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CONVERGENCE THEORY FOR AOR METHOD*

LJ. Cvetkovié D. Herceg
(Institute of Mathematics, dr Hije Djuriéiéa 4, 21000 Novi Sad, Yugosiavia)

Abstract

In this paper we give some sufficient conditions for the convergence of the AOR
method, introduced by Hadjidimos (5], which include the ones from [1], [2], [5], [6], [7],
[9], (10}, [11] and [12] and which show that the necessary condition given in [8] for the
convergence of the AOR method is not valid. We give general conditions for the class
of H-matrices, but they are not always easy to check in practice. Consequently, we
give some more practical conditions concerning some subclasses of H-matrices.

§1. Introduction

Among the various iterative methods which are used for the numerical solution of the

linear system 4

. Az = b,

where A € C™" is a nonsingular matrix with nonzero diagonal entries, and z,b € C" with
z unknown and b known, the completely consistent linear stationary iterative schemes of
first degree play a very important role. Such an iterative method, called the accelerated
overrelaxation (AOR) method, was introduced by Hadjidimos in [5]. Since the introduction
of the AOR method, many properties as well as unmerical results concerning this method
have been given. There are many papers dealing with the linear systems with a matrix
which is strictly diagonally dominant (SDD), irreducible diagonally dominant (IDD), or
generalized diagonally dominant (GDD) is an M- or H- matrix (cf. [1], [5], [6), [9], [10], [11],
[12], {17], [18]). in [2] and |7] some new classes of linear systems have been considered. The
purpose of this paper is: i) to present some further basic results concerning the convergence
of the AOR method when the matrix A is an H-matrix (all of the mentioned classes are
H-matrices), and ii) to give more practical sufficient conditions for the convergence of the
AOR method when the matrix A belongs to some special subclasses of H-matrices.

Let A= D ~T—S be the decomposition of the matrix A into its diagonal, strictly lower
and strictly upper triangular parts, respectively and let w,0 € R,w # 0. The associated
AOR method can be written as

gkt = M, o +d, k= 0,1, --+,2° €C™,

where Mg, = (D ~oT) (1 -w)D + (w — 0)T +wS), d=w(D—oT) 1.

Some special cases of this method are

—— SOR ——y Gauss-Seidel

—— JOR —— Jacobi
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The AOR method has some connection with the extrapolation principle, since it is an
extrapolation of either the Jacobi method (case ¢ = 0} or the SOR method {case o # 0,
where the extrapolation parameter is w /o). This fact and many numerical examples (cf. [1],
[5]) show the superiority of the AOR method. |

§2. Preliminaries
We shall use the following notations:
N={1,2---,n}, N{@E)=N\{s}, 1€ N.

For any matrix A = [a;;] € C™" (= set of all complex n X n matrices) and : € N, a € [0, 1],

we define
Pi(A) = Z jasi, Qi(4) = Z ja i,
JEN(4) JEN({{)
Pia(4) = aR(4) + (1= @)Qi(4), Q}(4) = max |aii),
Q.”(4) = max 3 |az,
J.Etr ;
where r € N and 4, is the set of all choices ¢, = {#,, - -,%,} of different indices from N.

Definition 2.1. A real square mairiz whose off-diagonal elements are all non-positive

13 called L-matriz.
Definition 2.2. A regular L-matriz A for which A=! > 0 13 called M -matriz.

In [3] we have proved the following two theorems.
Theorem 2.1. Let A be an L-matriz, whose diagonal elements are all positive such that

at least one of the follounng conditions 1s satisfied:

(i) Gy = .Pi(A],*I: = N(SDD).
(i)  ai; > P 4(A),t € N, for some o € [0, 1].
(i) @i > P*(A)Q} %(A),r € N, for some a € [0,1].
(IV) Qi Gy > R(A)PJ(A)J EN,JE N[t)
(v)  @iia;; > BP{A)Q;™*p?(A)Q; *(A),t € N,j € N(i), for some a € |0, 1.
(vi} For each ¢+ € N it holds that a;; > P;(A) or
i + Zﬂﬁ > Qi{A) + z Q;(A), where J := {t € N : a;; < Q;{A)}.
jeJ 7€ J
(vii) @i > min(P;(A4), @;(A4)),z € N and ay; +a;; > Pi(A), € N,7 € N(3).
(viil) a;; > QEF}(B),-IJ € N and Z ay Z FP;(A),t, € d,, for some pe N.
JE€L, JEL, '
(ix) There exists 1 € N such that
aii(aj; — Py(A) + |asi]) > Pi(4)]as:l, 7 € N(3).
Then A 1n an M-matriz.

Note that SDD matrices satisfy all of the conditions (i)-(ix).
For any matrix A = [a;;] € C™", we define M{A) = [m,,;| € R™" as follows

mis — Iaﬂl,t e Nmy; = —|ﬂ,':_.*|,!l: eN,je N(t)
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Definition 2.8. A matniz A s called H-matriz off M(A) s an M-mairiz.

Definition 2.4. A matriz A 1s called a generalized diagonally dominant (GDD) matriz
1ff there ezists a regular diagonal matriz W, 20 that AW 3 SDD.

Theorem 2.2. Let A be a matriz whose elements satisfy at least one of the conditions
(1)-(ix) #n Theorem 2.1, where all diagonal elements of A are replaced by their modules.
Then A 13 an H-matriz.

Remark. Any irreducible diagonally dominant matrix is an H-matrix too {see [16]).

Theorem 2.3. A matriz A 1s GDD +f ang only if it 15 an H-matniz.

Proaf. Let A be GDD. Then there exists a regular diagonal matrix W such that AW is
SDD. Then AW is an H-matrix, i.e. M{AW) = M(A)M (W} is an M-matrix. Since M (W)
is regular and M (W} > 0, it follows that

(M(4)™" = M(W)(M(AW))™" > 0.

Conversely, if A is an H-matrix, 1.e. if M(A) is an M-matrix, then there exists a vector
z € R™",z > 0, such that M(A)z > 0. It means that

|ais |25 > Z |ais|2z; for each: € N
JEN(1)

and we can choose thg matrix W = diag (21, -, 2,).

£3. The Convergence of AOR Method

We shall begin our convergence analysis with the case that the matrix A is SDD.

In [2] we proved the following upper bound for the spectral radius of the matrix of the
AOR method, M, ,:
(1) p(Mo) < max (J1=w|+w—o|P(L) +w| P.(U)) /(1 | Pi(E)), i 1~ |o| (L) > O

1<i<n
Here L=D"'S, U= DT,
Theorem 3.1. Let A be a sirictly diagonally dominant matriz. Then the AOR method
converges for:

(i) 0<o<2/(1+P({Myi(M(A))))=:s,
0 < w < max{20/(1 + P(M,,)),2/(1+ max Pi(L+U)) =:t}, or

(i1) m?x(—w(l - P (L+U))+2max(0,w —1))/2P (L) <0< 0,0 <w < ¢, or
(iii) t<o< nzin(w(l + F(L) - F(U)) + 2min(0,1 - w))/2P,(L),0 < w < t.

Proof. 1t is easy to verify that for each o, which satisfies one of the conditions (i)-(iii),
we have

1—|o|P(L) >0, i€ N.

(i) Since A is a SDD matrix, M(A) is an M-matrix, and from [16] it follows that for
0<o <9, P(M,,) <1holds. It is known thatfor o # 0, M, , = (1-w/o)E+w/eM, . If
0 <w/e <2/(1+P(M,,)), by using the extrapolation theorem!®!, we conclude P(M, ) <
1.

It remains to analyse the case 2¢/(1 + P(M,,)) < w < t,o € ¢ < 5. Since ¢ <
20/(1+ P(M,)), it follows that 0 < 0 < w < t. Because '

0<o<w<2/(14+F(L+VU))=l-w|+ (w—0)P(L)+wP:(U)<1—-0aP(L),
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from (1) we obtain P(M, ) < 1. (ii) and (iii) can be proved similarly, by using the inequality
(1).

As the following example shows, our area of convergence for the parameters ¢ and w is
weaker than the one from |[12]|, and of course, it is weaker than the others from the cited
literature, which are related to the class of SDD matrices. The same example shows that
Theorem 2 from [8] is not valid.

Ezample 1. Let

e o0
| S——

~~—Th. 3.1

Fig. 2
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From Theorem 3.1 we obtain the following area of convergence:

i bgex< g-,o 2w < sgoel8/% S+ POEY) o

(i) O<w<l,~w<o<0orl<w<y8/7,2w—-3<0<0, or
(i) 0<w=<1,8/T<o<Wworl<w<8/7,8/7T<o<3—w.

Figure 1 is a geometrical interpretation of the above area of convergence. This area is
larger than the one from Theorem 4 in [12] (Fig. 2)

Now, we can use the result of Theorem 3.1 to improve the area of cnnvergence for the
parameters o and w in case that A 15 an H-matrix, 1.e. GDD.

Since P(Mp 1(M(A))) = P(Mp,(M(AW))) and P(M, . (4)) = P(M, . (AW)) for regu-
lar matrix W, we obtain the following theorem.

Theorem 3.2. If A 1s an H-matriz (i.e. GDD) and the parameters o and w are chosen
as i1n Theorem 3.1, where the matrices L and U are replaced by LW and UW respectively,
then P(M,,[(A)) < 1

Corollary 38.2.1. If A 1s en IDD matriz or an M -matriz or a matriz, whose elements
satisfy at least one of the conditions (i)—(ix) in Theorem 2.2, and +f 0 and w are as in
Theorem 3.2, then the AOR method converges.

Let A be the-matrix from Example 1. The area of convergence for the matrix M{A),
obtained now by Corollary 3.2.1 (see Fig. 1), is still larger than the one from Theorem 8
in [12] (which relates only to the class of M-matrices). Namely, in our case it is possible to
choose the parameter o negative.

Note that if we do not know the matrix W, we can choose the parameters as follows:

0<o<s3 O0<w<max{l,20/(1+P(M,,)}

Of course, mstead of each spectral redius we can use a norm of the corresponding matrix.
The convergence will be still present.

Evidently, the case 0 < ¢ < 1,0 < w < 1 i1s always included. The statement which 1s
related to the convergence of the AOR method in this case, for the class of IDD matrices,
is formulated in {5], but our opinion is that the proof is not complete. The author does not
consider the case A = —1,w = 20.

From the other side, sometimes the coefficient matrix A possesses some extra basic
property, like one of {i)-(ix) in Theorem 2.2. Then we can say something else about the
convergence of the AOR method. By the following theorem we shall illustrate how to obtain
the convergence intervals for o0 and w without computation of the matrix M, , (which may
be weaker than the ones from the above theorems, as Example 2 shows).

Theorem 3.3. Let A be a matriz whose elements salisfy the following condition

1> P o (D7 1A), 1€N.

Then P(M,,) <1 for:

(i} 0 < ¢ < max{s, nkin 2/(1+ P, o(L 4+ U)) =:¢'},

0 <w < max{t’, 2¢/(1 + P{M,.))} or
(ii) (ii1) as in Theorem 3.1, where each P; is replaced by P; 4.
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Proof. In [2] we have obtained the upper bound for P(M, ,), which is the same as (1),
where each F; is replaced by P; ,. By that inequality we can prove the following implication

0<Lo<t = P(M,,) <1,

and just as in the proof of Theorem 4, we complete the proof here.

In a similar way we can construct intervals of convergence for ¢ and w in the cases (i)
(iv), (vi) and (viii} from Theorem 2.2.

Ezample 2. For the same Matrix as in Example 1, by Theorem 3.3 for o = 0.5, we obtain
FPialL+U) = 13/24,¢' = 48/37 > t = 8/7, and the following area of convergence:

(i) 0 <0 £4/3,0 < w < max{48/37,20/(1 + P(My.))}, or
()0 <w<1-1lw/8<o<0orl<w<48/37,37Tw/8 -6 <o <0, or
(i <w < 1,48/37T <o < 19w/8or 1 <w < 48/37,48/37 < 0 < 6 — 29w/8.

In the following Fig. 3 we can see that this area is weaker than the one from Fig. 1.

’,
——— Th. 3.3 2L

—11/8 -1 1t ¢'s 2 19/8 ¢
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