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Abstract

Theoretical time step constraints of semi-implicit schemes are known to be more
restrictive than should be in practice. We intend {o alleviate the constrainta with more
smoothness assumptions on the solutions. By introducing a new scheme with modifi-
cation on the freatment of the nonlinear term, we are able to prove that the scheme
1s - unconditionally stable and convergent. Further more, we show that the modified
scheme and the original semi-implicit one are equivalent under a weak condition on the
time step and the number of space discretization points.

’ §1. Introduction

In numerical simulations of incompressible flow represented by the Navier-Stokes equa-
tions (1.1}, one of the major difficulties is to construct a suitable time discretization scheme.
The origin of such difficulty consists essentially of two parts:

(i) The pressure and the velocity in Navier-Stokes equations are coupled by the incom-
pressibility constraint (1.1b) such that a direct inversion of the resulting discrete system is
very expensive. A great number of fast Stokes solvers have been developed by using either an
iterative method or a Green’s function method (also called influence matrix method, see for
instance [8]). Another remedy for removing this difficulty is to use the so called projection
method initially proposed by A.J.Chorin and R.Temam (cf. [4], [11]) which separates the
calculation of the pressure from that of the velocity. However, this kind of splitting schemes
suffers from a large time splitting error which can only be removed by a sophisticated ex-
trapolation process (cf. {10]).

(i) The treatment of the nonlinear term: usually, explicit treatment of the nonlinear term
leads to in some cases a restrictive theoretical time step constraint (see for instance [12])
while implicit treatment makes the resulting discrete system very difficult to be resolved.

In this paper, we concentrate on improving existing theoretical stability constraints for
semi-implicit schemes in which the diffusion term is treated implicitly, leaving the convection
term (i.e. nonlinear term) treated explicitly.

In many cases, one observes that a semi-implicit scheme gives stable results under a time
step constraint which is much weaker than what the theoretical results predict, especially
in cases where a smooth solution exists. A natural question one can ask is: can we improve
the existing stability conditions by giving more smoothness assumptions on the solutions?

We will give a positive answer to this question by considering a concrete space discretiza-
tion, namely, the Chebyshev-Galerkin approximation (we refer to [7] for a detailed presen-
tation of this method). For other space discretizations, similar results could be obtained by
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using the same technique. The idea used here can also be applied to other time-dependent
elliptic nonlinear systems.

The unsteady Navier-Stokes equations in the primitive variable formulation are written
as

ou

a—t—uﬁu+u‘?u+?p flz,t), {(z,)eQ =0 x]0,T)], (1.1a)
divu=0 , in @, (1.1b)
u(z, 0) = ug(z), {1.1¢)
u(z,t) = 0lan Vi€ [0, T, | | | (1.1d)

where () is an open set in R% (d =2 or 3) with sufficiently smooth boundary, the unknowns
are the vector function u (velocity) and the scalar function p {pressure). For the sake of
simplicity, we assume that the velocity satisfies the homogeneous boundary condition.

We will restrict ourselves to the two dimensional case. More specifically, we consider
{1 =(—1,1) x {—1,1). The Chebyshev weight function defined in {1 is

w(z) =(1~23)"Y1-23)"1 for -z = (z,, z2) €11

The following functional spaces will be used in the sequel:
~

X =X5.(0),
o ={uel2{l]): divu=0, u-7 =0},
Vo ={ue X: divu=0}, |
Vo={ue X: div(u-w)=0},
where w is the Chebyshev weight function, and £3(f1) and X}, ({1) are weighted Sobolev
spaces. To alleviate nnta.tmna, we use ca.lhgra.phm letters to denote vector function spaces,

for instance, £32 = (L3)3,
With the help of these functional spaces, we can reformulate the problem (1.1) as

find u(t) € ¥, such that

%t[u, v)w + va,(u,v) + (B(u),v)e =< fiv>, , Yve T, (1.2)
u(0) =

where we have

(u,v)y = (¥, w) = /‘; vwwdz , a,(u,v) = (Vu, V(v w)),

B(u} = Zu. s and < -,- >, the duality relation between X’ and Y.

t=1

Due to the Chebyshev welght function involved here, the formulation (1.2) is not symmetric
~ such that the existence of solutions for (1.2) is not covered by the conventional theory.
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It is proved in [5] and |9] that the bilinear form a,(, ‘) is continuous and coercive on
X x X. More precisely, we have

au (1, v) < aflylliullv]lie , Yu,veE X,
a, {u, u) > Byl iw , YVue .

(1.3)

Therefore, || ||w = au(-,-)¥ is a norm equivalent to || - |1, on X. We will use in the sequel
the norm }} - |}, instead of || ||1,.. and we will denote the norm on £2(Q}) by |- |«.
In order to formulate a discrete Chebyshev-Galerkin approximation of (1.2}, we define
Sn: The set of polynomials such that the order of each variable is less than or equal to

N;
IN=SNnI,VN=SNnv.,, and T’N=$Nﬁﬁ,...

Let us consider first the following fully discretized scheme which consists of the second
order Crank-Nicolson and Adams-Bashforth scheme in time and the Chebyshev-Galerkin

scheme 1n space:

Let u}; =Ilyuy, find uf, € Vy such that
1

(63 = uf,v)u + Sou (it + uf,v) =< P 0>, (1.4)
"_15(B(un), v)u + 0.5(B(u% 1), v)y , Vo€ Va
T | [lnt1)k
where k = }?: time discretization step and f*+% = . ~/;J=- ' f(z,t)dt;
Iy : a projection operator  — Un such that
au(v — Nyu,v) =0, VUEIN,uEr. (1.5)

Throughout the paper, we will use ¢ and ¢; to denote constants which can vary from one
equation to another.

We infer from (1.5) and (1.3} that

gy — lyu,u—Iyu) =a, (v —yu,u— ¢) < cjlu— Myull,|lu - ¢,
Yue L ,Vtﬁery.{ (1.6)

Since the following is true (cf. [9]):

¢«ién,tt:ﬂ lu — ¢l < N7 lullow , YuE Q) nX

we deduce from (1.3) and (1.6) that
|u—TInvy|ly < cN'7?julew , YueEXS(O)N X, (1.7)

R.Temam analyzed in [12] this kind of scheme in a general space discretization form. He
introduced two quantities S(N) and §;(N) defined by

{ luv|l < S{N)|un| , Yux € Su,

| I 1.8
((un - V)ows )| < S(Mfuwl - llowll o] , Vow,omuw€Zy O
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and proved that the semi-implicit schemes are stable and convergent under the conditions:
kS*(N) < C, , kS}{N)<Cs. . (1.9)

These conditions are somewhat restrictive especially when a spectral method is adapted
to the space discretization. For instance, we have S(N) = O(N?) for the Chebyshev or
Legendre approximations (cf. [6]). It means that we should have a time step at least less
than ¢N~* to ensure the stability. This is evidently not a reasonable constraint in practice.
It is then necessary to lighten this constraint by assuming more smoothness of the solution.

In the next section, we will introduce a modified scheme which differs from (1.4} in the
treatment of the nonlinear term. We will prove the new scheme is unconditionally stable
provided that the solution u iz uniformly bounded in Q. Then, we will prove in Section 3
that the new scheme preserves the second order accuracy in time and the spectral accuracy
in space. Finally, we will prove in Section 4 that the modified scheme and the original one
are equivalent under a very weak condition.

§2. A Modifled Scheme and Related Stability

We assume th}t u 18 uniformly bounded in @, i.e.

(H1) ] There exists M > 0 such that |u|L=(g) < M.

Following an idea of Bressan and Quatteroni (cf. [2]), we introduce the truncated function

H: B — R defined as
Y, if |yl <2M,

H(y) = 2M , f y22M, (2.1)
—2M, if y<-2M.
Let us set

N(u(z) = 3 %(H(ui(z))u(z))  VueX.

i=1
We observe that

implies N(u) = B(u).

|ulg=(q) < 2M
uey

We consider now the following modified scheme in which we replace B(u) in (1.4) by
N(u):

Let u}, = IIyuo, findul € Vy such that
v
2
= —(L5N(u%) — 0.5N(u? 1), v} + < Pt u>, , Ywve Vy.

1 . g
Uy — uy ) + Sou (WR + uR, v) (2.2)

To start (2.1), one needs to know also u},. We assume that u}, is given such that the
truncation error at time ¢ = k is O(¢t?). Such a u}, may be obtained by for instance the
Runge-Kutta scheme.
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At each time step, the scheme (2.2} can be interpreted as a discrete Stokes type equation
which admits aanique solution as proved in [3} by means of the following lemma which is

ezsential for our analysis.
Lemma 1. Yu€ VN, 3 ¢ € HF,, N Sn such that

u=roté and w lcurl(dw) € Vy.

We define the operator T: Va — Vx by

Tu=w'curl (¢w]. T 7§

Then |
(4, Tw) =  curl ¢, curl ($)) = au (4, 6) = 14112 > alul?, (2.4)
a, (4, Tu) = (A4, A(pw)) 2 BlI4113.. 2 Allulle. (2.5)

¢ 39‘-']
dy’ dx’

Let us prove first a stability result.

Lemma 2. Letug € V, and f € £2(0,T, X'). We assume moreover that the solution
u of (1.1) satisfies (H1). Then the scheme (2.2) is unconditionally stable. More precisely,
for0 < m < K, we have, |

where curl ¢ = (

m—1 .
wRIZ + kv ) lluft + uR |2 < Lu(f uhivo), (2.6)
n=0
m—1
Y it = w3 < Lalf, up, uo)- (2.7)

h ff B——

Proof. In order to alleviate notations, we will ignore the sub-index N whenever no
confusion is poasible.

Replacing v by 2k - T(u®*? + «") in (2.2) and using Lemma 1, we obtain
2(|[¢" 3 — lle™12) + kBvlig™+! + 6”12,

(2.8)
=k < 2f**t% — 3N(u") + N(u"1), T(u"t! + u") >, .
where ¢ is the function associated to u% (cf. Lemma 1).
We derive from the Schwarz inequality that
<250 > 2l vl < 5 IIE + il (2:9)

The modified nonlinear term can be easily handled thanks to the definition of the function
H. Actually, we derive from integration by parts and the Schwars inequality

a(ujw )

(N(s),v)e = E f --—(H(u.) u;yywdz = /H(u,)u, w_,d:l:
< M Z f |t1_1|u,- 3[;_;:-’12)'%{&‘_ - - ._- | . (2*10)

t,7=1
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Then, by using the following result (cf. [5]):

_1 2losw;
ot 2220 < e,

we arrive at

(N(u),v)w < cxMluls vl
We recall that (cf. [9])

[ #utdz<albl ama [ #utdz<pillglB. L Vo,
[} {1

" One can then readily check that
1T + u”)[lo < callg™" + ¢™[l2,0-
We infer from (2.9), (2.10) and (2.12) that

k<2 frtE — 3N (u") + N(u~ 1), T(u®*! + v*) >, |

ku,& n 8k :
—— 118" + "3, + A
vp
» . Mzk
——(llg" 12 + 11¢™112)-
Now summing {2.13) forn=1,...,m—1 (m < K), we get
ﬁ,m-——l
20l6™12 +722 37 6™ + 473
n=1
rﬂ*l :h&ﬂdgk'n_l
Z 157+ H iz + 201012 + 22— 3 1167
n—l n=0

(2.6) can then be established by using the following simple remark:

Let ay, b, and c,, be three positive sequences with ¢, increasing and such that

m—1

ag + bo < ¢y, am+bm£cm+}«2an,b’m21

ri=={)

with A > 0, then
am + b L exp(Am)e,, , Vm 2> 1.

It is proveed readily by induction that
am +bm < (14+ A) "¢,

and (2.15) follows then from (1+ )™ < exp(im).
We apply (2.15) with

- kvf e o i
o =204 s b= 2 Y [l + 47
' n=1

281

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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and

2
om =~ > IF" s + 2i612.

By taking into account (2.4) and (2.5), we obtain

2acfu™ |2 kvﬁ E Hu 1 + !u""‘||42

n=0

M2k M2T
2|} exp(Z=—), V1< m< K.

( ””I.ﬂ’(ﬂ r.xn + 2lunle +

Similarly, by the aid of the last inequality, we can prove (2.7) if we replace v by
2kT(u%"! — u%) in (2.2) and proceed exactly as we did for proving (2.6).

In virtue of the previous lemma, we can prove, by using a compactness argument exactly
as in §3.5 of [12|, the following convergence theorem.

Theorem 1. Let ui n(t) be the function from [0,T| in Vi defined by
ue N (t) = uly , vt e Imk,(m + 1)k), m=0,1,..., K — L
Givenug € V,, f€e 132(5, T, ') and we assume that the solution u satisfies (H1). Then
up n{-) = u(-), when E,N~1 =0

in £L2(0,T,V.,) weakly, L*=(0,T, X,) weak-star and L3(0, T, X,,) strongly.

The proof of this theorem is quite long and technical. We refer to [12] for a detailed
presentation.

Remark 1. Theorem 1 also implies that
u€ L3(0,T,V,)NL>®(0,T, X.) (2.16)

where u is the solution of (1.1). Actually, the hypothesis {H1) can be removed if we work
directly on the scheme (1.4}; we get instead a conditional stability and convergence result,

but {2.16) still holds.

§3. Error Estimates

In this section, we will derive first an error estimate by assuming that the solution u is
sufficiently smooth. Namely, we assume

(H2) u"(t) € £%(0,7,Y,) and u.""(t) e £*(0, T, X").

We then prove that, by using this error estimate and an inequality which controls the L™
norm by L2 norm in the discrete space Sy, the schemes (1.4) and (2.2) are equivalent under

a very weak condition which we will describe late on.
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We establish first a preliminary result explaining the truncation error of the scheme (2.2).
Lemma 3. We assume that the solution v of (1.1) satisfies (H1) end (H2). Then

K-1 - | S
Y [lekl%e < Lalu, )k (3.1)

n=1

where sk

n

1s defined by

< ek, v>,= L(uln + 1) — u(n),v)u + Fau(u(n + 1) + u(n), v)
—(f*+% — 1.5N(u(n)) + 0.5N (u(n — 1)},v) , YvE T, (3.2)

where we have set u({n) =u{n k}, n=0,1,..., K.

Proof. We develop u(n—1), u(n) and u(n+ 1} at t = k(n+ —*] by using Ta.ylur s formula
with integral residue

1
k(n+—=)

—1) = uln L. u'{n Lo 2°(t — k(n — 1))u”
u(n — 1) = u( +2) 1.5ku’( +2]+‘k/k(n_“ (t — k(n — 1))u"(¢)dt,

1
k(n+—)

u(n) =’u[n + %] — 0.5ku/(n + %) + %k/ 2 (¢ — kn)u"(t)dt,

kn
1 " 1. 1.4 , 1
< u{n},v >, =< u(n + —) ~ 0.5ku’(n -+ E) + Ek u’(n + -2-),11 >
1
1 k{ﬂ‘l"ﬁ)
—EH < f (t — k(n + —))u"’(t)dt s
k

<uln+1},v>, =< u(n+ —] + 0.5ku'(n + -) + *kzu"(n + -),u ¥

1 .'ﬂ[ﬂ‘f‘l}
ok < [ y G<bln 4 ——))u'"(t)dt wis,
k{n+2)

A direct computation leads to

(1.5u{n} - Vu(n) —lﬂ.ﬁu_(n ~1)-Vu(n-1) - u(n-j— —21-] - Vu(n+ %], v)w].

k{n+'1-]
ek [ 2 (gl ol
kin—1)
1 | 1 k(n+1). -
(£ (a(n+1) — u(n)) - w'(n + 3), V) < eak ,/,, [lw" ()l dt - |0l

k(n+1)
‘a., (0.5(u(n + 1) + u(n)) —u(n+ = ],u]ul < cak[ ™ (t)||xdt - {|v]}w.

We then substract (2.2) from (3.2). Using the above inequalities and the relation N(u(n)) =
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Blu(n}), we can get

h{n;l-l]

lehllz < eak [ (@l + (16 0)l)ae.
kin-1)
It follows that
k{n+1)
ekl < cek® [ (@I + I (@)E)e
kin—1

The summation of the last inequality for n = 1,---, K — 1 leads to

- | o | .
2 2
kD llenllZs < cek* (1w ()l 2a 0,7, xvy + 118" (220,73

n=1

We can now prove the fullnﬁing theorem.
Theorem 2. Assuming that the solution v satisfies (H1), (H2) and

u € C([0,T|, ¥2(Q)) ,»' €C([0,T), ¥7'(Q)), s<2 (3.3)
Then . | |
ju(m) ~ufi2 + kv ) [lu(n +1) +u(n) - uf — |
- n=0 ' : ,
< La(k* + |u}, — Tyu(1)]2 + N317¢)) | 1< m< K. (3.4)

Proof. Let us set |
e” = [Iyu(n) —u} and &, = u(n) —Ilyu(n) for n=0,1,---, K.

We can then reformulate (3.2) in the discrete form by the help of 2, and Ily:

(T (u(n+ 1) = u(n)), oo + §au(Tn (uln + 1) + u(n)), v)
—(f*t% — 1.5N(u(n)) + 0.5N(u(n — 1)), v).
=< 5, v >, —%(En_,.l-—"ému]w Yee Wy g (3.5)

Using Taylor’s formula as we did in the proof of Lemma 3, we can get

- | 1 1 k(n+1)
(s —2n 0ol < {I0'(n+ 3) = Tww'(n 4 o +eak [ 7 lu(8)Lxe e}l
2 27 Jk(n-1)
§ . ! 1 3 3 o) H 1 .2
< W'(n+2) —Tivu'(n+ ) +4e1k - 1™ () [+ dt + S lv]fe- (3.6)
n—1 _

We subtract (3.5) from (2.2)

% ("t —é™,v)e +

z
+1.8(N(u{n)) - N(u"),v)., ~ 0.5(N{u(n -1)) - N(u""1),v) , YoeTy. (3.7)

| | 1
auf{e®tl +e™ v) =< ek, v >, _E(E"_H — &ny¥)u
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Let us majorise first the nonlinear terms. By definition

N(u (n)) - N(u*) = 3 5 (H{w(m)u(n) - H()w)

2
3 11 8 n
= 3 o (W) (H () — (7)) + H(w?) (u(n) ~ u")}.
=1
One can readily check from the definition of H that
|H(z) - H(y)| < |z~y|, YV2z,9€ R

which implies that ; |
H(w) - H(o)h < lu— vl , ¥ w0 € L2() (3.8)

We then take the scalar product of (3.7) with v and integrate by parts. Using (3.8), (1.5)
and (H1), we obtain:

[N (u{n))— N(us"),v)e] < {2M|u(n) — u"|y + [u(n}|z=(a)|u(n} — v™|o H[v]|
< ea(le®u + [Enlu)llvllw < ealle™S + [2al2) + 3eal VIS - (3.9)

Replacing v By k- T{¢"*! + ¢} (where T is the operator defined in Lemma 1) in (3.7) and
taking into account (3.6), (3.9} and Lemma 1, we find

kv ' > s . |
et~ e[S + - lle™ + €IS < cok{[e [l + |G + [Bnll + Ba-alS + Hlenllxe
’ 1 ? 1 2 3 Hntl) " 2
+i'(n+ =) - Inu'(n+ =) +k [[u" (£) iy dt}.
2 2 k(n~1)

We then sum this inequality for n = 1,...,m — 1. Using (3.1) and (H2}, we get

ki m—1 m—1
™3 4= D lle™ +eHE < eakt + €L +cok D |7

',,.‘=1 n=0
k ! s, P 4 i TP . |2 :
+c5 E{lu(n+2) yu'(n+ )G + [Eali}

We can now apply (2.15) to the last inequality, which gives

m-1 m-—1
le™2 +kv E He™*! + || < cok® +e'|2 + cok z enl2

n=1 n=0

m—1
1 ) |
02 ’ Sy O ! 112
+cgkle’ | + cok E {lu'(n + 2). Nyu(n+ 2)|w}.

n=0

The proof is complete by combining {1.7), (3.3) and the relations

Ju(n) — u™l, < le”|u + |Ealw
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Znle € cllen]l, and =0
into the last inequality.
By using Theorem 2, we can now prove the following interesting result.

Theorem 8. We suppose that all the conditions of Theorem 2 are satisfied. Then, there
cmsts No > 0 such that the schemes (1.4) and (2.2) are equivalent as long as N > N, and

kN2 2 — 0.
Proof. It is sufficient to prove that

i | 1
s ax _|uy —u(n)lee — 0 (N — 0) provided kN7 — 0.

Let us prove first that |
|9lec < Nlqle , ¥ g € Sn,

which is a kind of inverse inequality.
‘We recall the following orthogonality formula satisfied by the Chebyshev polynomials:

[1 Tk(z}ﬂ(m)w(z)dm - %ﬂkﬁki
-1

where ¢g = 2 and ¢, =lt;nrk2 1.
We infer from this*formula that

N ' a N
i
Va= ) uTu(z)Tily), g2 =— D crargd.
ki=0 y 4 kI=0

Since [Te(z}| <1, Vz e {, we deduce that

o= | 3 B <O ) S V412 5 (o) < S0+ 170l

kI=0 ki=0 ki=0

We know from Theorem 2 that

nax (e = Tvu(m)l® < o(k* + uk - Myu(y))” + N20-9))

The last two inequalities imply that

[uf ~u(m)i% < 2(luf - Myu(m)|Z + ju(m) - Myu(m)|2,)

= S(N—: L w% = Mxu(m)lu® + [u{m) — Ty u(m)|2,
< eN2(k* + [uly ~ Tyu(1)],? + N201-9)) 4 |u(m) — My u{m)2.. (3.10)

The first teri, on the right-hand side of (3.10) tends to zero provided that
kNT 0 . (3.11)

In virtue of the following Sobolev inequality (ef. for instance [1]):

ulee <'ellullz - ], ¥ u € H*(0) (3.12)
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and by taking into account (1.7) and (3.3}, the second term on the right-hand side of (3.10)
also tends to gero. It means that - -

n e
ng}:.agxxlu” u{n)lee -0, N-—O

under the condition (3.11).

Consequently, there exists Ny > 0 such that

omax, [uk — u(n)lw S M, VN < No.

Hence

MaXm=01...K |4 < Mmaxocnck [uy — (n)|e + Maxocn<k [4(n)|oo
<M+ M=2M

which implies N{u}}) = B(u}).
| Remark 2. By giving more smoothness assumtions on the solution u, we can reduce
the very restrictive time step constraint (1.9) for the scheme (1.4) to the very weak condition
(3.11) which is evidently not a constraint in practice since we should keep the time step &
reasonably small o balance the spectral precision of the space discretization.
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