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Abstract

In this paper we shall define a so-called “non-classical” elliptic projection associated
with an integro-differential operator. The properties of this projection will be analyzed
and used to obtain the optimal L? error estimates for the continuous and discrete time
Galerkin procedures when applied to linear integro-differential equations of parabolic

type.

" §1. Introduction

e

Let 2 be an open bounded subset in R™(n > 1) with smooth boundary 911 and consider

the following integro-differential equation of parabolic type:
t

e)ue(s,t) = V- [a(a)Vulz, )] + [ V- [blz,t,)Vulz, ldr + £(z,8), inQr, (1)

u(z,0) = uo(z), z €1}, | (1.2)

u{z,t) =0, on Sy =30 x[0,T), (1.3)

where Qr = O x (0,T],T > 0;V is the gradient operator in R"; p(z), a(z), b(z,t,7) and
f(z,t) are known functions which are assumed to be as smooth as needed throughout this
paper. In addition, we assume that there exist two positive constants c., ¢* such that

0<c, <plz), afz)Lc”, zefl (1.4)

Recently, some attention has been given to numerical approximations to the solution
of (1.1)-(1.3). Sloan and Thoméel*®l considered the time discretization approximations,
Cannon and Li and Linl4l have formulated a Galerkin procedure for general linear equations.
Optimal L? error estimates in the case when a{z) = 1 and b(z,¢,7) = b(t,7) appear in {11].
The problems of existence, uniqueness and stability of the solution can be found in {9, 12,
13, 17).

When a(z) # const. and b(z,t,7) is dependent upon z, the method developed in [11]
fails to provide the desired L? error estimates. The main reason of this 1s that there are
two second order operators on the right-hand side of (1.1}, so the usual elliptic projection
method discovered by Wheeler in [18] does not work in this case in general. This suggests
that we need to treat the operator

V- [u(mi)Vu] + /t V - [b(z,t, r)Vu(z,7)|dr (1.5)

0

* Received May 6, 1988,



Non-Classical Elliptic Projections and L?-Error Estimates for Galerkin Methods 239

as a single unit. In this paper we shall define a “non-classical” elliptic projection suitable
for (1.5). In the special case when 6 = 0, our new projection reduces to the usual elliptic
projection defined in 18],

Let H*(12) denote Sobolev spaces on {2 and || ||, the related norm, with H° (1) = L3(N)
with norm || - ||. Hg(?) is the completion of C$°(Q) under the norm || - |i;.

Let {Sh}o<n<: be the finite-dimensional subspaces in H} which satisfy the following
approximation property:

lé_lg {||”“*X||+h||”—X||1}ﬂc““””n UEHJQHSI s 2 1, (l'ﬁ)
XTah

where C' 15 a positive constant independent of h and v € H* N H}.
If X' is a normed space with norm || - |[x and ¢ : [0, T] — X, we define

T
6220y = [ 100t, Ilmcry = ess sup fo(e)lx

The continuous Galerkin approximation to the solution u of (1.1)—(1.3) is defined to be
amap U(t): [0,T] — S, such that |

¢
(pU;, x) + (E?U —I—f bVU(r)dr, ?x) =(f,x}), t>0, x¢&&8, {L:7]
0

s U(0,) — uo small, (1.8)

where

(4, 9) = f $(z)9(z)dz

for scalar and vector functions, respectively. The choice of U{0) will be described later. We
know that {1.7)-(1.8) is actually a system of ordinary integro-differential equations and it
can be easily checked that for any U(0) € Sj there exists a unique U(t) for ¢ > 0.

Let N be a positive integer, At = T/N,t,, = mAt and tmt1/2 = (m + 1/2}At; then we
define f,, = f(t,n)and fri1/2 = (1/2)(fins1 + fm)- For t(r}, g(r) smooth, we know that

/ f(T)Q(T]dT = &3f[tt+1;2]9k+1jz +ex(f, 9)*

tx

Since it is easy to verify

Pkl 1 [kt L
[ tedr = ttsdrss + 5 [ e~ Aite - S

tx t

1 th+1 df LIS | dg
(f9)k+1/2 = frvi/20k41/2 + 1('/; E;fff) (/; E) dr,

k

1 Lkt dﬂf 3 d’Zf
fret1p2 = f(tk-[-l,f?) T [ (b1 — 7) 55 dr '*‘/ (tx — T]‘""”d"']:
2[ tey1/2 dr? 41/ dr?
we see that the error £4(f, g) can be represented by

Ek(f: 9') = %ftt+l(tk+1 = T)(tk = r) dZ(Tfig) dr + %([“H S{“df) (/th“ j—f) dr

Tx k tx

At bk+1 d?f 2 Cfo
e [/ (tkr1/2 — 7)5dr + / (tx — TJ_dT] Jk+1/2-
2 tk...l‘l'] drz tk-i-lfi df2
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Thus, a discrete time Crank-Nicolson Galerkin approximation to (1.1)—(1.3) is defined to be
a family {Upn}N_, in Sy such that

(PatUm+1: X) + (ﬂva+1f2 + At z 6mkak+1f2: vX} = (f(tm+lf2):X)i X € Shs (19)
k=0

UU — Up small, (110)

wher
Uy = (A Upms1 — Unm),

1 1
bink = ‘Z'b[m;tm+1:tk+1f2) P Eb{ﬂ?: trstky1/2), k=12, -,m—1,

1 .
buriie = Eb(mrtm+1: tr.rl.+1f2)'

U can be approximated by the L* projection of ug into Sy, or any other similar approxima-
tion. Notice that (1.9) is O({At)?) order in time. '
The main results of this paper are the following theorems:

Theorem 1. Let u be e solution to (1.1)-(1.3) such that u € L=(0,T; H*),u; €
L?(0,T; H*) and assume that U 1s the solution to (1.7)—-(1.8) with U(0) chosen properly.
Then we have ,

3 ||u—U||Lm{L:) = O(A°). (1.11)

Theorem 2. Let the solution v of (1.1)—(1.3) be such that u € L*°(0,T; H’),u, €
L%(0,T; H®),uy € L2(0,T; H') and uy, € L?{(0,T;L?). Then there exists a positive con-
stant o such that if {Un}Y _, 15 the Crank-Nicolson Galerkin approzimations, with Uy cho-
sen properly, it follows that for all 0 < At < o,

- . 8 2
1ax [l — Ul = O(h* + (81)?). (1.12)

In this paper we shall use the following version of Gronwall’s lemma: If f(t), g(t) are
nonnegative real-valued functions which satisfy

f(t) £ Cglt) +C-/: flrjdr, 05t < T,

¢

f(t} < CEG‘T{g(t) + /ﬂ g('r)d'r}‘

Here and in what follows we denote by C a generic constant which may be different upon
each occurrence.

In Section 2 we shall define a “non-classical” elliptic projection and study its properties.
The proofs of Theorem 1 and Theorem 2 will be given In Section 3 using the projection
defined 1n Section 2.

then we have

§2. Non-Classical Elliptic Projection

For approximation to the solution of parabolic equations, it is thought that, in order to

obtain optimal L? error estimates, we have to use an auxiliary elliptic projection introduced

by Wheeler in [18]. Here we shall modify her idea and for u, the solution of (1.1)-(1.3),
define a map W(t) : [0, T} — S» such that
. pt
(aV(W ~ u) + / bV (W — u)(7}dr,Vx) =0, z€S85,. (2.1)
0
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We call this W a non-classical elliptic projection of u into S,,. It is easy to see that (2.1)
18 an integral equation of Volterra type. For example, if S, = span{yx}_., where ¢y are
linearly independent, and if we assume that

N
Wiz,t) = Z Ci () (z),

k=1
then (2.1) can be rewritten as

AC(t) + f t B(t, r)C(7)dr = F(t), (2.2)
5 _

where A, B are matrices and F is a vector, and

Ct) = (Cu{t),- -, Cn ()T, F(t) = (Fi(t), -, Fn(t))7,
Fi{t) = (a?u+/tb'?udr, ‘?1,6;), t=1,2,--, N,

A = ({aVe, Vo)), B(t, 1) = ((6V, V).

Since A is positive definite, it follows from the general theory of integral equations that
there exists a unique solution C(t) for (2.2). Consequently, we see that the W in (2.1) is

well-defined.

We shall'now prove some lemmas which will be used in the next section. For any

u € H*(0,T; H*(0)), we define
2 . 2
+ dar
. 4}

12 = 3 (] e
!.k o : Bt-’
1=0
;

H*(0,T; H*) = {u € L*(0,T; H*) g}—; € L*(0,T;H*), 7=0,1, - - ,k}.
Remark. || - ||, x is not a norm on H*(0, T; H*(0)).

Lemma 1. Lety =W — u. For ue L?(0,T; H?((1)), there ezists a positive constant C
independent of v and h such that

Il + &llnlly < Ch* ||y, (2.3)
Proof. Since W € S),, we have from (2.1) that

(a.‘?n +./{;1t bV n(r)dr, ‘E?n) = (ﬂvn +f

£l

ati

where

t

. bVn(r)dr, V(x — u))

< IVl - )l + ¢ ( [ 19n(r)ldr) 190 - )]

t
Ca
< SVl +C [ 19n(r)IPdr + CY s - )|

Thus, it follows that

C

4
e, [Vnl? =C [ 19n()Par — SEwn?

; t
< OW* =2l + S|Vl + C [ [9n(e)ir (2.4
0
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Gronwall’s inequality implies that

1onl? < owe=2{jul + [ lldr} < oR* 2l (2.5
For any function v € H}, its elliptic projection ¥ is defined by
(Vv—19),Vx) =0, x€ 8. (2.6)
For ¢ € L?(Q1), let 1 be the solution of
-V -aVy=¢, In (2.7)
¥ =0, on 3N. (2.8)

Thus, we have |||z £ C||¢]l. Employing this construction we can show that

(,, + % fn t br(r)dr, ¢) = (vn 4 [} t Evn(f}df + [ﬂ t(vg)n(r)dn nw)
g (avn + _/; " 5Vn(r)dr, ve) + /D t(*r..'»'f]’l-)n(f»-)cm avy)
— (aan— j; t'wq(r)dr, V(¢ — v.b')) + ( /; t(VE)n(f)d‘r, aw)
<o(iwall+ [ 19n@ar) 19 - B+ o [ Int)ar) 199l

< on(Ival+ [ 1Vate)dr) 1wl +C [ Inir)arll

i t
< ofw(val+ [ 19n@)ar) + [ In(o)lar} gl (2.9)

0 0

so that we have
i 4
Il < ¢ [ Intr)lar + Ch(1oal + [ 19a(r)har). (2.10)
From Gronwall’s inequality together with (2.5) and (2.10) it follows that

Inll < C*lJullao. (2.11)

This completes the proof.
Lemma 2. Ifue H(0,T; H*({1)), then there ezists a positive constant C such that
lnell + Rlinells < Ch*fjullss- (2.12)

Proof. We differentiate {2.1) to obtain

t

(u?m + (¢, ¢)Vn + j; b Vn(r)dr, Vx) = 0. (2.13)

Hence

_(avm + b(¢,t)Vn + /; b Vn(r)dr, ?m) = (u?m + b(t, t})Vn + [; be Vn{r)dr,V(x — ut))
| (2.14)
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If we take y = #i;, then we see that

Ca ¢ C
SVl = (19l + [ [19n()ar) < o2
0

i .
+C (19012 + [ 19a(r)ar) + €IV (w — ) 2 (2.15)
So 1t follows from Lemma 1 that
t
IVnel? < CR*=2(Jwll2 + 2o + € [ 1Vn(r)%dr) < OR*2ulf,.  (216)
0

Similarly to the estimate of ||n|l, we consider

(’?t + ;Il-l(b(t, tin + /t bm[r]dr),qﬁ) = (a‘?m + b(t,t)Vy + /{: be Vn(r)dr, ‘U’gb)

D

+((V6(t’ t))’? " /{:(V%{)n(f)dr, avff))

a

— (u?!?t + (¢, 1) Vn + /t b: Vn(r)dr, V{y — fﬁj)) + ((vb[t:t)

0 ﬂ-)n

+ [ (Phntr)ar,av9) < CA(19ml+ 19l + [ 19a(e e+ o

+ [ Inr)ldr) 191l < Oh* ] (217
0
from which and Lemma 1 we have
Inell < C{*lulles + inll + [ lin(e)ldr } < A uln (218

Thus, Lemma 2 has been proved.

Lemma 3. Ifu e H?(0,T; H*(f1)), then we have

el + A Vnee|| < Ch? |, 2. (2.19)
Proof. We differentiate {2.13) to obtain

t
(EVﬂu + b(t, t)vnt ou th(tr t)v’? g3 f bttvn(r)dfs v):) = 0. (220)
0

The remainder of the proof is essentially the same as that of Lemma 2, 30 we omit it here.
It is easy to see from the above three lemmas that

Lemma 4. If u € H?(0,T; H'(Q1)), then there ezists a positive constant C, independent
of h and u, such that

Wil < Cllullio,  Wells < Cliullis, [Weelly < Cluljy.z. (2.21)

§3. The Optimal L? Error Estimates

We shall now prove Theorem 1 and Theorem 2 as stated in Section 1.

Proof of Theorem 1. Let u—U = (u— W) + (W — U} = —y + 8, so that it suffices to
estimate §. We see from {1.1)-(1.3) and (2.1) that

(pWi, x) + (a?W + [t bVW (r)dr, "Fx) = (f,x) + (p(W: — u),x), x € 8. (3.1)

0
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Subtracting (1.7} from (3.1), we have
¢

(e, x) + (:1"'?9 —i—f bV é{r)dr, ?x) = (pne,X); X € Sh. (3.2)
4]
Setting x = 8 € Sj,, 1t follows that
1d :
S o012 + 29812 < © [ 198} V0(@ldr + Clincl ]
t
Cu
< SIV8P + Ol + [ 190(7) ). (5.3)
Applying Gronwall’s lemma, we have
t
1617 < IO + Il + [ Ime(r) Pa). (3.4
If we approximate UU{0) and W{0) such that
|U(0) — soll + [IW(0) — ol < Ch[luoll,, (3.5)

for example, by taking them both to be the L? projection of ug into Sp, then Theorem 1

follows from Lemma 1 and (3.4)—(3.5).
Proof of Theorem 2. We see from (2.1) that

(avwmwz + ALY bk VWies1/2 + em(W), vx)

k=0
¥ri
. (uVum_H;g e ﬁ.t Z bmkvﬂ-kq.lfz - Em(u), Vx), X - Sj“ (3.6)
k=0
where
tm+1
lem P < Cla® [ (lul? + luelf)dr + A0 Nullyoriorsy
f-m+1
lem(W)I? < Clatf |77 (WIE + WD + CADIW a0 70y
Thus,
(PO We, x) + (“?Wm+lfﬁ + At Z bmkvwk+lf2: ‘7}()
k=0
= (f(tm+1f2) = 2 Pm + PatquXJ + {(pm(u) — Pm (w)): vX)‘l X = Sh.' (37)
where
Pm = Ottm — ut(tm+1}2]
and

tm+1
loml? < C20° [ ua P

m=-1

We subtract {1.9) from (3.7) and obtain
m
(P,atgms X) =+ (‘E‘vamq-l/z + At Z bmkvgk+1f2; vx)_
k=0

= (pBetNm + Pms X) + (Pm(4) = pm(W), VX}, x € Sh. (3.8)
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If we set x =6, /5, multiply (3.8) by 2A¢ and sum on m, we see that

1*/28m 41|12 = 11917200 )|2 + 248 Y [|a¥/2V6,, )2
{=0

41 { i
< C(ﬁ.t]Q Z Z(bxkvﬂk_klfg, ?5;.}.1'}2} + CAt Z(Patni + o1, §I+1,’2)
=0 k=0 =0

m m
+C At Z(P:(U) — pifW), Vi, 1/2) < C(AL)? Z Z 1V0kt1/2]] 16141 2]

i=0D i=0 k=0
+CAt ) (18em| + o) 641/l + CALS (ot (W) + e () i)V 014 12|
=0 (=0
: m m—1 |
< C(At)? Z V6141 /21* + C(AL)° L L V84122
=0 =0 k=0
m m
+CA] 3 3ol + (el + e (W)2 + [lou(u) ) . (3.9)
£2{=0 i=0
We know that
m S
Aty ool <€ [ fm(o)lar (3.10)
1=0 9
and 1t 1s easy to check from Lemma 4 that
ﬁ“Z “PI(“}HE % 0(53)4||“”?fl[u,r;L=[nnr (3.11)
(=0
At ) |l (W) < ClA W E 1 (0.7:L3(a)) < Cliullzs o.1:221a))- (3.12}
=0

Thus, we have

18m-+11% + (1 — CALAL D " [|V8,41 2|2 < C{JI60]|% + ~2* + (AL)*)

=0

rr—1 !
+0(81) 37 (863 1 V8ipal?). (3.13)
=0 k=0
Select o > 0 such that 1 — CAt > (1/2) for all 0 < At < ¢, Hence, it follows from the
discrete version of Gronwall’s lemma that

Jax_[18m])* < C{l16o]]® + h* + (At)*}. (3.14)

Theorem 2 is a consequence of this last result and Lemma 1 provides that (3.5) holds.
Remark. It is easy to see from the analysis in this paper that the non-classical elliptic
projection method can be modified and used to obtain the optimal L? error estimates for

nonlinear equations and other similar type of equations, e.g. equations which contain two
or more higher order derivatives ( the Sobolev equation is such an example).
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