A CLASS OF MULTISTEP METHOD CONTAINING SECOND ORDER DERIVATIVES FOR SOLVING STIFF ORDINARY DIFFERENTIAL EQUATIONS*

Bao Xue-song Xu Hong-yi
(Nanjing University, Nanjing, China)
Rui You-cai
(Institute of Computing Techniques, Nanjing, Jiangsu, China)

Abstract

In this paper a general k-step k-order multistep method containing derivatives of second order is given. In particular, a class of k-step (k+1)th-order stiff stable multistep methods for k=3-9 is constructed. Under the same accuracy, these methods are possessed of a larger absolute stability region than those of Gear's [1] and Enright's [2]. Hence they are suitable for solving stiff initial value problems in ordinary differential equations.

§1. Introduction

For the initial value problem of first order ordinary differential equations

$$y' = f(x, y), \quad y(a) = \eta, \quad a \le x \le b,$$
 (1)

we consider a k-step method which contains derivatives of second order

$$\sum_{i=0}^{k} \alpha_i y_{n+i} = h \sum_{i=0}^{k} \beta_i y'_{n+i} + h^2 \sum_{i=0}^{k} \gamma_i y''_{n+i}, \qquad (2)$$

where y_{n+i} , $i=0,1,\dots,k$, are numerical approximate solutions of solution y(x) of (1) at $x=x_{n+i}$; further $y'_{n+i}=f(x_{n+i},y_{n+i}), y''_{n+i}=f'_{n+i}=f'(x_{n+i},y_{n+i})$. The characteristic polynomials of (2) are

$$\rho(\xi) = \sum_{i=0}^k \alpha_i \xi^i, \quad \sigma(\xi) = \sum_{i=0}^k \beta_i \xi^i, \quad \gamma(\xi) = \sum_{i=0}^k \gamma_i \xi^i.$$

Our purposes are: (i) construct a k-step, k-order method and give its error constants, (ii) construct for k = 3 - 9 a class of k-step, (k + 1)th-order stiff stable method, which can be automatically generated by computer. For the same accuracy, the stability region of the methods in this paper is obviously larger than those of Gear's [1] and Enright's [2]. So they are suitable for solving initial value problems of stiff ordinary differential equations.

^{*} Received July 1, 1988.

§2. Construction of the Methods

Definition. The method (2) is of order p, if for arbitrary function $y(x) \in C^{p+1}_{[a,b]}$, the following relation holds;

$$L[y(x);h] = \sum_{i=0}^{k} \alpha_i y(x+ih) - h \sum_{i=0}^{k} \beta_i y'(x+ih) - h^2 \sum_{i=0}^{k} \gamma_i y''(x+ih)$$
$$= C_{p+1} h^{p+1} y^{(p+1)}(x) + O(h^{p+2}), \quad h \to 0,$$
 (3)

where p and C_{p+1} are independent of y(x), and $C_{p+1} \neq 0$ [3].

Lemma. Let E be a shift operator such that Ef(x) = f(x+h), and $\nabla f(x) = f(x) - f(x-h)$, $\Delta f(x) = f(x+h) - f(x)$, $Df(x) = \frac{df(x)}{dx}$. Suppose the function f(x) is sufficiently differentiable. Then, the relations

$$hD = \sum_{j=1}^{\infty} \frac{1}{j} \nabla^{j}, \quad (hD)^{2} = \sum_{j=2}^{\infty} \sum_{i=1}^{j-1} \frac{1}{i(j-i)} \nabla^{j}$$
 (4)

hold.

Proof. Because

$$E = e^{hD} = (1 + \Delta) = (1 - \nabla)^{-1}, \tag{5}$$

it follows, that

$$hD = -\ln(1-\nabla) = \sum_{j=1}^{\infty} \frac{1}{j} \nabla^{j}, \quad (hD)^{2} = \sum_{j=2}^{\infty} \sum_{i=1}^{j-1} \frac{1}{i(j-i)} \nabla^{j}.$$

Theorem. Suppose the coefficients in the k-step method

$$\sum_{i=0}^{k} \alpha_i y_{n+i} = h \sum_{i=0}^{k} \beta_i y'_{n+i} + h^2 \sum_{i=0}^{k} \gamma_i y''_{n+i}$$
 (6)

are

$$\alpha_{k-m} = (-1)^m \sum_{i=0}^k \left[\beta_i A_1^{(k-i)} + \sum_{j=2}^k (\beta_i A_j^{(k-i)} + \gamma_i B_j^{(k-i)}) \binom{j}{m} \right], \quad m = 0, 1;$$

$$\alpha_{k-m} = (-1)^m \sum_{j=m}^k \sum_{i=0}^k (\beta_i A_j^{(k-i)} + \gamma_i B_j^{(k-i)}) \binom{j}{m}, \quad m = 2(1)k.$$
(7)

Then the method (6) is of order k and possesses an error constant

$$C = \frac{1}{\sigma(1)} \sum_{i=0}^{k} (\beta_i A_{k+1}^{(k-i)} + r_i B_{k+1}^{(k-i)}), \tag{8}$$

where

$$A_{j}^{(i)} = \nabla^{l} A_{j}^{(0)}, \quad A_{j}^{(0)} = \frac{1}{j}, \quad j = 1(1)k;$$

$$B_{j}^{(l)} = \nabla^{l} B_{j}^{(0)}, \quad B_{j}^{(0)} = \sum_{i=1}^{j-1} \frac{1}{i(j-i)}, \quad j = 2(1)k, \quad l = 0(1)k;$$

$$A_{\nu}^{(0)} = B_{\nu}^{(0)}, \quad \nu < 0.$$

$$(9)$$

Proof. In the same notation as in the lemma, there follows

$$L(y(x);h] = \Big[\sum_{i=0}^k \alpha_i E^i - (hD) \sum_{i=0}^k \beta_i E^i - (hD)^2 \sum_{i=0}^k r_i E^i \Big] y(x).$$

From (1) one obtains

$$hD = \sum_{j=1}^{\infty} A_j^{(0)} \nabla^j, \quad (hD)^2 = \sum_{j=2}^{\infty} B_j^{(0)} \nabla^j,$$

where

$$A_j^{(0)} = \frac{1}{j}, \quad B_j^{(0)} = \sum_{i=1}^{j-1} \frac{1}{i(j-i)}.$$

Hence
$$L[y(x);h] = \Big[\sum_{i=0}^k \alpha_i E^i - E^k \Big(\sum_{j=1}^\infty \sum_{i=0}^k \beta_i A_j^{(0)} E^{-(k-i)} \nabla^j + \sum_{j=2}^\infty \sum_{i=0}^k r_i B_j^{(0)} E^{-(k-i)} \nabla^j\Big)\Big] y(x).$$

By the relations

$$\sum_{j=1}^{\infty} A_j^{(0)} E^{-(k-i)} \nabla^j = \sum_{j=1}^{\infty} A_j^{(k-i)} \nabla^j, \quad \sum_{j=2}^{\infty} B_j^{(0)} E^{-(k-i)} \nabla^j = \sum_{j=2}^{\infty} B_j^{(k-i)} \nabla^j,$$

where $A_i^{(l)} \triangleq \nabla^l A_i^{(0)}$, $B_i^{(l)} = \nabla^l B_i^{(0)}$, $A_{\nu}^{(0)} = B_{\nu}^{(0)} = 0$, $\nu \leq 0$, $l = 0, 1, \cdots$,

it holds that

$$L[y(x); h] = \left[\sum_{i=0}^{k} \alpha_i E^i - E^k \left(\sum_{j=1}^{\infty} \sum_{i=0}^{k} \beta_i A_j^{(k-i)} \nabla^j + \sum_{j=2}^{\infty} \sum_{i=0}^{k} r_i B_j^{(k-i)} \nabla^j \right) \right] y(x).$$
Let

$$\sum_{i=0}^{k} \alpha_i E^i = E^k \sum_{i=0}^{k} \left[\sum_{j=1}^{k} \beta_i A_j^{(k-i)} \nabla^j + \sum_{j=2}^{k} r_i B_j^{(k-i)} \nabla^j \right]. \tag{10}$$

By the relation

$$E^{k}\nabla^{k+1}=O((hD)^{k+1}), \quad h\to 0,$$

we obtain

$$L[y(x);h] = O((hD)^{k+1}), \quad h \to 0.$$

So by definition the method (6) is of order k and the error constant is (8). From (10) one obtains

$$\sum_{i=0}^{k} \alpha_i E^i = \sum_{m=0}^{j} (-1)^m \sum_{i=0}^{k} \left[\sum_{j=1}^{k} \beta_i A_j^{(k-i)} + \sum_{j=2}^{k} r_i B_j^{(k-i)} \right] \binom{j}{m} E^{k-m}.$$

Comparing the coefficients of E^{k-m} , E^k and E^{k-1} automatically leads to (7). Corollary. If the coefficients of the k-step method

$$\sum_{i=0}^k \alpha_i y_{n+i} = h y'_{n+k} \tag{11}$$

are
$$\alpha_{k-m} = (-1)^m \sum_{j=1}^k A_j^{(0)} {j \choose m}, \quad m = 0, 1; \quad \alpha_{k-m} = (-1)^m \sum_{j=m}^k A_j^{(0)} {j \choose m}, \quad m = 2(1)k,$$
 then the method (11) is of order k .

§3. Construction of k-step (k+1)th-order Stiff Stable Method for k=3-9

Suppose the k-step method is written as

$$\sum_{i=0}^{k} y_{n+i} = hy'_{n+k} + rh^2(y''_{n+k} + r_1y''_{n+k-1} + r_2y''_{n+k-2}). \tag{13}$$

From (7) one can obtain

$$\alpha_{k-m} = (-1)^m \left[1 + \sum_{j=2}^k (A_j^{(0)} + r(B_j^{(0)} + r_1 B_j^{(1)} + r_2 B_j^{(2)}) \binom{j}{m} \right], \quad m = 0, 1;$$

$$\alpha_{k-m} = (-1)^m \sum_{j=m}^k \left[\frac{1}{j} + r(B_j^{(0)} + r_1 B_j^{(1)} + r_2 B_j^{(2)}) \right] \binom{j}{m}, \quad m = 2(1)k.$$
(14)

Let C = 0 in (8). Then, there follows

$$r = -1/(k+1)(B_{k+1}^{(0)} + r_1 B_{k+1}^{(1)} + r_2 B_{k+1}^{(2)})$$
(15)

and the order of (13) is k+1. The characteristic polynomials of (13) are

$$\rho(\xi) = \sum_{i=0}^{k} \alpha_{i} \xi^{i}, \quad \sigma(\xi) = \xi^{k} \quad \gamma(\xi) = \gamma \xi^{k-2} (\xi^{2} + \gamma_{1} \xi + r_{2}).$$

Let the test equation be $y' = \lambda y$, Re $\lambda < 0$. The absolutely stable polynomial is then

$$\pi(\xi,\mu)=\rho(\xi)-\mu\sigma(\xi)-\mu^2\gamma(\xi),\quad \mu=h\lambda,$$

and the absolute stability region is

$$\Omega = \{ \mu \in C | \pi(\xi, \mu) = 0 \text{ module of all roots less then 1} \}.$$
 (16)

Let

$$\gamma(\xi) = r\xi^{k-2}(\xi^2 + r_1\xi + r_2) = r\xi^{k-2}(\xi - a)(\xi - b).$$

Then,

$$r_1=-(a+b), \quad r_2=ab,$$

where a, b are parameters. To make the method (13) stable at infinity^[2], |a| < 1 and |b| < 1 should be fulfilled.

For the constructed method to be stiff stable, assume a = -0.9(0.1)0.9, b = -0.9(0.1)0.9 for the given k, a and b and calculate r in (15) and α_i in (14), respectively. Then, decide by using Schur's rule the zeros of polynomial $\frac{\rho(\xi)}{\xi-1}$, and whether the module of all the zeros are less than 1. If they did be, then the boundary curve of the absolute stability region will be calculated, so that the method possesses the least D (see the figure); otherwise, change the parameter a or b and repeat the procedure. For k = 3 - 9, we obtain a class of stiff stable methods. Their coefficients are listed in Table 1. Letting r = 0 in the method (13), one obtains Gear's method^[1]. Table 2 is a comparison of D among the methods (13), Gear's [1] and Enright's [2] methods.

Table 1. The coefficients of $\sum_{i=0}^k \alpha_i y_{n+i} = h y'_{n+k} + r h^2 (y''_{n+k} + r_1 y''_{n+k-1} + r_2 y''_{n+k-2})$

k	order	a	b	r_1	r2		-				Ye 15 ye 16			
3	4	0.2	0.2	-0.4	-				α_0		α_1	T	α_2	
4	5	0.5		-0.7	0.1				8123479	0.	570423126	1_	0.19014091	
5	6	0.9		-1.5	0.54	-0.22429			1776738		264174938	-	1.00373840	
6	7	0.9		-1.8	0.81	1 2000,			530910		148020744		0.66231083	
7	8	0.9	0.9	-1.8					614957		864475369	_	0.363031983	
8	9	0.9	0.9	-1.8	0.81	<u> </u>			171703		59642488		0.26416015	
9	10	0.9	0.9	-1.8	0.81				417811 -0.0				0.219666839	
α_3		 -			0.01	1 11200302		-0.0032	245949				0.194560230	
1.4	10798	07		α4	18 -500	α ₅	ļ	α_6	α7	123 52	α ₈			
	347663		1.57	49421	61		<u> </u>					_	α9	
1.7	766721	73		08308		.81595135		<u> </u>		9		34		
-1,(081073	76		28378	124	.40031338	200 NO	1000-		- H			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
).7	253626	59		83873				1230392						
	440054	77		80110		.13331795	0070 (0.00	5582428				7		
0.622236431		31		13662		0.400		248119				2		
						13001404	-2.88896370		3.46972752		-3.8647174		1 00370520	

Table 2. Comparing of least D.

71 (16	ıı m	ethod (13) Gea	r method [1	Enr	Enright method			
	k	$\min D$	k	$\min D$	k				
4	3	0.05	4	0.7		min D			
5	4	0.05	5		2	A-stability			
6	5	0.05		2.4	3	0.1			
7	-		6	6.1	4	0.52			
_ _	6	0.1			5	1.4			
8	7	0.25			6				
9	8	0.55	1_1		-	2.7			
10	9	1.0	+		1	5.3			
		1.0		10 To					

Fig. Stability regions for methods (13)

References

- [1] Peter Henrici, Discrete Variable Methods in Ordinary Differential Equations, John Wiley, 1962.
- [2] W.H. Enright, Second derivative multistep methods for stiff ordinary differential equations, SIAM, J. Numer. Anal., 11 (1974), 2.
- [3] J.D. Lambert, Computational Methods in Ordinary Differential Equations, John Wiley & Sons, 1976.