Vol. 6§ No. 2 JOURNAL OF COMPUTATIONAL MATHEMATICS April 1988

e e i it i 1]

FIXED POINT METHODS FOR THE
COMPLEMENTARITY PROBLEM*®

SUBRAMANIAN P, K,
(California State University, Los Angeles, USA)

Abstract

This paper is concerned with iterative procedures for the monotone complementarity problem.
Our iterative methods consist of finding fixed points of appropriate continuous maps. In the case of the
linear complementarity problem, it is shown that the problem is solvable if and only if the sequence of
iterates i bounded in which case summability methods are used to find a solution of the problem. This
procedure is then used to find a solution of the nonlinear complementarity problem satisfying certain
regularity conditions for which the problem has a nonempty bounded solution set.

§ 1. Introduction

We are concerned in this paper with the complementarity problem, viz., that
of finding a #%>0 such that F#(z,)>0 and such that 2iF(z,) =0. Here F is an
operator from H* to h". In particular, we are concerned with the case when # is
monotone, that is

(o—9)"(F (@) —F(g))>0, Va, ycHe.

The operator ¥ is strongly monotone if there exists a positive real number A such
that : |

(2—y)"(F(z) —F(y))=r|a—yl>

When F' ig an affine map, F(z)=Mx-+¢q, we shall refer to the complementarity
problem as the linear complementarity problem and write LCP (M, ¢) in this case.
Otherwise we shall refer to it as the nonlinear complementarity problem and write
NLCP(F). Olearly when ¥ is affine and monotone, M is positive semidefinite.

In the case of LOP(M, ¢), when M is positive semidefinite, if the problem is
feasible, that is there exists #>>0 such that Mz-+¢>0, the problem is solvable
[ Eaves, 1971]. This ig not the case for NLOP (F) ([Megiddo, 1977], [Garcia, 1977]).
However, for &>0, if we consider the Tihonov regularization #,:=F¥#4 I, then
the corresponding problem NILCP(Z.) hag a unique solution since F, is strongly
monotone [ Karamardian, 1972]. When &—0, », converges to the least {wonorm
solution of NLCP (F'}, provided it is solvable [Brézis, 1973].

A solution of NLOP(F) is also a fixed point of the map
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o> (z—F()) ,: =max{0, s—F(z)}.

The principal aim of this paper is to consider iterative procedures to find such fixed
points. We shall show that in the linear case the sequence of iterates is bounded if
and only if LOP(M, ¢) is solvable. When this is the case, we use summability
methods o obtain a solution of the problem. Although feasibility of the monoione
NLOP(F) does not imply its selvability, it is a theorem of Mangasarian and
McLinden [1985] that when a regularity condition such as the distribute Slater
constraint qualification is satisfied, then, in this case, the solufion seb is bounded.
We show how ihe iterative procedure for the linear case may be adapted fo find a
solution in this special case. |

We briefly describe the notation used in this paper. We use :i" for the space of
real ordered n-tuples. All vectors are column vectors and we use the Huclidean
norm throughout. Given a veotor z, we denote its ¢** componeni by «;. We say z=>0
if z;>>0V4. The nonnegative orthant is denoted by 3.

We use superseripts to distinguish between vectors, e.g. %, 2 efo. For s,
yE R, 27 indicates the iranspose of @, 2"y their inner product. Ococasionally, the
supersoript T' will be suppressed. All matrices are indicatéd by upper case letters A.
B, O, ete. The ¢** row of 4 is denoted by A; while its 7 column is denoted by A,.
The transpose of A is denoted by AT.

Given NLCP(F), we define the feasible set and solution set by S(F) and S(F)
respectively, that is,

8 (F) = {s€R3: F(a) €N},

S(F) = {z €8 (F): o"F(a) =0}.

In the case of LCP(M, ¢), we shall denotle these sels by S(M, ¢) and S(M, ¢)
respectively, Finally the end of a proof is signified by [

§ 2. Fixed Point Methods

We begin w:th the well known notion of & contraction mapping.
2.1. Definition. Let P: DTR A We say P is Lipschilzian with modulus
L>0if .

[|P(z) —Ply) |<Liz—y|, V=, y€D. (2.1)

When L<1 (L<1) we say P is non—ezpansive (condractive).

The following theorem is olassical; see e.g., [Ortega and Rheinboldt, 1970,
page 120].

2.2. Theorem, (Banach’s coniraction mapp—irﬂg principle) . Let P: DTR"—H",
D, a closed subset of D such that PDo={P(z): aC Dot Sly. If P 4s a coniraciion
maepping on Do with modulus L, then P has a unique fized point x in D,. Further,
for any point a° in Dy, the seque {2*}, where o= P(2*), converges to = with the
following linear yate:

£U]H-1 o

H _m“ <L """ ‘ (2.2)
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The content of the following proposition is well known. We stale it in the
following form for later use and furnish a proof for the sake of compleleness.

2.3. Proposition. Let F: DCR"—J" be monotone and Lipschitzian with
modulus L. Suppose that >0, a>0 and sa<1. Then the projection map ¥ defined
by |

Plz)={z—a(F(z) ‘+ex)},, «€D (2.3)
is also Lipschitzian with modulus k(&) =~/ (1—ae)?+ al)? . If a<2s/~ &2+17,
then P is & contraction and % atlaing its minimum valuoe

Fwin(e) =L/~ I7+6* for a=s/I2+ &2,
Proof. We have
[P(a) —P(y) |*=[{o—ac(F(z) +ex)},—{y—a(F(y) +ey) ;[
<{{z—a(F(2)+e2)} —{y—a(F(y) +sy)}|
since projection on A7 is non—expansive. Hence,
[P (o) —P () |*<| (2—y) (1—2a) —a(F (o) —F () |*
= le—y|?* (1 —as)? 48| F(z) — F(y) |2
—2a(1—as) (@—y) (Fx) —F(y)).
Since as<1 and {F(2) — F(y), #—y,>>0 from the monotonicity of F,
[P (e) —P(w |*<]o—g[*{(L—a&s)?+ (a«L)?}.
The other claims about %k (a) are easy to verify. |J
2.4. Theorem, Let F: Ri"—>R" be monoione and Lipschitzian with modulus L.
Let {&,} be a sequence of positive reals, e,l0. For n=1, 2, --- lot
Po(@) = {s—0,(F{z) +2.2) } .
and for me=1, 2, < and o€ N" lot
| Py () =Pyo-+oPy(2) =a(n, m).

Suppose further that

3" =15 L E —— e,
Chp, _EE-I-_E’-' K Ww 3,=8,.(1 ]Fn)'
FW n=11 2} il M Eﬁ bﬂ dﬁﬁﬂvﬂd by -
2*=x(n, m), where [z(n, m+1) —2(n, m){<3,.

Then the sequence {|z"]} is bounded ¢f and only ¢f NLOP(F) és solvable and én this
case, T.—>z, the least two—norm soluiion of NLOP(F).

Proof. From Proposition 2.3, P, is a contraction with modulus k,<(1. By tho
contraction mapping prinociple, given any 2°

l}];m Pi—z",  P.(e") =2" (2.4)
Note that z* solves NLOP (F+s,I) uniquely. Sinoe, by definition,
Pu(z(n, m)) =z(n, m+1),

we have
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Su> o (n, m+1) —x(n, m)]|=[oln, m)—2"]—|o(n, m+1)~2"]
and |

J2(n, m+1) —2"] = [Pu(z(n, m) —Pa(z) | <knr
It follows that

w(n, m)—2[.

8> |z(n, m+1)—ain, m)|=A—k,) |z(n, m)—2"]
and that | |
[2"—2"] < 8, (2.5)
The conclusions about {z"} follow from [Brézis, 1973] (see also [Subramanian,

1985]). @

We remark that the last theorem is a two-—step process in the gense that for a
given &,, the contraction P, is iterated m times nuntil z(n, m) is close enough to the
solution 2" of NLOP(F +¢,1). One then takes a smaller 2, and the process repeats.
Our aim now is o prove convergence for an algorithm which combines both steps

into a single step. We shall need the following notions from the theory of
gummability.

2.6. Definition, An infinite matrizc A= (Ay), 4, j=1, 2, -, s said to bs
convergence preserving if for any sequence {x,}, the sequence {y,.} defined by

yﬂ’E Anfm! (2 '6)

¢s well defined and lim »,=limy,, We call {y,} the A—transform of {z,.} and write y,=
A ({w.}) .

The foliowing theorem is oclassical. Its proof may be found for instance in
[Peyerimhoft, 1969]. |

2.6. Theorem, (0. Toeptlitz). An infinite mairie A= (4y), 4, j=1, 2, +-, s
convergence preserving if and only if

(1) gl.&iﬁl =0 5ﬂ?’ljﬂis,

{ﬂ' i} 8 bﬂ'l&?bdﬁd,

(2) ]an(g Au) =1, - (2.7)
(3 h:n A4;=0. . (2.8)

We are now ready to prove the principal theorem of this paper.
R.9. Theorem. Yot M le a pcsitive semidefinite matriz. Assume that the
sequences {a,t and {&,} of positive reals are such that

[ S a, diverges.
n=1
> ai converges,
g (2.9)
> a,g, converges, and
n=1

EH‘Q:I., E"="E—I:" iO:

L
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<l R o S TR = e o

Suppose that k is the smallest positive integer satisfying

—— L 1 |

Let B=(B,;) be the infinite mairiw whose w'* row B, is defined by

__f D14 Ragpx En-!—!ﬁ
Bn"_( S G 5 0! e ¥
1 .

s Sh
where S,,=i&,+h. Let 2°=0 and, having 2", determine 2*** from
j=1
Q5”+1 e { (1 T En—l-i"ﬁgn-l-k) P — Ei'i~+1:r (an g) }+. (2 . 11)
Let {4} be the B-transform of {a"}, that is | C -'
| y"=% iE,JrM),' ' - (2.12)
n =] :

Then S(M, q) %0&{a"} is bounded. When this condition holds,
>y €SH, @)
Proof. Assume that } satisfies (2.10), For notational convenience, we shall
write |

ﬂn=€_¥n+m 8= 8nsx and Pn=';-‘ﬂ+lﬁ-
Obviously, the sequences {a,}, {s,} and {p,} also satisfy conditions (2.9). We shall
write _
| Fe=Mz+q, Fuo=Fztez.
Thus we can write (2.11) in the form
Mt ={(1—a.e,) "~ Fs"},. (2.13)

~ Woe first assume thal {«"} is bounded and show that in this case y"—>y* € S(HM,
g) so that S(M, ¢) #0.
Assume then that {z"} is bounded. Olearly, 3K ;>0 and K ;>0 such that

<K,
| Foa| = | Mo"+-g+ea| < A+ [M]) - [2™] + g}
<A+ [M])-Ki+|ql:=K,.
Let s €R% be grbitrary' but fixed. Then from (2.13) weé have
jo — ]2 = | (3" — 2 (Fo2")) o — 2 ]°< || (& — ) — 0, (Fa"+ 8,0") |2
<] (@—=z) |?—20,(F") (a"—2) — 2,8,2* (0" —2) +02K3: (2.14)
Since M is p;:isiti’ve semidefinite, we also have
| (Fz*) (0" —2) > (F2) (2" —z).

Let
Ky=supla"|- [o"—2].
From (2.14) we now gei;
S CR L o P S o] P B Ky 102 KD
Summing this from 1 to ¥ we obtain
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2(Fz) ga.(af-—m) <l —a]— [P — o]+ 2K, Slas+KiSl.

n=1 =1
Divide this last inequality by 8, and let k—co. From the assumed properties in
(2.9) of the sequences {a«.}, {s,} and from the definition of {4}, we now have

Iimkin.f(Fm, z— o> =0.

Sinoe " is a convex combination of #*, #* .-+, #", it follows that {z"} is bounded=>
{¢"} is bounded. Hence {¢"} has a limit point ¢* for which

| {Fz, x—y*>>=0.
Sinoce € N is arbitrary, ¢ solves LCP (M, ¢). This completes our proof thal
{z*} bounded=S (M, ¢q) % 9. |

Next we prove i >y".
Sinoe S (M. g) =@, choose #& S (M, ¢) arbitrary but fixed, By [Subramanian,
19856 Theorem 2.4.2],

. KFa, o—23=0 - (2.15)
gince 2*>0, From (2.18) and (2.15) we have
for*— g2 << | (0" —2) — i (F2" + 8,2) |2
<[z —2]3—2a, (Fz") (2" —2) — 2a,8,2" (2" —2) +0 K3
<[z —z[*+ 20,8, 2" (" —2) |+ KL,

Define 8.(z2) by

B (2): =202, 02" | 2" —2] +ar K3 (2.16)
and we now have |
q [2" 1 —z ]2 < fa*—2]+ B4 (2). | (2.17)
Let & denote S(M, ¢) and let

| =Py (a").
We are going tc show that =z* such that
>zt Yo,
From (2.17) and the definition of 2",
[t =g P = 2P [ — 2P+ Bu(e).

Sinoe gB, (z) converges, by [Cheng, 1981, Lemma 2.2.12], we can conolude that

2" —2*] | (2.18)
converges. By the parallelogram law, for m>>0, |

L

: 3
ﬂz""“‘—z”'h”=21]9:"*"-—z"ﬂ’+2lm""'“‘~—z"”‘ﬂ’—-—4 mn-l*m __;_-(zn_‘_zn-l-n)ﬂ .
Qince § is convex, (z"+2z**™)/2€ 8. Also, 2»*™ is the closest point to " in 8.
Henoe, -
|2 — P2 — 2 [P — 2] — A (2.19)

Letting z=2" in (2 17) and noting that z* is the closest point {0 2* in 8, it follows
that B, (") <B.(z). Now let z=2"in (2.17) and use induction to get
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n+m

fortm— 2 2" — 2|2+ ,2 Bi(z), m>0,
Bubstitute this in (2.19) and we have
: - 1 .
ﬂz"‘"‘“‘—z"ﬂ“ﬁﬁﬂm’——z“ﬂ”——Zﬂm“*"'—-z“*"‘ﬂ’+2’Z Bi(2). (2.20)

From (2.18) and the fact >;B8,(2) converges, we have by letting n, m—co in

(2.20) that
| ﬂzﬁ+m_zng —3()
so that {z' is Cauchy. Since § is closed, Jz* €S such that 22—z'. We shall now show

that ¢*—>2" as well,
Since {¢} i3 also bounded, let ¢* be any of its limit points, Assume that the

subsequence ™ converges to y*. From our proof earlier, y"€S. Observe tha’s
[Bazaraa and Shetty, 1979, Theorem 2.3.1]

2! = Pg(2!) =<a! —2, y*—2'><0. (2.21)
Multiply (2.21) by of and sum from §=1, 2, --- n; to get ‘
(S —), By ~2)<0.
Divide the last inequahty by 8% to obtfain

. 1 |
<y" B Eﬁjzj, y* g & ﬂjz >'€0 (2.22)
Notice however that .
g - S Eﬂiﬁ
is simply a subsequence of tha B—tra.nsform Df {2°}, that is of
{§}=B({"}).

Since B satisfies all the conditions of Theorem 2.7, it is a convergence preserving
matrix. However, 2"—z" s0 that both £ and & also Converge to #*. If we take limits
88 k—co in (2.22), we get

Y2t Y2 <0

so that y*=2*. But ¢* is any arbltrary limit point of {y*}. Henoe y*—>z*. This
completes our proof that

{a"} bound9d=>§ (M, ¢} and ¢—2"CcS(M, g)

We now prova the converse, that is we shall assume that S(M g+ @ a.nd
show that {2"} is bounded. '
Recall from (2.10) that % satisfies

F aa 2 1

Henoce there exists o (0<0<1/2) for which

1

2o < FroyariED L
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The function f(r),
r

r):=
100 = S ar ey A+ 1M el )
is srictly increasing in [0, <o], lim f(r) = L,. Thus 37 >0 such that for r>r,

~N 2op+ 20, < f () <f (r).
Since p,0 and p,...=p, we have for all >0 and +>r
~2p, +20,<F(F)Y < F (). (2.28)

By assumption, S#@. Let z=P,(0), that is z is the least two-norm solution of
LOP(M, ¢g). Define

,-=max(;-',i 2] )+1.

e
Our aim is to show that

[o"—z] <r, Vn=0,

that is {2"} is bounded and this would complete our proof.
We use induction. For n=0, |2°—:z| =|z]| <or<sr.
Suppose now that |2"—z] <r. Let u,=[2*—z|. From (2.13),

f-"§+1= Hmn+1_znﬂ
Qﬂm"—z"ﬂ-—-zmﬂaﬂm’“(ﬁu"%z) —2ux,(Fa") (a*—2) +| Fz"+ e, a2 (2.24)

Since z€S, (Fa") (a"—2)=>0. Also if p,,1<p, we are done. S0 assume 1> e
From (2.24) we thus get

2x,8,0" (2" —2) <ai]| Fa" -+ 2”3,

that is
a" (" —2) {%ﬂFw“-{—s,,m“ﬂ-". (2.25)
Since
2| < |z*—z| + ]zl <7+ or=A4+0)r,
we have

| Fo"+eat| <[ Mar+g| +e,|a| <[ M| || + [g] + [2"]

{(1+ﬁ)r-(1+ﬂﬂfﬁ)+”gﬂ=fé;) —:£ (say).  (2.26)

From (2.25) we now get

o (2" —2) <L £

@—2) (7 —9) <L 22 (1) <2 14 o] - [ah ]

Rewriting this last inequality,
<L §ﬂ+q-cm..,_

whenoe
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27— 2ro u,— p£2 <0,
Sinoe u,>>0, we must have

MH{QTG"—I—\/'&:'U +8&2p, Q - :(

and finally
p,,.{m'+7§- ~/2p,. (2.27)

Again from the definition of #"*! in (2.18),
fap1= |2 —z] <[o"—z2—a,(Fa") | < o+ o Foo| < pin+p.€, (2.28)

where we have used (2.26) and the fact a,<<p,. If we use our estimade of w, from
(2.27) in (2.28) we gei

ﬂn+1<iﬂ:r—l—-% N 2p, + p,E.

Substituting for £ from (2.26) and using (2.23) we finally get

(vV2p,+2p,) 1 J@&) T
Ln .3 <00 P2 = f(rr) sl o ol ol 5 f(a')
=a'a*+_—g-<r

since o<<1/2. Henoce Haz1<r. This completes our induction and also the proof of
the theorem. [

- 2.8, Remark. Our proof showing that {y*} converges by considering 2z
Py (a™) is patterned after [Baillon, 1975], who uses this technique to construct ﬁxed
poinis of non—expansive maps. Notice also Baillon’s use of the Desaro matrix ¢

where Cy=1/4 for j<4, while C;;=0 for j>4.

§ 3. Application to NLCP (F)

We shall now show that the proof of 2.8 can bhe used to oconstruct a
solution of NLOP (#) when 7' is monotone and satisfies some regularity conditions
such as the distributed Slater constraint qua.hﬁnatmn [ Mangasarian and MeLinden,

1986].
3.1. Definition, Let F:DCR—>R*. We say that F satisfies the distributed Slater

constraint qualification (DSOQ) if there exist p points ¢, 22, -, 22€D and
nonmegative wﬁghts A1, Ag, »er, Ap( $}\g=1) such that E=E A =>0 and w=§:mﬁ}o

where w! =F (27).
Mangasarian and MoeLinden have proved th& following theorem.
3.2. Theorem. Lei F:DT R >N RicD and suppose that F is monotone and

continuous on D. Assume that F satisfies (DSUQ) . Let

g o J
y>max (1, —m+2?.;z"w"),

Jou]

O= {zEEﬁ‘ wr<ws+y},
where A;, 2, w', 2 and @ are as in (DSOQ). Then NLOP(F) is solvable and has a
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solution 2* such that fzﬁz*{@ﬁ—l—y‘
We shall now show that the technique used in the proof of 2.9 can be used to
construct a solution of NLOP (F) guaranteed by Theorem 3.2.
3.8. Theorem. Assume that F satisfies the hypotheses of Theorem 3.2 and let
be the compact convex set as defined in that theorem. Lot 2°=0 and given &* find z"**
mn+1=Pﬂ {ﬂ]" F(m“) }‘

T

Lot B be the Césaro matriz with

: S i _._j..:_ e
B, (S,. Bt nS ) B :-1
and let {y"} =B ({z"}). Then y" converges to a snlutiaﬂ. of NLCP(F).

Proof. We shall give only a brief outline. Since {#*} and h-nee {4} are both

‘bounded, {¢"} has a limit point z*. One uses the monotonieity of F to show that

F (), a—y* =0, Vacl.
Hence y* is a fixed point of the map 2l—>P¢(z—F(z)). However, Mangasarian and
McLinden show that any such fixed point satisfies wy*<<wz+-y. Hence y* dolves
NLCP(F). One can now show that y"—>y* by considering the projection z* of z” on
SE). §

3.4. Remarks. 1. It is easy to cee that Theorem 2.8 may be extended to the
nonlinear case if #' is Lipschifzian. In this case || is replaced by the Lipschitz
constant of F in (2.10).

2. Unfortunately, from a computational point of view the fixed point methods
in general, and those considered in this paper in particular, are not viable
methods, They are extremely slow and particularly so in the vicinity of a solution
point since the step dizes taken in such a vicinity are exiremely small. Their
slowness is in part also due to the fact that they do not utilize special features
of the mafrix M in the ocase of LCP(M, ¢). Their real utility is perhaps in
generating good starting poinis for fast Newton-type algorithms. However, the

SOR methods are much faster than the fixed point methods even for generation of
starting points.
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