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Abstraoct

In this paper, & class of DBDF methods with the derivative modifying term is presented. The form -
of the methods is - | |

g & dins g™ hf n+i'+ ﬂh’f :r't-lr

which ig of k-step and order k+1, Tha numerical stability of the new methods is much be
both Gear’s methods and Enright’s methods.

tter than

. § 1. Introduction

Since the famous thesis of G, Dahlquist——the order of any A-stable linear
multistep method cannot exceed 2, and the smallest error constani is obtained for
the trapezoidal rule was presented in 1963, the research of the numerical methods
for stiff systems has been divided into two clagses: 1) non-linear methods, such as
one-leg methods and implicit Runge—Kutta methods; 2) stiff-stable linear multistep
methods. The former is comparatively stable but more complex in computation
while the latter is simple in the consiruction but weak in numerical stability. C. W.
Gear introduced a class of backward differential methods (BDF) with a periect
program for automatic computation. Confined by the numerical stability, however,
.only the lower order methods can be used for highly oscillating systems, 8o it 18
inadequate for such problems. In this paper, we shall introduce a class of improved
BDF methods which has a modifying term using the second derivative. Being
assured of the zero-stability, the new methods have excellent absolute stability as
.compared with Gear’s methods and Enright’s methods which, as our new methods,

contain the second derivative.

§ 2. The Construction of DBDF Methods |

Following the notation in [B], we let D and F be the differential and
-displacement operator respectively, that is T
| Dy(e) =y (), Ey(z)=y(@+h) (1)
then the backward difference operator V satisfies
Vy (@) =y (@) —y@—h) =T —E)y(e)
.80 that
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V=I—-E1, (2
By the operator formu.la_ (see [B]), | |
L syl o |
hD=V -+ V42 Vo > 3 v (3)
we have a1
2 T3 4 .
| e § E ¢(j—4%) ol (4)
Using (8) and (4) we obtain immedmtely
272 }

where « i8 a real parameter. -
T:mnca.tmg the first £ terms of the right hand side of (5) and together with (2),

we have
hDE"+ah’D’E"=E"{(I E-=)+z‘,( _ 2 ST ﬁ))(I--E"I)’}-p;(E),

and thus we have constructed a class of modified BDF methods with derivative
modifying term, i.e, DBDF methods:

Eﬂ!yﬂi-hfn-{-ll_l'ahfﬁh ' | g | (6)
with its first characterlstw polynomial
p@=0{a-t+ [+ B slatyk @
It is easy to calculate the coefficients «; in (6)
X o
ﬁ_;-ﬂ_-’-g im1 %Ej"'@ ?

Let Z[E: k] denote the diﬁ'erence operator of DBDF methods (6), that ig
L[E; b] =py(B) — hDE*— k3D E"

=B {AD+ah D"~ 2[5+ i v} -10m -

-—Ekfgu %_I_glﬁ(;‘ Er)}
~[ _}_1 + 2 T _@)](w)m IO,

Henca the error constani

P, W B
Y 5 Ry ¢ g gy © (8)

Theorem 1. DBDF methods () ¢3 of order k-1 3f and only ¢f a—-—(z jgl y ) 1.

Proof. By (8), DBDF methods (6) is of order k-1 if and only if Oy, =0, i.e.

s k+1 ~*
==& é(k+1—'e})) .
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Notice

1 12 k+l - A1l k4l 151 & 1
et d R, o R Bl &, I ) =0
s 2 E jlk+1-—-9) E j(i 2(k+1—-j)) 2@1 3 Ek+l—j)

80 we have '

—
L |

e R TR

- S k-1
=

and this completes our proof.

By Theorem 1, we see that the method (6) is of order k-1 when the parameter
a equals to half of the negative reciprocal of the first part of the leading ocoefficient
o in ok ({). The coefficients ay, parameter & and the fruncaiion error constant Ogpa
of DBDF methods of order 8 to 9 are given in Table 1.

Table 1

6 7 8

147 , 203 363 , 469 761 , 29531 -

50 T35 *[1a0 790" | 280 T 5040
a7 ., 233 | . 1924
i Rl Sy | o Bl By

15 117 |21, 819 | 4., 631,

2 4 p; 30 10
20 254 | 35 049 56 8013
T e s @ TE
15 338 a5 a5 , 691
| SR | el S0
6 27 a1 301 56 2382
e s A
1 . 1387 T . 1019 14 2143
= 180 et 30 % TV *
gl il .
1 7| _8_ a2
7 10 i 70
| 1 363
s 560 °
_1_863 |_1_76L |_ 1 21387
& D60 9 1460 10 37800
a0 | _ 7o _ 140
147 363 | 761

One can see at once that the absolute value of the error constant of DBDF
methods is much smaller than that of Gear’s methods, for example, in the case of
k=6, U =~0.0072, and the error constant of (Gear’s method is 1/7~0.14, about 20.
times larger than the former. -

§ 3. Zero-Stability
Similar o the xesults in [5], considering the real roots of pu({), we have
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Theorem 2. Let o bo given such that DBDF mathod (6) is of order k+1, and

boi £ be any real root of py({) such that £+1, them 0<<E<1.
Proof. We rewrite (7) as

A= A-L) {1+ [+ + ' 2 ) - —ty- 1}=-c"(1 H10.

k—1

Obviously, for this given a, 0, (0) = (—1)* [-——+ > 7 k— )] %0. So except for £=1,
all the real roots of p,({) are in f({). Let

| ge=m]1—"2 - | ‘ 9
and still denote by f(2), that is | . |
F@ =1+ J[14 3 =T (10)

The iransformation (9) maps the interior of the unit circle |{| =1 in {-plane 011156
the outside of the circle |z—1| =1 in z-plane conformally and ma.pa 0<{<1 onto

2<0, Denote
o

= $(z~—2)

then by Theorem 1, g(k+l @) =0 for a= — (23X 1/4) "1, It is easy o verify that
9(2, 0)>g(3, a) >-+->g(k, &) >g(k+1, a) =O0.

Th1s means that (10) is a polynomial with positive real coeﬂicients and hence hag

no positive real roots. By the transformation (9), we see that the Teal roots of p;.(C)

except 1 are all within the interval (0, 1).
Theorem 2 locates the interval of the real EIPIII‘IO'I'.IS roots of o (). To loca.te a.ll

%he spurious roots of pp({), we give (see [6]) | ,
Theorem 3. _Let o U | 2

y f(z) =aa"+a,_ 1&:""1-[- 4+ a5+ o
ba a palynomwz with positive real coefficients, and & be any root of f(w). Then

mlﬂ{ﬂ‘ }-<| |{m&x{m“1} |

1gian L &y 1<icn (£ .
) Cnrollary Let the polynomial in Theorem 8 be a polynomial with 'Iihe
ooefficients a;:

ay=0{— 1) fﬂil:(ﬂ'=ﬂ:1) | @] > | @pa | >+ '>|ﬂﬂ>‘|“ﬂ! (11)
Let £ be any root of f (z). Then |[£]<1. | ;
Proof. Let 5
k(@) =f(—2) =a, (4-m)'+w,,+1(-—m)““+ +m1( t) +a
=0 (|a|a"t | ana|a" ook | ot [ao]).
Then except for a constant factor o, h (z) satisfies the condrhon in Theorem 3
Moreover, by (11)

; max{ LY }-(1

1<i<n Iﬂ;‘

By Theorem 8, for-any root of f(2), we have
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=|—-¢|< < 1y
| Bl —5] E‘:’i'i{ T
Denote

: os (D) / (€ —1) =bL* 4+ Bual* 2+ os 02l +- by, (12)
Table 2 gives the coefficients of the polynomial (12) of DBDF method (6). One can
geo at once that these polynomials satisfy the condition of the corollary. Hence all

‘the spurious roots of py({) are within the unit circle. That means DBDF methods of
order <9 are all zero-stable, Unfortunately, it 1s not true when k=9,

Table 2

k b

2 1.17 01T : : 3 TR | 0.14
3 1.29 —035 | 0.06 - ! 0.27
4 1.38 ~054 | 0.18 | —0.03 | 0.39
5 | 146 | —o0.72 | 0.3 | —0.12 | 0.017 0.49
s | 153 | —os2 | o.6L | —0.30 | o087 | -o.01} 0.66
7 1.59 -1.11 0.91 —0.59 | 0.26 ~0.07 { 0.01 0.82
8 1.61 -130 | 1.26 ~1.02 | 0.59 _0.28 | 0.05 | —o0.01| 0.97

Notice that only an mpper bound hag been given, and the module of the
gpurious roots may certainly be smaller than the bound. For example, in the case
of k=4, n;mlx\&[ —0.81, while the estimate bound in Table 2 is 0.39.

s

§ 4. Numerical Stability

Let A, be the set of the absolute stability of DBDF ‘method (6) when it is
applied to the test equation: ¥’ =iy, y(0) =1, where Re A0,
| _ _ . .A.—{ﬁEQI [gi(ﬁj ] '<Or i'-l: 21 g k}: :
‘where h=2h, §,(h) are the roots of the characteristic equation
| w (€; B) =pu(§) —RE* —ah’E,
Denote the infinite wedge —_ '

&

W,—{EG - 0<w—arg h<0, O‘QHQ%}-

Mhe positive real parameter Gy, and fu,, defined in the following are very important
-for absolute stability '

Goin = Min{a|Re A< —ag=»hE A},

0 =max{f | WS A4,}- |

"When @i, =0 0T Opnee=90°, the method is said to be A-gtable, We need a numerical
‘method _Wijsh, Al Gy, 28 small as possible, or & Ouax 88 large as possible in order to
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s YpIE=—=—= A —

deal with the highly oscillating systems. |
The comparasion of stability parameter a_;, and 8., is given in Table 8.

Table 3

% g

4
DBDF 0 0 0.015 0,13 0.40 0.88 | 1.60
Gpnin ' ™ ——
GRAR 0 0.10 0.70 2,37 6.08
DBDF 90°® ag*® 89° g 70° 71* 69*
Fmax
GEAR 90° 86° 73* 51° 18°

The following figure sketches the bound of absolute stability of DBDF methods,
the dotted line sketohes the bound of Enright’s methods. |

Im A
- k=8

k=T |
E=08

Table 8 shows the incomparable superior of the numerical gtability of DBDF
methods, and Fig. 1 shows that our new methods are much mors better than
Enright’'s methods, both methods using the second derivative. Since Enright’s
methods are of k—step and order 4+2, so k-step Enrigh#’'s method and k-+1-step
DBDF method have the same precision. The au, of the former is about 4.2 while
that of the latter is about 1.6. (see the case of k=7) ¥ a

§ 5. Numerical Tést

We compute the following test equatbions:
y'=—y—10¢ . -
| { g/ =10y—2z, y(0)=1,2(0)=0
using DBDF method and Gear’s method of h=4 respectively, with the permission '
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e

—vu iy ) ey S PR L il

“arror s=0.001. The computational regults sre givan in Table 4, in which SN is the
step number, and SL is the step length.

Table 4
. DBDF . Gear
SN Bl T ‘ Erru;'-— BN 81 T Error _
T 0.1 | 500 | 44B< | 128 | o0.04 5.00 3.8 B4
85 0.4 | 10.0 1084 | 21 | o0.08 | 10.0 2.3 B-5
T 105 6.4 | 52.0 | 1omas | 47 0.04 20.0 1.8 E-9
T 12.8 | 109.6 1.8 E-22

The numerical test shows that the DBDF methods are very efficient for stiff and
highly oscillating systems. They can be used in a large class of problems which
Gear’s methods may have difficulty in dealing with. However, since DBDF methods
need the second derivative, this elicits the limitation of its application.
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