2as(1 + a?)]
By using (1.2)# it follows that for ¥ = 0,1,2,---,

”SHHII'” - [l::“”‘ﬁ . _T(k+1]“ < ‘lUk_:]Hkr{-l||F||F(m[k+1)) _ F(:c(k}) _ H;,-IUJ:S{M”F

U i Hrpf|lF €
” }.+1 +1|| 1—{11

< |_iU;,j1Hh+1|[FHA — H7 ' Uilirlls™ ]

1 - 14| 1 . 2\fﬂ'}(l ¢ & {11)‘

since

\/§{11(1 +*{1%){13{14
1 — ajaq[l + 2v/2a5(1 + a?)]

0 < 2 k.

g )

The above fact implies that Y [|s'*)|| < oo, proving the local and linear convergence.
k=0 _

Superlinear convergence follows just as in the proof of Theorem 3.2 in [2].

This theorem shows that unless the convergence of the algorithm is global for initial
approximation z!"! and local for approximations H and Uy, the matrices U}, generated
by (1.3) may be singular. To avoid singularity in Uy, set

I}

Hio = Hio = 3 0 (o(i), ve(i)) el (Hiye — Uns'™™)esyn(i)"
=1 (42)

., = U + Zf? vr(2), v )}*e?(Hkyk — U;,s“"])e.;s““)(i)T

\ 1=1

where 8%(1 < 7 < n) are chosen so that U;,, is nonsingular. To be more precise, we

fornt the following theorem:

Theorem 4.2. For {H,.} and {U.} defined by (4.2} and o € (0,1), there exist
8%(1 < i < n) such that
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a) Hpyy € L is nonsingular,
b} Uk € U, |detUp 1| > o] det Uy, (4.3) .
Proof. The proof can be immediately obtained by defining

(k) _ < x(2), vi(i) - Ef(Hkyk — Uks(k))e?,g(k)
o= T ,
€; Uke.;
and choosing
1, if 1+8"> 05,
b; = - 1 1 << n.

_ - (k) <

ﬁ[k} ; if |1+ﬁ31 ’{ﬂ' :

It is not too difficult to show that these choices of 7 (1 < i < n) provide numbers

closest to unity and belonging to (0,1), so that (4.3) is satisfied. In the rest of the
paper, we will only assume that #F (1 < i < n) are chosen to satisfy

Urs1 € U nonsingular, 0 < 8 < sup max 8 < 1. (4.4)

k
»

Theorem 4.3. Suppose that {H;} C £,{Ux} C U are generated by (4.2) and (4.4).
Then for any H € £, U € U, the following inequality holds:

|Hiyr — H 4 Upyy — Ul < [|Hi — H+ Uy - U3
- O\Vil(Hiys — Us'™) — (Hys, — Us™N)|? + IVi(Hyr — UsM)|2. (4.5)

Proof. The proof, similar to those in [2] and [3], can be done by direct and technical

estimations, so we ormnit it.

Theorem 4.4. Let F : R* — R"™ be given by (4.1) and consider the modified
factorization algorithm as defined by (1.2), (1.4), (4.2) and (4.4). Suppose that there
exist H* € L, U" € U, such that H*A = U~. Then the algorithm is globally and
Q) -superlinearly convergent to z* = A~ 1b.

Proof. By Theorem 4.3, we easily obtain

N Hisr — B 4 Uiy = Ul < || He — B 4 U~ U'|p < -+

<||Hp - H*+ Uy - U"||F,

[ Hellp < | Hy = H'||[F + | H ||F < [[Ho — H + Uo — U”[|F + [ H7||F,

and

iy

|Hipr = H 4+ Uy — U ||p < ||He = H* + U = U™ || — 6

Hiyr, — Ups'F )2
pilist¥)]|2

S0

e S M= B 4 U= Unlf = [ Hesa = B + Vs = U7l
1 :
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Taking summation in this inequality for k& from 0 to an integer m, we get

s sm [ Hiyr — Urs™||2 ; ; . :
2, I 02{|s(k) |12 ] <||Hy— H* + U = U"||F = | Hms1 = H + Umsr = U™l
h=(} 1

£ 8| Bo ~ B* + U~

Then
fhse | Hypy — Ups®||2 .
he— 00 ||5(‘L}I|2 :
as
My — B U8 ; v || Hgk— TrsY]
| ' i | H = I,
dm e < ey
that 1s
b i (A — H, 'Us)s™ | ¥ T
| 14| ’
Since ’
(HEIUL. = A)s(k} — —F(I{k+1)) — —A(:E““H} —z7),
hence
l2*+D — 27| < [[A Y| F|| Az — &%) = 1A FI(H U — A)s'™|

< [|[A Y pexlls™ < AT I rerllz*?) = 27l + 2™ - z7])).

Let k be sufficiently large such that ||A7!||per < 1. Then

ecllA |7
- exl|A P

ot — 27| < - a4 - 2]

As

JlA!
N i Y
h— ]. G Ei.'HA_IIIF

we complete the proof of the theorem.

Furthermore, by taking § in Lemma 2.5 so small that 87 = 1 (1 < ¢ < n} satisfies
either (4.3) or (4.4), we also see that the modification of the factorization update algo-
rithm defined by (1.2), (1.4), (4.2) and {4.4) is locally and @-superlinearly convergent.
However, even if ¥ = 1 (1 < i < n) is not chosen, we still have local and @-superlinear
convergence. |

Theorem 4.5. Let F: B — R" Satisfg; the assumptions of Lemma 2.5. Then the
modification method 1s locally and Q-superlinearly convergent.

Proof. By substitutin.g H* U= for H,U in (4.5) respectively, this result follows from
a modification of the proof of Lemnma 2.5 given in [2], so we omut it.



248 BAI ZHONG-ZHI AND WANG DE-REN

§5. Numerical Tests

In this section, three algorithms, simple Newton method(s-Newton), sparse LU
method(s-LU) and the factorization update algorithm (FUA), are compared by use
of two types of numerical examples. The initial triangular factors H, and U, are the
triangular factors of F'(2(%)). No pivoting is used in any of the methods. The important
comparisons are in [T, NFEV and NFAC where I'T = number of iterations, NFEV =
number of function evaluations, NFAC = number of matrix factorizations, and P ROB
= the problem’s serial number.

Problems 1-11.

4T
fi(I) = (kl —= kgmf)zf + 1 - k‘g Z (JEJ - SII?),
- J=i—r
FES
=], for 2<1 or ¢>n.
We choose the igitial approximations mE“J = —1,1 < z < n, for Problems 1-11.

We have done computational experiments by the s-Newton, the s-LU of Dennis and
Marwil and the FUA on IBM-PC/XT. The computation terminates if iterations achieve
| F|| < 2x107° for all algorithms. The numerical results are given in the follwing table.

s-Newton s-LU FUA
NFAC=1 | NFAC=1 | NFAC=1
PROB | n |7y |7r2{ k1 | ko | k3 | IT=NFEV | IT=NFEV | IT=NFEV
1 5 1372|2105 16 17 14
2 2 | 212121 1/05 17 22 14
3 15|21i2]|1]1/|05 12 26 11
4 a | 3131|105 10 49 10
D 8 | 2: 272 1405 18 19 15
6 8 (322 ]1]05 17 19 13
7 J12{2(4]1}1]1 23 39 18
8 12| 2 |2 | 1 1 [ 0.5 12 47 11
9 152 (4|1 |11 26 33 24
10 157 2 | 2 | 1 1 | 05 12 44 12
11 2002 1212 |1 1 15 23 15
Problems 12-19.
filz) = (3 — kizi)zs — 251 — 2201 + 1, =10, for 1<) or i >n.

—-1,1 < 2 < n, for these problems. The
2{F}|| < ¢. The numerical results

We choose the initial approximations m( ¥ o
computation terminates if iterations achieve ”T. k“‘l]
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are given in the following table.

s-Newton s-LU FUA

NFAC=1 | NFAC=1 | NFAC=1
PROB | n | ki | ¢ |IT=NFEV |IT=NFEV | IT=NFEV |
12 | 5 0.5 | 2E-10 18 31 13
13 | 5 |05 | 2E-12 21 41 15
14 | 5 | 1.0 | 2E-10 20 33 15
15 |5 |1.0]2E12| 24 37 18
16 | 10 | 0.5 | 2E-10 17 35 13
17 | 10|05 | 2E-9 16 33 12
18 120 0.5 | 2E-10 17 35 14
19 |20 |05 | 2E-9 16 33 12

Obviously, from the above two tables we see that the FUA 1s superior to the other ones.
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