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Abstract

In this paper a systematical method for the construction of Poisson difference
schemes with arbifrary order of accuracy for Hamiltonian systems on Poisson man-
ifolds is considered. The transition of such difference schemes from one time-step to
the next is a Poisson map. In addition, these schemes preserve all Casimir functions
and, under certain conditions, quadratic first integrals of the original Hamiltonian sys- "
tems. HEspegjally, the arbitrary order centered schemes preserve all Casimir functions
and all quadratic first integrals of the original Hamiltonian systems.

§1. Introduction

~ For the Hamiltonian system

E{—;?:-:J'l"an'f?I(.:a.'),, z€ R

dt
where H(z) € C*(R*") is a Hamiltonian function, Feng Kang et al. have developed a
general method for the construction of symplectic difference schemes via generating functions
[3-6]. Such difference schemes preserve the symplecticity of the phase flow and the quadratic
first integrals of the criginal Hamiltonian systems. The method used in (5] can be generalized

to the following Hamiltonian system

Z —KVH(z), zeR" (1)

where H(z) € C*°(R"), K is an anti-symmetric scale matrix, maybe singular. This system
could appear such as in the semi-discretization of infinite dimensional Hamiltonian systems
In space variables. The case of non-singular K has been considered in [12]. At that case n
1s even and a Poisson map coincides with a symplectic map. For a given generator map, a
Poisson (or symplectic} map uniquely determines a gradient map, further a scalar function
(up to a constant), and vice versa. So the scalar function is called a generating function.
Here a given Poisson map can also determine a scalar function. This scalar function, in
another way, can also determine a Poisson map. But we do not know if it is the original
one. This is the present difficulty. Fortunately, for the phase flow of the system (1), we
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can directly give its time-dependent generating function which satisfies a Hamilton Jacobi
equation. When this result is obtained, the remainder is similar to [5].

In sec. 2 we consider some properties of the Hamiltonian system (1). Its phase flow 1s a
one parameter group of Poisson maps. In sec. 3, it is shown that for the phase flow of the
system (1) there exists generating functions and its generating functions satisfy some Hamil-
ton Jacobi equation. This generating function can be expressed as a power series for analytic
H{z), whose coefficients can be recursively determined. Truncate it then Poisson difference
schemes approximating to {1) with arbitrary order of accuracy are obtained (in sec. 4}. Sec.
£ is about conservation laws. All Casimir functions and quadratic first integrals, under
some conditions, are preserved. Especially, the arbitrary order centered schemes preserve
a1l Casimir functions and quadratic first integrals of the original Hamiltonian systems.

We shall limit ourselves to the local case throughout the paper.

2. Poisson Manifolds and Hamiltonian Systems

Let R™ be an n-dim real space. The elements of R" are n-dim column vectors z =
(21, - 2,)7. The superscript T represents the matrix transpose.

Let C*(R") be the space of smooth real valued functions on R". For H(z) € C*(R"),
we denote VH = V. H = (H,,, -, H,.)¥, H, = (H:,, +,Hs,) and Hy, = OH/3z. So
VH(z) = (H.(2))T.

For a given anti-symmetric n X n matnx K{maybe singular), we can define a binary
operation {-, '} on C®(R"} by

{F.H} = (VF)TKVH, VF, H € C*(R").
Evidently, it is bilinear, anti-symmetric and satisfies the Jacobi identity, 1.e.,
{{F,G},H} + {{G,H}, F}+{{H, F},G} =0, VF G, H € C*(R").
From the definition it follows that it also satisfies Leibniz identity
(FG,H} = F{G,H} + {F,H}G.

So {-,-} is a Poisson bracket on R™. R" equipped with the Poisson bracket is called a
Poisson manifold, still denoted by R"

A map z — 7= g(z) : R™ — R" is called a Poisson map if 1t 1s a (local) diffeomorphism
and preserves the Poisson bracket, 1.e.,

{FGQ:HDQ}:"{F:H}GQ: VF:HECM(RH)'
It is easy to verify that it is equivalent to

gz(z}K(gz (3))T = K,

i.e., the Jacobian matrix g, 1s everywhere Poisson; here a matrix M 1s called Poisson if

MKM" =K.
Definition. A function C(z) € C®(R™) is called a Castmir function 1f
{C(2), F(2)} = 0, VF e C*{R").
Proposition 1. C(z) € C®(R") is a Casimir function if and only if
KVvC(z) =0, vz € R",
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By a Hamiltonian system on the Poilsson manifold R", we mean the following ordinary
differential equation

d
d—f = KVH(z), zeR" (2)

where H(z) € C*(R") is called a Hamiltonian function. Its phase flow is denoted by ¢*(z)

= g(z,t} = gg(z,t). It is a one parameter group of diffeomorphisms ¢*, at least locally in ¢

and z, lLe.,

¢° = identity, gtrtie — gh1 g 41,

If 25 is taken as an initial value, then z(t) = g*(29) is the solution of (2) with the initial
value zg.

Theorem 2. ([11}) The phase flow g*(z) of the Hamiltonian system (2) 13 a one param-
eter group of Poisson maps, 1.e.,

{Fog'(z),Gog'(2)} = {F,G}og'(z), VteR,VF,Gec C®(R")

or

g:(2)K(9i(2))" = K, VteR.

Theorem 3. F(z) € C®{R") is a first integral of the Hamiltonian system (2} if and
only if {F, H)} =£0. Especially, every Casimir function is a first integral.

§3. Generating Functions for Phase Flow of Hamiltonian Systems

An: Ba ;
Let a = l C. D. ]EGL(ZH) satisfy
0O K| r+ | K 0
“"[Ko “‘[O_K]' (3)

Expanding it, we get
B,KAT + ALKBT =K, B,KCT + A,KDT =0,
D,KAY + C,KBT =0, D.KCT + C,KDI = —K.
Left multiplying (3) by ™!, we have
A°K = KB, B°K=-KDT,
C* K= KAL, D*K = ~KCT,
A* B*“
S
For a given a € GL(2n}, we can define a linear fractional transformation
Ta-1 : M(n) — M(n},
N=0,-1(M)=(A“M+ B*)(C*M + D*)"1,

(5)

where a~ 1 = [

under the transversality condition

|C* M + D%| # 0. (7)
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e |
a—1

M = 04(N) = (AaN + Ba)(CaN + Do)

Its inverse transformation 18 o =

for

|ICoaN + D, | #0. (8)

The conditions (7) and (8) are equivalent [5].
By direct verification, we can obtain

Lemma 4. Let o € GL(2n) satisfy the condition (3). Then M is a Poisson matriz and
satisfies (7) if and only if N = 0,-1(M) satisfies (8) and NK € Smi(n).

Theorem 5. Let o € GL(2n) satisfy the condition (3). Let z — 2= g(z} : R™ — R™ be
a Poisson map and its Jacobtan M(2) = g,(2) satisfy the transversality conditrion (7). Then
there ezists o map w — © = f(w) : R® — R"™ with Jacobian N{w) = fu(w) = 04-1{M(2))
and a scalar function ¢{w) (depending on a and g) such that

A%g(z) + B%z = f(C%g(z) + D*2), | (9)
f{Kw) is a gradient map, NK = 0,-1(M)K € Sm(n), - (10)
f(K) = Vé(a). _ (11)

Proof. Set p
: = A%g(z) + B®2, w=C"g(z)+ D"=.

By assumption, |C*M(z) + D*| # 0. So by Inverse Implicit Theorem, w = C%g(z) + D*z2

is invertible. Denote its inverse as z = z(w). Set & = f(w) = (A%g(2) + B*2)|z=z(uw) =

A%g(z{w)) + B*z(w). Then its Jacobian 1s

8% 3w 8z O (aw)‘1

N = ol = G ™ BB B \ D%

. = (A*M(z) +’B“)(C“M(z)+D“)_1 = g,-1(M(2)}.
Evidently, f and g satisfy (9). Set f(#) = f(w)|lw=kw = f(K®@). Then, by Lemma 4,

fo = fuw K = 04-1 (M) - K € Sm(n). That s, f(w) = f(K®) is a gradient map. So by
Poincare Lemma, there exists a scalar function ¢(@), such that
V(o) = f() = f(K).
Analogous to [5], it is easy to get the following

Theorem 8. Let o € GL{2n) satisfy (3). Let 2 — Z = g(z,t) be the phase flow of the
Hamiltonian system (2) with the Jacobian M(z,t) = g,(z,t) and

C* + D*| #0. (12)

Then there ezists, for sufficiently small |t| and in (some neighbourhood of) R*, a time-
dependent map w —, & = f(w,t) : R — R" with the Jacobian N{w,t) = fulw,t) =
Tu-1(M) and a time-dependent scalar function $(12,t) such that

A%g(z,t) + Bz = f(C%g(z,t) + D%2,t), sdentically 1n 2

f{tﬂ,t) = flw,t)|w=xkw = f(KD,t) is a ttme-dependent gradient map,
NK =o0,-1{M)K € Sm(n),

flw,t) = f{Kw,t) = V¢(1,t),

2 = 4ul@,1) = ~H(A.V$(@,1) + Ba K1)
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From Theorem 5, we know that if X is non-singular, then g(z) and ¢(@) have the relation
A%(z) + B2 = Va (K1 (C*g(z) + D*z)).

So a Poisson map ¢(z) uniquely determines a scalar function ¢(@} (up to a constant}, and
vice versa. In this case, ¢(10) is called a generating function of g(z). Consequently the phase
flow g(z,t) of a Hamiltonian system corresponds to a time-dependent generating function
(for fixed «) which satisfies some Hamilton Jacobi equation. For the case of the singular K,
given a Poisson map, we can get a scalar function. But the above relation is not valid. Of
course, for a given scalar function ¢(w), there corresponds a Poisson map, defined by

A%j(z) + B%z = KTV ,¢(C*§(2) + D*2)

under the condition

Cu KT e () + Dol # 0.

Even though we take ¢(w) = ¢(w), we do not know if §(z) coincides with g(z). Hence we
can not use ¢(w,t) in Theorem 6 to determine the phase flow g(z,t). In order to overcome
the difficulty, we make the slight change of ¢ and directly give Hamilton Jacobi equation.
Below we consider « in a subset, 1.e., 1t 1s of the form

| -y 1 S I I
[ atEa ) I]’ = |y sin | 1)

where

KV + VK =0.

It is easy to verify that such an o satisfies {3).

Theorem 7. Let o € GL(2n) be as in (13). Let ¢{w,t) be the solution of the following
partial differential equation |

2
2. g0t~ S y
where A, = -21-(1 — V), with the initial condition (w,0) = 0. Then, for sufficiently small
t and in (some neighbourhood of ) R™, the phase flow g(z,t) of the Hamailtonian system (2)
satisfies

glz,t) —z2 = ~KV, ¢ (C%(z,t} + D%z,t), 1identically in 2, (15)

where C% = %(I+ V), D" = %(I-— V).

The scalar function ¥ (w,t) ie called the generating function of the phase flow g(z,t).
The equation (14) is called the Hamilton Jacobi equation of the Hamiltonian system (2).

Proof. Evidently, the initial-value problem always has a solution locally {9]. So we only
need to prove that the solution of (15) satisfies (2). Differentiating (15} with respect to ¢,

we get

dg(z,t) _ _dg(z,t) |
dt o ﬂKi’bww(w’t) ¢ dt o K(?w '\b)i'(wrt): (16}

where w = C%g(z,t) + D”z, Yuw{w,t) is the Hessian of y¥{w, t) with respect to w. By (14),
(?wﬂ})t(w,t) = —(I - Aa KYuulw, t))TVH(Z),




120 | . WANG DAO-LIU

where 7 = w — A, AV¢{w,t). Substituting it into (16), we have

(I + wa Co) dg(; ekl K(I + Yoo KAT)VH(3)

= (I + K¢ C*)KVH(Z) (by(7)).

Since Yyww(w,0) = 0, I + K4,,,Cq is non-singular for sufficiently small ¢ and in (some
neighbourhood of) R". It reduces

dgf; ) _ kvH(®), (17)

Since w = C%g(z,t) + D%z, then by (15),
g(z,t) — z = —KV, yp(w,t).

So
Zz=w— A KV¢Y(w, t) = Cg(2,t) + D*2 + A,(9(2,t) — 2]

= (C* + A.)g(z,t) + (D* — As)z = g(z,t).
Combining with {17), we get

dgE;: ) _ KV H(g(z,¢)).

For t = 0, ¥(w,0] =0, so ¢g(2,0) — 2 =0, ie., g(z,0) = 2. Therefore, g(2,t) defined by (15)
is really the phase flow of the Hamiltonian system (2).

Theorem 8. Let H(z) depend analytically on z. Then the generating function y(w,t)
can be expressed as a convergent power serses tn t for sufficsently small |¢]

Ylw,t) =) B (w)ek. (18)
k=1
The coefficients ¥ ¥ (w), k = 1,2, can be recursively determined by the following equations
Pt (w) = —H(w),
k
-1 1
{k+1) — £y 1 A KT E ) (w), -, AL KT T yplkm) ,
WD) = mzz = Zm D7 H(w)( ) () plen) (w))

kiEl

k21,
where we use the notation of multi-linear forms, e.q., |

D™ H(w) (A KT VypFd (w), - -, A KT Vyplin) (w))

= Z H,,,,.l,...,zim(w)(aaxfwihl(w))i,---(A,:.KTw{km}(w))im.

e g |

(AaKT'U’iﬁ{k‘)(w})h is the 5;-th component of the column vector A KT V) (w).
Proof. Differentiating {18) with respect to w and ¢, we get

Vauth(w,t) = i vgb“‘)(w)t",_ | (19)
Y elw 1) = Z(k + 1)tk (). (20)
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Substituting them into the Hamilton Jacobi equation, expanding it and comparing the terms
of the same order with respect to ¢, we can get above recursive formula.
From (15) and (19} it follows that 7 = g(z,¢t) is the solution of the following implicit

equation

E‘-—z=—KZth¢{k](%(E+z)+%V{E—z)). (21)

k=1

For V = 0, the Hamilton Jacobi equation is
1
h(w,t) = —H(w — EK‘U’wu,b(w, t)).

and the generating function #(w,t) is odd in t. So

1,{;(w,t) - Zw(ﬂk—.l](w)tZk—-l'
k=1

84. Construction of Poisson Difference Schemes

for Hamiltonian Systems
»

In this section we use the power series expression of the generating function ¥, g (w,t)
to construct Poisson difference schemes for the Hamiltonian system (2).

Theorem 9. Let a € GL(2n) be as in (13), Using Theorem 8, for sufficiently small
T > 0 as the time step, the m-th truncation of Y{w,t)

,;.Em] (w, 7) Z"b“] w)*r-’ m=1,2,-

k k+1

defines an implicit Poisson difference scheme z = 2° — z =7

1
R ¥ “K?W"‘j(-—(z""“ + 2F) + %V(z“‘“ ~ 2%), 1)

|

—KZT"?'@ZJ[J}( (2511 + 2%) + V{zk“ z*))

1=1
with m-th c~der of accuracy. The transition of such scheme 1s a Poisson map.

Proof. For sufficiently small 7 and in some neighbourhood of R™, | + K ¢L"J;} C* 18
non-singular. Hence the implicit equation

Z—z= —K‘{?1,b{""}(2(z+z) + -—V(z—z) T)

defines a map z — 2 = g{™)(z, 1), i.e., it satisfies the identity
| g™ (z,1) — 2 = — KV (C* g™ (2, 1) + D2, 7).
Set z = z¥ and Z = 2¥*!. Then we get the scheme {22).
The Jacobian of —KV¢{™){w, 1) is N("‘}(w r) = —-Ky{rw".:,}(w r). Evidently, NI™ K &

Sm(n}. Thus by Lemma 4, M{™)(z2,7) = , ](z 7) = 04(N'™)(w, 7)) is a Poisson ma-
trix. So ¢{™)(z,7) is a Pmssc:n map. Since %™} (w, r) is the m-th approximant to ¥ (w,t),
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gim)(z,r) is also the m-th approximant to g(z,t). Therefore the Poisson difference scheme

given by (22} is of m-th order of accuracy.
For V = 0, and for sufficiently small 7 > 0 as the time-step,

ri

¢{2m](wi T) = z I)bmi_l](w)fgi_l: m = 112: i

i=1

defines a 2m-th order centered scheme

zk+1 i zk : o K;V¢(2£—1) (%(zk+l +Ek)) TE:’—l. {23)

Take m = 1, (1} = —H. We get the 2-nd order centered Buler scheme

_ 1
2*t =2 L rKVH (E(zk*’l + zk)) ;

$(9) (1) = _%Hza (%KTv,p{l], %KT?,p(l)) (w)

_»1 T _ s
. < ((VH) KH.. KVH)(w) = 5 Z (KH..K)i;jH H.,,

1. 7=1

i ; 1,
where all derivatives of H is evaluated at w = ~{£+2). Thus the 4-th order centered scheme

e

18

1 3
2"t =¥+ rKVH (E(zk"'l + zk]) - %—K

(K H, Ky B ) (5 + ).

1, 7=1

§5. Conservation Laws

In this section we consider the conservation laws of Poisson difference schemes (22). Nat-
urally we hope that the Poisson difference schemes can preserve the conservation laws of
the original Hamiltonian systems as many as possible. Here we will show that the Pois-
son difference schemes (22) can preserve all Casimir functions and, under some additional

condition, quadratic first integrals of the original Hamiltonian system {2).

Theorem 10. The general Poisson difference schemes (22) preserve all Casimar func-
tions. That 13, if C(z) € C=®(R") is & Casimir function, then

Ozt ) = C(2*), k> 0.
Proof. By Proposition 1,
KVC(z) =0, vz e R™.

Hence

Cle++1) - C(aH) = (VO(E)T (4 — 2
_ (VC(z) TRV (L(aH1 + ) + SV (e = 2, 7) =0,
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1
Theorem 11. Let F(z) = EETS;:, S € Sm(n) be the first integral of the system (2). If

VTS 4.5V =0, (24)
then F is also a first integral of the Poisson difference scheme (22), 1.e.,
Fiz"*)=F@=*), k>0

Proof. By assumption, F(z) = F(z), where Z = g(z, 1), i.e.,
1.4 1

EE‘ Sz = EHTSE'.
It can be rewritten as i
E(E +2)78(z~2)=0. (25)
From the condition (24), it follows that
1 1 :
E(V(E'-“ 2))T8(Z-2) = E{E—“ 2)7VT8(z - 2)
1

ab 2)' (VIS +8V)(2—-2)=0,  VZzeR"

Combining with {25}, we have

1 1 * omse
FlEtz)+V(E-2) ]| S(F-z}=0
Using (21), it becomes
1, 1 I ST 1
(E( +z] + EV(E‘-— :-:)) SK;t-"Vi,bm (E(E-l- z) + EV(E_ Z)) = 0,

[t follows that |
wl SKVyU) (w) =0, Vs > 1,Vw € R™.

Hence for the Poisson difference scheme (22), taking
1 1

w = —(*t + %) + 5

: V(zk+1 —.‘c'.-'k),

we obtain

T
1 1 1
E(.:e:""'*‘1 4 25)F §l27 T — %) = (E(zk'“ + 2F) + EV(z"""l — z"‘)) S(zFt! — 2F)
T
1 1
— (_2_(25:+1 + zk) + Ev(zk+l 5 zk]) SK
i . - 1 .
X Zv;f){’] (-;—(:zk+1 + zk) -+ EV(zk'i'l = zk)) ™ =0.
i=1

[t is just
%(zk+1)TSzk+1 = %(zk)TSzk

i‘IEi,

Fz*tY) = F(2").
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When we take V = 0, (24) always holds. Therefore we have the following

Corollary 12. All centered Euler difference schemes (23) preserve all Casimir functions

and quadratic first integrals of the original Hamiltonian systems.
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