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Absatract

Let {A, B} be a definite matrix pair of order n, and let Z be an I-dimensional
subspace of €. In this paper we introduce the Rayleigh quotient matrix pair {H,, K}
and residual matrix pair {R4,Rp} of {A, B} with respect to 2, and use the norm of
{Ra,Rs} to bound the difference between the eigenvalues of {H,,K,} and that of
{A, B} , and to bound the difference between 2 and an l-dimensional eigenspace of

{A, B}. The corresponding classical theorems on the Hermitian matrices can be derived

from the results of this paper.
F

1. Preliminaries

Notation. € ™*": the set complex m X n matrices, and € = €%, C™Xn. the set of
matrices with rank r in €™*"*, [R: the set of real numbers. A: the conjugate of 4. AT: the
transpose of A. A¥ = AT, A': the Moore-Penrose inverse of a matrix A. A(A): the set of
the eigenvalues of A. R{X;): the column space of a matrix X 1- || - |2: the Euclidean norm
for vectors and the spectral norm for matrices, i - ||p: the Frobenius matrix norm.

In this section we give some definitions and basic results on definite pairs.
Let 4, B € €™*" be Hermitian. The matrix pair {4, B} is a definite pair if [31-19

c(A,B) = ' 1'ﬁ1in1 1z (A + iB)z| > 0, (1.1)
zlig=
where ¢ = +/—1. The set of all definite pairs of order n will be denoted by ID(n).
Let {A, B} € ID(n). A non-zero vector z € €™ is an eigenvector of {A, B} belonging to
the eigenvalue (o, 8), if |
(a,8) # (0,0), BAz= aBz.

The set of the eigenvalues of {A, B} will be denoted by A(A, B).
Let {A, B} € ID(n), and let X = R{X,) be an [-dimensional subspace of €”, in which
X € t‘.[,'"’m. X is called an eigenspace of {4, B} ift®

dim (AX + BX) < dim (X).

Let X = R(X,), X, € CE;"’”. It is easy to prove that the following statements are
equivalent (ref. [3|-[5]):

1) X is an i-dimensional eigenspace of {A, B};

2) X is spanned by ! linearly independent eigenvectors of {A, B};
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3) there is an [-dimensional suLspa.ce Y C €" such that
AX, BXCUl;
4) there is {A’, B'} € ID({) such that
AX,B' = BX,A":
5) there are Y; € G™*! and {4, By} € ID(l) such that Y" X, = I, and
AX; =Y1A, BX,=158. (1.2)

Now we introduce the Rayleigh quotient and the residual of a definite pair.
Definition 1.1. Let {A, B} € ID(n), Z, € C**, and Z{ 2, = I. Let

H,=Z7AZ, K,=2Z%'BZ. (1.3)

Then {H1, K} is called the Rayleigh quotient matriz pair (or simply, the Raylergh quotient)
of {A, B} wsth respect to Z,.

Suppose that R(X;) is an I-dimensional eigenspace of {4, B} € ID{(n). From 5), there
are ¥; € €™ and {4, B} € ID(!) such that Y}” X; = I, and the relations (1.2) hold. From
(1.2) we get

A1=X1HAX1, B1=X{fB.X1

and .

Y, = (AX1 A, + BX;:B;)(A? + Bf)™ L.

This suggests the following definition.
Definition 1.2. Let {A, B} € ID(n). For any fized Z), € C™*! satisfying 2712, = 1,
construct Hy and K, by (1.3), and let

W1 = (A21H1+BZIK1)(H?+Kf]_1 (1.4)

and
RA(ZI} — Azl—WIH]_, RB(Z]_) =.BZI ""W]_K]_. (1.5)
Then {R4(Z,), Re(2Z,)} s called the residual matriz pair (or ssmply, the residual) of {A, B}

with respect to Z;.
It is easy to see that if Z; € €**! and ZFZ, = I, then R{Z,) is an eigenspace of

{A, B} € ID(n) if and only if
RA(Zl} = 0, RB (Zl) = 0.

'We have proved in [6] that the precision of the eigenvalues of { H}, K, } as { approximate
eigenvalues of {A, B} is higher than that of B(Z;) as its approximate eigenspace. In this
paper we shall use the norm of {R4(Z:), Rp(Z;)} to bound the difference between the
eigenvalues of {Hy, K1} and that of {A, B} to bound the difference between R(Z;} and
an {-dimensional eigenspace of {A, B}. From the results of this paper one can derive the
corresponding classical thecrems on Hermitian matrices.

At the end of this section we cite two perturbation theorems which will be used in the

following. L o
Theorem 1.813). Let {A, B}, {A, B} € ID(n), and let A(A, B) = {{a, Bi)}, M4, B) =
{(&,8:)}. Then there is a permutation 7 of {1, --,n} such that -

A |A-Al3+1B-BlIF
P(({Ii:ﬁi)l(ﬂfr[i):ﬁrr[ij)) < \/ : C(j,B] E, 1=1-,n.
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Here

- @6 — B9
B)s (1, 6)) =
Ao 00 = AT
13 the chordal distance between (u:,ﬁ') and (v, 6).
Theorem 1.4/4l. Let {4, B},{A B} e ID(n), and let

A 0 B 0

H _— i H — 1

XAX_(U Ag)’ XBX_(O Bz)_’

XH A% = ( 4 0N gupg_ (B 0 )
0 A,

where X = (Xl,Xg),j = (.irlj.i;g) E.ﬂlﬂxn, and Xl:jl & qnx‘. Let

" < Aw . (o, B8i) € A(Ay, By)
b= min (e 20, (55,8 - (52 i |

If§ >0, then

. - (4, B)l= (A - A)X,, (B~ B)X,|F
“ Sln B(XI,XI]”F i C(A’BJE(A,’E} 5 .

Here .

0(X,, X,) = arccos(Z,? 2,27 2,)7 > 0 (positive semi-definite),
in which '

lexl(XiH.Xl)_%, §1=j1(ifff1)‘-%

§2. An Extremum Property

This section will show that the matrix W, defined by (1.4) has an extremum property.
Theorem 2.1. Let {A, B} € D(n), and let Z; € G™*'. Construct Hi, K, and W; by
(1.3) and (1.4), respectively. Then F = W) 15 the unigue solution of the problem
= min,

( AZ, — FH, )
BZI e FKl F (2.1)

Fllp = min, Fe gnx!,

Proof. First rewrite (2.1) as
{ HTFT - PT|2 4+ | KT FT - QT2 = min,

FT)lp = min, (2.2

where P = AZ,.Q = BZ,.
We associate the matrices F T PT and QT with the ni-

which are the direct sums of the column vectors of FT pT
problem (2.2) takes the form

I'" @ HT vl P
M @ KT q

f”z = min.

dimensional vectors f,p and g
and Q7 respectively. Then the

= min,
2 (2.3)
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This is a linear least squares problem, which has a unique solution

- (2m) ()- [Ge) ()] Ge) ()
I® KT) \g LI@K}' 19 KT I® KT/ \g
=(I®@ A;Hf +1® K, KTy {I® Hi)p+ ( ® K1)d]
— Ie (B HT + K, KT (U@ Bi)p+ I® K,)q]

_ e (fLHT + KK o+ 1 © (BT + K KD) " Kalg,

where ® denotes the Kronecker product. Consequently,
FT = (B, HT + K. KT) " (HL PT + K.Q"),
je, F=W,. 0O

3. The Eigenvalues of the Rayleigh Quotient

Let {A, B} € IDfm), 2, € ¢ and ZfZ, =1 I R(Z,) is an eigenspace of {A, B},
then A(Hy, K1) € A(4, B) (see [3]). Now we assume that R(Z;) is not any eigenspace of
{A, B}.

jiQ

Decompose Z; = U ), where U € €™*™ is unitary. Construct W, by (1.4). From

0
()
Wf31=1weget.W1=U( ).Let
Wa
_ B TV} _wﬁ B _ LU Y
z_'(ZIIZTZ)'_U( 0 I )'I' W"(WIIWE)—U( Wﬂl I ) (31)
We have WHZ = 1.
Write

H, ¢*# Hy O 0 CH
H o i 1 il 1
4 AZ'(C Hg)"(o H2)+(c 0 )
K, D¥ K, 0 0 D#
o Bz"(p Kz)‘(n K2)+(D 0 )
Clearly, {ZHAZ,Z”BZ},{(H‘ . ),(K‘ . )}Em(n),and}.(ZHAZ,ZHB.Z)=

0 H; 0 K,
M A, B). Let
A4, B) = {(as, Ai) ) MHy, Ky} = {{,6:)}

Then by Theorem 1.3, there are ¥ .-, I'e {1, --,n}such that
g c¥ {0 DFY |
cC 0 D 0 i
c(ZHAZ,ZH BZ)

VICEFPE. ,_,
(ZHAZ,ZHBZ) :

2
+
2

A

P[(ﬂ:i‘ lﬁi')i ('Ti': 61})

i (3.2)
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Observe that for the residual {R, (Z1), Rp(Z,)} defined by (1.5}, we have
H ! 0 K I 0
H = + S — H —— < == —r— %
iz = () - (o)m = (0). #mata (5) (o)== (3)
Hence inequalities (3.2) can be rewritten as |
VIZ¥ R4 (2))[5+ [ZFRp(Z)[Z
i P ), (9, 8)) < , T=1p40 3.
pllas, Bi), (1, 8) T A i=1,0 (5.3
Let o = ||W34||2, and
W= ”W;l ”2 = ||(AZIH1 ¢ % leKl}(Hf + Kf]-lug. (34)
Then w = /1402, and
_ I o _Vol+d+o VBt 3+ Vo1
”WHE o '( Woy I )'2 2 2 3 (3'5)
Wi -wH
12k = (5 )| = 1w (3.9
2

Moreover, observe that

(2" AZ,Z"BZ) = min |z¥2%(A + iB)Zz|

flz]]z=1
- in 122 (ZI)H B Zz | ~1[=8, _ -2,
Substituting (3.5)—(3.7) into (3.3), we get |
(P Ny T TR T
pllas, Bir), (4, 6)) < (A B) ;
i=1,--,L (3.8

Hence, we have proved the following resalt.

Theorem 3.1. Let {A, B} D(n), A(A, B) = {(ai,8:)}, and let Z, € (nxh, 22,
= 1. Let {H,, K} be the Rayleigh qoutient of {A, B} with respect to Z,, and A(H,, K,)

= {(%,%)}. Then there are 1’, . S8 € {1, ,n} such that inequalities (3.8) hold, where w
13 defined by (3.4). .

§4. An Approximate Eigenspace

We first prove a lemma.
Lemma 4.1. Assume {H,,K,} € ID(l). Let

_{ Hy © _{ K; ¢©
H"( 0 oln—t) )’ K‘( 0 ¢(H,y, K;)rin—4) )

H(H, K)llz = |(H,, K|z, c(H, K) = c(H), K,).

Then
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Proof. Let
H,,=Hicosp— Kising, K,,=H,sinp+ K;cosp.
By Stewart [3, Theorem 2.2], there is ¢ € [0,2x) such that K, is positive definite and
c(Hy, K1) = dmin(Ky 1),

where Amin(K,p,1) denotes the smallest eigenvalue of K, ;. Let

_f Hg1 O _{ Kgn O
H'P“ ( Up oln=1) ): Kw—(op c(Hl,Kl)I(""‘” )

Since
[(H, )|z = [[(Hp, Kp)ll2 = max{[|(Hp.1, Kp)l2, ¢(H1, Ku )}
and
"(HIP-II K‘P-l)nﬂ 2 ”K'PJHZ 2 C(HI!KI):
we have

I(H, K)||l2 = [(Hp.1 Kp1)ll2 = [(H1, Ki)l2-

Moreover, since »

C(H:K) = E(H'P*:Kfp} > i nl-llilll iIHK.PII = ’\min(Knp) = C(leKl):

and for z = (0,23 )T € €™, where z, € €~ with ||zz2l2 = 1,

' Iﬂdnl |z" (H, +1K,)z| = c(H;, K,),
we have c(H, K) = ¢(H,,K;). O
Let {A,B} € ID(n),Z; € €™*' with ZHZ = I. Let H,, K, be defined by (1.3).
Theorem 3.1 shows that there are {ai:,81), -, (cr, Brr) € A(A, B), which are near the
eigenvalues (1,61), -, (11, 8) € A(H1, K;). Let R(X,) be the eigenspace of {A, B} corre-
sponding to the eigenvalues (ayr, B1/),- -, (o, Brr), where X, € ¢™*!. This section will use
the norm of {RA(Zl),RB(Zl)} to bound " 81N B(Xl, Zl)"F
By the hypotheses, there is X = (X3, X2} € €**" such that

H _ A, 0 H _ B, 0
XAX-(B Az), XBX—(D 32), (4.1)
in which {A1,Bl} & ID(I), and A(AI:BI) — {(ﬂ:,‘r,ﬁ;')}{=1. Let

I={1, -, n}\{1,--,0'}, &= min p((as, i), (75, 65)), (4.2)

and assume 6 > 0. o
Construct W, by (1.4}, and then define Z,W by (3.1). Consider the definite pair {A, B}

of order n defined by

x s H]_ O H s Kl 0 H
iow (B 0 Ywn, mow (B 0 )W

Let
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It 1s easy to see that
: H 3 . Hl 0 H _ K]_ 0

w8 -

and

By Theorem 1.4, we have

“sine(z X}” < ”(“ilé]”E”(EZthl)”F
VRS g Bl e

(4.5)
Observe that
EZ = (A- A)Z, = AZ, —-W,H, = R, (Z,),
FZ,=(B-B)Z,=BZ, -W,K, = Rp(Z2,)

H]_ 0 Kl 0
0 0 ; 0 C(H].,Kl}f
2 1 4 2
= +\/.: T2 O (HL Kl (by (3.5) and Lemma 41);

¢(A, B) B L PR (( ’3‘ 3 )( Igl C(HI?KIJI ))

= || Z)|,2c(H,, K} (by Lemma 4.1)

o sk o - —1
(w 4 K & \,i'.; + 2w 3) c¢(H, K,) (by {3.5) and (3-5))'

Substituting these relations into (4.5}, we get

(A, B))|2 < (W

2

.

| (e R Y (s, KR (Z0), R (Z0))]
| sin ©(23, Xy ) | < o(H,, K1)o(A, B)s |
(4.6)

Hence, we have proved the following result.

Theorem 4.2. Let {A, B}, ;\(A, B}, Zl, {Hl, Kl}, )L(HI, Kl) and (ﬂ:lﬂ,ﬁlr), YA (ﬂp,ﬁp,)
be as in Theorem 8.1. Let R(X;) be the eigenspace of {A, B} corresponding to the eigenval-

ues (ayr, By}, -, (@, Byr), where X, € %!, Define 6 by (4.2), and assume § > 0. Then
inequality (4.6) holds, where w is defined by (3.4).

85. Final Remarks

Let A € C™*™ be Hermitian, X; € €**! and X{'X, =1 Then X = R(X,) is called an
eigenspace of A if

AL C X, (5.1)
or equivalently, if there is a Hermitian matrix A; € €™ guch that

AXl =X1A1. (52)
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Clearly, A; = XF AX,.
Let Z; € O™, Zf Zi; = I. The matrnx H; = szAzl is sald to be the Rayleigh quotient
of A with respect to Z;, and

R(Z) = AZ, — Z, H, (5.3)

is said to be the residual of A with respect to Z;.

Now we use Theorem 3.1 and Theorem 4.2 to derive the corresponding results on Her-
mitian matrices (ref. [1], (2], [5}). |

5.1. On A(Hl]

Let A(A) = {a;}" 1, A(H1) = {vi}i=,. Take t >0 and B = I. Then, obviously {A,tI}
€ ID(n), K, = tIV, A(A,tD) = {(e4,t)} and A(Hy, tl) = {(7i,t)}. Moreover, by (1.4) and
(1.5) we have

" 1 1 =
W1={A21H1 +t231)(H12+t21) 1=(31+t—2Ale1][I+ EEHIZ) lel(t)

and

Ra(Z.) = AZ, - W (t)H,, Ri(Z,) = t(Z, — Wi(t)).

By Theorem 3.1, there are 1',---,I' € {1, - ,n} such that
»

(VTS Vr D Z 1Y TR T+ TR (20T
P((ai':t}’ ('Ti: t)) < C(A' tI) |
£=1,"':li (5‘4)

where

1 1
w(t) = [Wa(O)ll2 = (Z: + 5 AZ ) (T + 5 HD)

o(A,tl) =t min \IH(I = %A]z\, 5 =,
e e

VIRAZIE + Rt (Z)]E = VAZ, - Wi Hi [ + 2|2, - CAOIH

and
log — |

(2)%) (1 + (2)%)

ap,t), (s, t)) =
plleirst), (i t)) "y

Observe that
lim W, (t} = 2, 1|=lim wlt) =1

t— 00

and
1 1 -
5y — Wl(t) — t_E(ZIHl — AZl]Hl(I-l- t—z-le) b

Hence, considering t — +oo, from (5.4) we get
jag — %] S UB(Z1)l]2, =10 (5.5)

- Let R(X;) be the eigenspace of A corresponding to ayr,---, 0y, where X; € €%,
Without loss of generality we may assume that X X, = I. Take t > 0, and consider the

definite pair {A,tI} and its Rayleigh quotient {H,,tl}, where H; = Z{AZ,.
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Obviously, there is a unitary matrix X = (X1, X2) € ©*%" guch that
H _ A; O H _ t 1) 0
X7"AX = ( 0 A ), X7 thHX = ( 0 ¢fn-y) |
and A{A;,t]) = {{ay, t) {_,. Let T = {1, n}\ {1, -, '} and
b = min |a; - §| > 0.
S
Then
0y = I‘I"IEIP ﬂ((ﬂfi;t]: ('Tj‘pt)) = ‘I;I:IEIP [EI" -; FH, 2 > 0.
1<5 <! 1<5< t\/(l + (%)) (1 + (2£)%)
By Theorem 4.2, we have
” sin@(Zl,Xl]”p
w2(t) + 1+ Vot (t) + 202 (¢ —~ 3y 2
(S R = Yyl Ra (). R (20
< . (5.6)
C(H], f!)ﬂ(z’i, tI):St
Considering t — % oo, we get
: R(Z
Isin®(Zy, X,}||r < ” (;HlF. (5.7)

References

(1] W. Kahan, Inclusion theorems for clusters of eigenvalues of Hermitian matrices, Tech.
Report No. CS42, Computer Science Dept., University of Toronto, 1967.

(2) B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Faglewood Cliffs, N.J.

3] G.W. Stewart, Perturbation bounds for the definite generalized eigenvalue problem, Lin-
ear Algebra and Appl., 23 (1979), 69-86.

[4] Sun Ji-guang, The perturbation bou
Math., 41 (1983), 321-343.

[5] Sun Ji-guang, Matrix Perturbation Analysis, Science Press, Beijing, 1987 (in Chinese).

(6] Sun Ji-guang, Relative eigenvalues of a definite matrix-pair, Linear Algebra and Appl.,
139 (1990), 253-267.

nds for eigenspaces of a definite matrix-pair, Numer.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg

