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ON THE PROBLEM OF BEST RATIONAL APPROXIMATION
WITH INTERPOLATING CONSTRAINTS (II)* Y

Xu Guo-liang Li Jia-kai
(Computing Center, Academia Sinica, Besjing, China)

Abstract

This paper is a continuation of {2]. In this part of the conjoint paper, we estab-
lish some results about uniqueness/non-uniqueness, the properties for the set of best
approximants, strong uniqueness and continuity of the best approximation operator.

§4. Uniqueness

In [1], Wang has obtained the following important result: Let R € R;{(m, n) be a best
approximant of f in R;(m,n) . If r(z) = f(z) — R(z) alternates at least m+n—~d(R} —k+2
times accardifig to w(z), then the best approximant is unique.

Now we illustrate by an example that the best approximant may be unique as well even
if the alternation condition above is not true.

Ezample 4. Take m = 0, n = 1, R,(m,n) i3 the same as the one in Example 3. Let
f=2% Then R =1 ¢ R,(m,n) is the unique best approximant of f in R;(m,n). The
uniqueness can be verified by computing the maximum value of the function

1

i 2 — —r
— ¢, € [-1,1}, a € {—1,1).

However, B = 1 does not have deviation point except a neutral deviation point = 0.
If we draw a curve of the discontinuous function h{z) = sign w(z){f — R)(z), we can see
that A(z) has the alternating property. This fact indicates the existence of more general
conditions under which the uniqueness is guaranteed. In order to find these conditions, we
shall in this paper treat neutral deviation points as non-neutral deviation points.

Now we state a simple lemma.

Lemma 4. Let f € Cla,b]\ Ry(m,n), B € Ri{(m,n), r(z) = f(z) — B{z). Then for

any y € Y (R),
I g G Bl )

e =0, a>o, (4.1)

if and only if there do not exast A > 0, n > 0, such that
O0<z— y < 1,

Ir{z)] + Alz — y|” < [r(y]l.
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For the left limit, a similar conclusion holds.
Let
X£(R) = Xy(R) = {z: 2 € Y(R) \ X),

X}t (R)={z€Y(R):3j s.t. z = z; € X, k; ts an odd integer,

. r(t) — (2l _
— ]Efrlﬂ—f (¢ — z)kit1 0},

X;(R)={zeY(R): 37 st.z=1x;€ X, kjts an even intcgcr,

wd it G5 =0,

XHR)={zecY(R)\XT(R): 37 st.z=2,€ X, k;isan even integer,

. r(t) - r(=)| _
gat - el

Similarly, X5 (R), X5 (R) and X (R) can be defined. For convenience of discussion, we
assume next

X;(R) = X;"(R) = X7 (R), +=2,8,4.

We shall see that the points in U?=1 X*(R) play the part of deviation points as ordinary
best rational approximations.

Let h{z) = sign w(z)r(z), a <t; Ltg < <ty < b I

3
(i) t; € | ] X;(R) fori =1,2,...,p,
=1
(i1) there exist u, in any neighborhood of ¢, such that

U < Ug < ... < Uy,

h(u:)h(“:-ﬁ—l) < 0, fﬂr [tnta+1] N X‘i(R) = ¢,

(iii) for any {£;}% that satisfies (i) and (ii), k < p, then we say r(t) is weakly alternate
according to w(t) on {¢;}7, and {¢t;}} is called a weak alternant.

Since u,, which satisfies condition (ii), can be close to t, sufficiently, sign h(u,) =
1{or — 1) is a constant. We denote it by af(t,).

Fort=1,...,p— 1, let

1, if (~—1)¢ilth[ti4]h(ti+1+) < 0andt; < tiyg,
L(R) = ' t:,'(R) # 0 (or ¢;(R) = 0, but (ti,t,‘+1) I""IX:;(R] = ¢),
0, otherwise ,

where ¢;(R) = Cﬂrd{[ti, tl:-i-l] M X;(R)}, for t; < t;41.
It is easy to show that |;{R), c;{R) depend on R but are independent of ¢; (t = 1,2, ..., p).
Now we can establish the unicity theorem.
Theorem 5. Let R € R (m,n) be a best approzsmation to f € Cla,b] \ R,(m,n) from
Ri(m,n). Then the best approzimation of f is unique if and only +f

: p—1
m+n+1-d(R)—k<c+ > L(R),

=1
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where ¢ = card{X3(R) U X (R)}. | |

Proof . Sufficiency. If the unicity does not hold, there exists another best approximant
Ry = P1/Q: € Ry(m,n). Let R = P/Q. There i3 a polynomial p; € Hepin-d(r)-k by
Lemma 2, such that

R -R= 3’2111 _ (4.2)

Hence, if we put r;(z) = f(z) — Ri(z), one has
r(z) — ri(z) = ;’511, (4.3)
signw(z){r(z} — ri(z)) = |‘”é-’3llpl : (4.4)

Next we show that p; = 0. Let {;}}| be the set of weak alternant.

(1) We prove first the following fact: There exists u; in the neighborhood of ¢; for
1 =-1,2,...,p, such that

1 Stp < ... €y, and u; # ujpe, for1 < <p—2, (4.5)
alt:)pi(w) 20, i=1,2,..,p, (4.6)
and .
p1{ui) = py(u:) =0, (4.7)
if u; = uiq;.

We prove the fact in three cases.

a) If there exist £;,¢;41 (1 <1 < p— 1) such that t; = £;4,, then ¢; € Xa(R). Hence from
(4.4) we have
i)} _
t —t;

for t; € X3 (Ry) (or t; € X5 (R1))- Therefore (4.7) holds by taking u; = w4y = t;. If
t: & X (R1) U X5 (R1), then by (4.4) there are u;,u;yy such that u; < t; < u;4y, (4.6)
holds and

(4.8)

hm inf
t—t;+{or—)

1 .
maz{|ti — w, |t — uira]} < Smin{|t; -ty |, |t — tisal}.

b) If t;1 < & < 4y ( or t; < ti41q (t = 1], or ;1 < I (1- = p)),and i; €
X5 (R)(or X5 (R)), then py(t;) = 0 for t; € XF (R1)(or X; (R)). Therefore (4.6) is valid by
taking u; = t;. If t; ¢ X7 (R,){or X5 (R)), then there is u; in the neighberhood of t; such
that (4.8) is true.

c) If t; € X,(R), then (4.6) is valid for u; = ;.

In addition, {4.5) is valid also according to the definitions of u’s.

(2) Now we prove another fact:

p1[u] =0,Vuc Xa(R) L X4(R]. (4.9)

Indeed, if u € XF(R,), then we have (4.9) from (4.4). If u ¢ XZF(R,), then there exist
u’, u” in any neighborhood of u, such that

(@ L ()] ()] < [r(u”).
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It follows that py{u’)ps(u") < 0. Hence p, has a zero between u’ and u"”. But v’ and u” can

close to u sufficiently, then p;(u} = 0.
p—1
Now we can draw a conclusion from facts (1) and (2) that p; has at least ¢ + z: L(R)
1=1
geros. Therefore p; = 0 by using the fact that p; € Huyn—d(R)-k) and hence the unicity is
proved.,
The proof of necessity is left to the next section.

Corollary 4. If f(z) = g(z), Vz € X, then the existence of the best approximation to
f from R, (m, n) implies the unicity.

Proof . We may assume f ¢ Rj(m,n). Let R be a best approximation to f from
Ri(m,n). Then Y{R) N X = ¢; hence X*(R) = ¢ fori=2,3,4. It follows from Theorem
4 and Theorem 5 that the best approximation is unique.

55 The Set of Best Approximants

Let R be a best approximation to f € Cla, b| from Ry (m,n). From Theorem 5 it follows
p—1

that, f m+n—~d{R) £ k+1>c+ z I;(R) , then the best approximants are not unique.
i=1
Define
R(f) = (ReRi(myn): |f-R|=__inf [[f-TI}
TER-_[ ﬂ"l,l"l-)

P]_ e RQ]_ — {P1 = RQ1 » Plle & &(f)}
Now we consider the characterization of the class P; — RQ, . First of all, one has
Lemma 5. (i) The class Py — RQ, 15 a convez sel containing the origin.
(ii) Let P, — RQ; € Py -~ RQ,,+=12.1If
P, — RQ, # C(P: — RQ3) (C is a constant),

then

Q17 Q2
Proof. Let R; = P;/Q; € R(f) for i =0, 1. We shall show
| . APy + (1 — A]P]_
AQo + (1 - A)@a

From the lemma in [3], it follows that By € R;(m,n). For a fixed z € [a, b], considering
R, (z) as a function of A, we can show easily that dR,(z)/d) does not change sign. Hence

min{ Ro(z), R1(z)} < Ra(z) < max{Ro(z), R1(2)}.

We get at once from the above inequalities that R, € R(f). Therefore Py — RQ, is a convex
set. It is obvious that 0 € P; — RQ,. Consequently, assertion (i} is proved. The proof of

Ry

e R(f), VA €[0,1].

assertion (ii) is easy.
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Let
P, —RQy)={Afi+(1-A)f2: 1, 2P — RQ;,) € R},

dim(P, — RQ,) = dim(£(P; — RQ,)},

where dim denotes dimension. Since P; — RQ; contains origin, £(P; — RQ,) is a finite
dimensional linear space.

Now we attempt to establish a relation between dim(P; — RQ;) and the weak alternant
of R. To this end we introduce the following

Lemma 8. Let A be a convezs set and 0 € A. Then dimA 13 equal to the number of
Iinearly independent elements contained in A.

| p-1
Theorem 6. Let R=P/QER(f), m+n+1—d(R)—k>c+ » L(R). Then
1=1

dim(P; — RQ;)=m+n+1~d(R)— k—c,

where ¢ 1s independent of R € R(f}.
Proof. a) To begin with, we shall show

dim(P, ~ RQ,)>m+n+1—d(R) —k—c.

y

b; € [t;, ;1|\ Y(R), forly(R)=1,1=12,..p—1.

It can be seen clearly that b; can vary arbitrarily in an interval. Let

Qz) =0]](z - &) 1‘[ (z — z;)h(z) = 8 [ | (z — b:) F(z)h(z),

EJ'Exa(R)UX-I{R]

Take .

where § = 11 is a constant, and h{z) € H; has no zeors on [a, b|, where t = m +n — d(R) -

=1
By the definition of b;, 2y, one has

(i) Q€ Hnyn-d(r)-+,
(ii) # can be chosen so that {}(z) and w(z)r(z) have the same sign on {¢;}.
From Lemma 2, it follows that there exists (P, Q) € L(m,n), such that

o
o
We shall show in what follows that, if A (> 0} is small enough,

P, - RQ, =

_ P+aP
Q+ A,

R c R(f}.
First
w(z)z)

QD)(@() + 20: () (5-1)

ra(z) = f(z) - Rafx) = r(z) - A
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Since for any z; € Y(R) \ {J;_, X;(R) we have

SIS L Betd €]
llilﬂl;}f Ty #0, z; € X, (R),

or

.o [r(t) — (=) ¥
lim inf ey # 0, z;EY(ﬁ)\UX;(R],

s=1

from Lemma 4 there exist n; > 0, A; > 0, such that

r(e)] + Ailt — z**2 < |r(z)], @ € Xo(R),

[r(e)+ Asle — 2 [M*! < (), = € YR | Xa(R),
r=1
if t € E; = {t: |z; —t| < n;}. Therefore there exists A; > 0, such that
L w(eng o |
MO+ Mm@ + | <=k Ve B .
Let g 0 |
@ ={y€lab]: wy)r(¥)(y) 20}, ¥= U B,

=, €Y (RN\U3_, Xi(R)
6 = 0,81\ (BUY), 4 =sup,ce Ir(z)]
Then we can prove u < ||r||. For the converse, there exist y; — y, such that
% €6, |r(y)|l — irly)i = iirll

We may assume y; > y. If y € U?_, X;(R), then w{y)r(y)Q(y;) > 0 for + large enough.
Hence y; € ®. This is a contradiction. If y; € Y(R) \ U2, X;(R), then y; € E; C ¥ when 3
sufficiently large. This contradicts y; € ©. Therefore u < ||r||. Take A, such that

R — R|| < [|r]] — &, (5.3)

0< ) <min{):z; € Y(R)\ U, X:(R)}.
Then it follows from (5.1} and (5.3) that

Ira{z)| < lr|], Vze®. (5.4)
If z € ¥, (5.2) implies (5.4). f z € 0,
(2} < Ir(z)] + B — R| < sup |r(z)] + lirl] - = irll.

In a word, (5.4} holds for all z € [a, b]. Therefore r;(z) € R(f).
Since q
w

(P+AP) = (@+2Q)R =P - QiR) =)- €P, ~ RQy ,
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and bis can vary in an interval and h is any polynomial of degree m + n — d(R) - k —
p—1 |
¢ — z L(R) without sero on [a,b] according to the construction of f(z), we can choose

e
m +‘n — d(R) — k ~ ¢ + 1 linearly independent functions from the class {fi(z)}. Then by

Lemma 6 we have
dim(P; -RQ,)>m+n~d(R)—k—-c+1. (5.5)

b) Now we show that (5.5) is an equality. To this end we need only to prove that for any
best approximant R; = P;/Q;, if we put

w
P, - RQ, = EPI PE€E Hmyn—d(R)-k,

then p can be expressed linearly by i's.
Similarly to the proof of (4.9), we can deduce that for any z € X3(R) U X4(R), p(z) = 0.

That 1s,
)= I (z-=)ple) = Flanla)

:jEX;{R}UX.(R}
Then p can be expressed by the linear combination of £3's . Therefore (5.5) is equality.

We prove now that ¢ is independent of R € R(f). That is, we need to show the set

Xs(R) U X,(R) {= independent of R € R(f). For this purpose, we shall show that for any
t=z; € X,
ri(z) — ri(¢)

lim inf -+ |- 0,r(z) = f(z) — Ri(3), (5.6)
80 long as (=) ' ”
- riz) —r(i
].lfljilf =5+ | = 0,r(z) = f{z) — R(z) .

In fact, from (4.3) we have

w(z)p(z)
Q(=)Q1(z)’

r(z) - ri{z) =

~ and p(z;) = 0 by {4.9). Hence

ri(z) — ri(t) ri{z) —r(z) + r(z) - ri(t)

(=~ (z- o h -
<[z [ = [t * [ ma
Therefore
lim inf, ¢ f(‘iﬂ t'):"‘ff) .
S it | T o] st [ [ =0

1.e., (5.8) holds. The theorem is proved.
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Now we can finish the necessity proof of Theorem 5. Suppose the best approximant is

p—1
unique. We assert the fact that m+n — d(R)—k+1<Lc+ E ;(R). Otherwise, Theorem
=1
6 leads to a contradiction.
§8. Strong Unicity
Let R* € R(f). If for any R € Ry(m,n)
If - Rl > |If - R +~|R~ B, (6.1)

where (> 0) is independent of R, then R* is said to be strong unigque.

In order to establish the conditions under which strong unicity is guaranteed, we quote
the following

Lemma 7. Let R € R (m,n) be a best approzimation to f € Cla,b]\ Ri(m,n) from
R-l (m: ﬂ-) * If

(i) m+n<k+d(RB) or

(i) m+n> k4 d(R) but r(z} = f(z) — R(z) alternates at least m+n — d(R) — k + 2
times according to w(z), then for any ¢ € P — RQ, ¢ #0,

st 4/ - R)) <O (6.2)

Proof. The case m+n < d(R)+k is trivial. In what follows we assume m+n 2 d(R)}+k.
If (6.2) is not true, there exists ¢ = Fp — BQo € P - RQ, ¢ # 0, such that

o(¥)(f — R)(y) > 0, y € Y(R).

From Lemma 2, there is p € H, 4 n—d(R)~-k, such that

w(y)(f — R){)p(y) 20, y € Y(R).

Since w(y)(f — R)(y) alternates at least m +n — d(R) — k+2 times, there exist ¢; 's such
that

a<to<t;i <..<t;y <b {>2m+n—d(R)—k+1)

and {3.5) holds. Hence p=0,1e. ¢ =0, a contradiction.

Referring to the proof of strong unicity theorem for the ordinary best rational approxi-
mation (see [4],p.165), using Lemma 7 we can establish the following theorem.

Theorem 7. Let R € Ry(m,n) be a best approzimation to f € Cla,b] \ Ri{m,n) from
R,(m,n), and d(R} = 0. Then R is strong untque provided that the conditsons of Lemma
7 are satisfied. |

The proof of the theorem is omitted.

It should be pointed out that the condition that r(z) alternates at least m-+n—d{R)—k+2
times according to w(z) can not be left out in the theorem. Namely, the unicity and d(R} = 0
do not imply strong unicity. To illustrate the point, we give an example.
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Ezample 5. Suppose the problem considered here is the same as the one in Example 4.
Let ax = 1/k, Ry = 1/(arx + 1). We shall show that

=R - Uf - R|
TR R

=0, (6.3)

where R = 1 is the best approximation to f = 22 from R;(m, n). Since

k 2z{z + k)* + k
(z+ k)3 (z+ k)2

fi(z) — Ri(z) =2z +

the equation f'(x) — R;(z) = O has only one root in the interval [—1,1]. Let z, be auch a
root. Then

zy + A P K B < : k> 1
* T2k |2k 2(ze + K)2| (k- 1)2’ ’
O S E—T P Ok —1)72%, |8:] < 1.
(k—1)? |

It follows that

1—- 2k8,(k - 1)"2
2k? + 20 k(k — 1)'-'2 — 1

I f — Bill = | f(zx) — Ri(ze)| = 1 — (0.5k71 ~ 8 (k — 1)72)2.

’
In addition, .
k—1

| f - Rl = llf-R} .. 4
R —R] -~ C% )

Therefore {6.3) holds, i.e., we do not have strong unicity.

If =Rl =1, |[Rx — R[| =

Hence

§7. Continuity of the Best Approximation Operator

Denote
T: Cla,b] — Ri(m,n),

the best approximation operator, i.e., T'f is the best approximations to f € C|a,}] from
R;(m, n). It is obvious from the discussions above that T may not be well defined and may
have many values. However, we have the following statement.

Theorem 8. Let Ry € R {m, n) be a best approzimation to fy € Cla, b]\R1(m, n) from
Ri(m,n). Assume d(Ro) = 0, and Ry has no neutral deviation point. Then there ezists
e > 0, such that

(i) Tf ts defined uniguely.

(i) |Tf — Tfoll £ Blf = foll, B > 0 is a constant sndependent of f,
provided that || f — fofl < e, f € Cla, b}.

Proof. Under the assumptions of the theorem, strong unicity holds for f,;, namely :

lfo — R|| 2 )| fo — Rol} + || & — Roll,y>0. (7.1)



250 ' XU GUO-LIANG AND LI JIA-KAI

For a given f € Cla, b], define
S1(f) = (R e Ra(m,m): [R— Il < IR0 — fII},
52(f) ={R €Ry(m,n) : ||R - Ro| < 297 f - foll}-
Then for R € 8,(f), from (7.1), we have
VB = Boll < l[fo = Bl = | fo — Roll < lfo — fIl + | — Rl - || fo — Ra
<o = I+ 1f ~ Roll - /o - Roll <210 - fI;
Hence R € S2(f), and then

S1(f) c S2(f),

— - = T
aif) =t IR~ = st R~ (72)

We normalize the elements P/Q, Py/Qo € S3(f) such that ||Q|| = ||@o] = 1. Let

f =25 > 0.
::Eu[la b] QD( ) =

Then we can prove that there exists e; > 0, if ||fo — f|| < e,

»

. 1Q — Qol| < 6, (7.3)

for any R = P/Q € S2(f). On the contrary, there exist Rx = Pi/Qx € S2(fi), fx € Cla, b],
such that

| fe — foli — O, | Pe/Qx ~ Py/Qoll — 0, ||Qx — Q0| = 6.

We may assume P, — P, Q; — Q. By taking limit from the two sides of the equality
Qx By = Py, we have QRo = P. From d{Ry) = 0 we get at once that P = Py, Q = Qp. This
contradicts ||Qx — Qol| > . Therefore (7.3) holds.

From (7.3) it follows that for any R = P/Q € S,{f),

inf Q(=) 2 _inf, Q(z) - Q- Qoll > 5 (7.4)

z€|a,b]

while from (7.2), there exists a sequence B, = P, /Q; € S3{f), such that
B — P*, Qv — Q*, [[Bix - fl]| — di(¥)-

Then by (7.4) we have inf,e(q0) @*(2) > 6. Therefore P /Qy — P*/Q*, P*/Q* € Sz(f)
That is, P*/Q* is a best approximation to f, and conclusion (ii) holds by taking 8 = 2y~1
Next we prove the best approximation to f is unique. Let -

61 = || fo — Roll — max |fo(s:) — Ro(z:)] (7.5)

D<i<s

Then é; > 0 by the hypothesis of the theorem. Let R* be a best approximation to f. Then

max, /(@) - R (z:)| < max |f(=) - fo(=)] + max |fo(s:) - B (a:)

0<i<s 0<i%s

< If = foll + max |fo(z:) - Ro(z:)| + max [Ro(z:) — R*(2:)];

D<s< s
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Using (7.5) and the equalities Ry{z;) = R*{z;), we have

max |f(z) — R* ()| < |If - foll + Il fo — Bol| - &1

0<i<a
<|\f = foll +1If = foll + | f — Roli — 61
< 2\|f ~ foll + I — R*|| + ]|IR* — Rol| — é:.

Since R* € Sz(f), one has

max |f(z)} — R*(z:)| < 2+ 277 )|If - foll + 1|7 — B*}| - 61

0<i<s
Take £ € {0, 1] such that, if | f — fo| <&,
2+ 277 )f - foll - 81 < 0.

Hence

max |f(z:) - R* (=)l < |l - Bl

i.e., f— R* does not have neutral deviation point. From Theorem 4 and Theorem 5 it follows
that R* is the unique approximation to f. Thus the proof of the theorem is completed.

Finally, we may see from the proof given above that conclusion (ii) is also true under
the conditionf of Theorem 7. But T/ may have many values in this case. Hence T'f in
conclusion {ii) can be any best approximation to f.
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