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Abstract

Soms main results in nondifferentiable optimization are reviewed. In Section 2, we discuss
subgradient methods. Section 3 is about the cutting plane method and the bundle methods are studied
in Section 4. Trust region methods for composite nonsmooth optimization are discussed in Section 3.

§ 1. Introduction

A general nonsmoeth optimization is to seek a point that attaing the smallest
value of a nonsmooth fanction f(«), where f(z) defined on R" is continuous, but
not necessarily differentiable. In other words, we need to solve the problem

min f(z), *ER" (1:1)

A necessary condition for #* to be a solution of (1.1) is that the null vector is
in the subdifferential of f(2) at #*. The definition of the subdifferential can be
found in Olark (1975), and is expressed as (2.6) in the next section.

Methods for solving (1.1), to be discussed in the nexh four sections, are all
iterative. That means, to start calculation, an initial guess for the solution has to be
made. Then at every iteration, a method would give a search direction or a trial
stop. In the first case, some kind of line search techniques are needed to choose a
step—gize o5 >0 in order $0 move the approximate point from the original location
(2%, 82y ) t0 & mew one (@yg1=ax+cud;), where di is the search direction. In the
second case, some kind of tests are needed o judge whether we should accept the trial
step (@41 =y+di) OF take a null step (@u+1=2x)-

In the next section, we present some results of subgradient methods for (1.1).
Most of the research in this area has been done by the Soviet scientists. In Section 3,
wo give a brief introduction to the cutting plane method. Section 4 is about the
pandle methods, with an introduction of the conjugate subgradient method. In
Section B, we congider a class of trust region methods for the so—called composite
optimization problem.

There are also many other methods that will not be discussed here. The readers
ore referred to Blinski and Wolfe (1975), Lemarechal and Mifflin (1978) and

Nurminskii (1982). -

* Received Januarv 13, 1986.
1) Presented at the 50th Anniversary Confersnee of the Chiness Mathematical Society, Decomber 1985,
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§ 2. Subgradient Methods

For the moment, agsume that the function f(#) is continuously differentiable.
The steepest descent method for solving (1.1) sets

Tusr=— oV (%), (2.1)
where ay>>0 is a step—length. There are different techniques for choosing o, among
which are the “exact line search” and the “Armljﬂ type search”. The former requires
that

F(on— 0V f(2)) =min f(zy—iVf(a)), (2.2)
and the latter one chooses such ap that satisfy the inequality
f(an— V(@) — f (@) < —c10a| V(e | (2.8)

where ¢; i8 a parameter in (0, 1). For either search technique (2.2) or (2.3), it
can be proved that any accumulation point of {z} is a stationary point of (1.1),
that is, the gradient of f(z) is the null vector.

The subgradient method is a generalization of the steepest descent method (2.1).
At every itergtion, it lets

D p1 ™= Ty — O, (2.4)
where g, is any subgradient of f(z) at the point z,. That is, we have
9o € 0f (an), (2.5)

where 9f (a3) is subdifferential of f(z) at @;. The subdifferential df(») of a function
is defined by

of (@) =conv{g ER"|g=1im Vf(x,), mi—>z, Vf(a;) exist, Vf(z;) converge}.
o (2.6)
For more details, see Ulark (1975).
Hence a class of subgradient methods for solving (1.1) can be deseribed below:
Algorithm 2.1 (The Subgradient Method).
Step 0: Given initial vector .
Step 1: C(Qalculate f(a), and obtain a vector g;,Ga f (@)
Step 2: Choose a step-size o3 >0.
Step 3: Set
Tpp1 =Ty — O Jy. | (2 . 7)
Set k=%k-+1 and go to Step 1. |
The difficalty in choosing ay in Algorithm 2.1 is that we can not use the exach

line search or the Armijo type line peareh.
For the exact line search, take the problem of minimizing the 1-norm of the
variable in R? for example, that is, to solve (1.1) with

f(e)=|z];, @€R. (2.8)
Suppose we let the initial vector be 2y=(7; 0)*, where #; is a posilive constant.
For any positive constant #; in (0, 1), we can choose ¢gy=(1 —#3)T. Thus we have

s =[0 ). (2.9)
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Consequently, we may have

:-Ekﬁl ; 0 -y
Dopp1 = | =1 : s Dop™ ’ (2.10)
L o H b _

for all k, where #; (i=1, 2, +++) are any numbers in the interval (0, 1). We may
choose £; such that t*=-f[ t,;>0. Then the only two accumulation points of {ay} are

im]

(0, )T and (¢, 0)T. Neither of them is a stationary point of {4
Due to the nonsmoothness of f(z), for any gwen constant o1 € (0, 1), the Armijo
eondition

f(ou—0df (@) <f(an) — 01| 0f(2a) |° - (2.11)
may fail for all a>>0.

Though both the exact line search a.nd the Armijo type search may fail for the
subgradient method, fortunately the angls between — g, and 2*—, is less than = /2,
if o, is not an optimal point of f(z) and z* is any point that solves (1.1). The
following lemma is known; see, for example, Zowe (1985).

Lemma 2.2. Assgfme f (&) is convea and the set of optimal poinis of problem
(1.1)

X" = {2 | f(2*) =f*=min f(m)} (2.12)

sER” . |
88 nonempty. If x, i8 not an optimal point and 2° is any point én X, there emists 1T0:>0
such that

uwk—agh/ﬂgnu-:u*ueanm,.—m*u - @as

for all &€ (0, Ty). -

The subgradient method described in Algorﬂ;hm 2.1 was devalﬂped and used by
Shor (1962) to solve large scale tra.nsportatmn problems. Shor (1962) used the
conﬂta,nt step, that 15,

=a>0, for all k. (2.14)

Since |@.: — 2] =a is bounded away from zero, it is eagy 1o see that Algorithm 2.1
does not converge if a are defined by (2.14). However, one can show that

Theorem 2.8 (Shor, 1962). If f(z) is conves, and the set X* s nonempty, for
any given >0, there exists a >0 such that for every given o & (0, ), Algorithm 2.1
enswres that

lim inf (o)< f"+38, (2.15)

¢ f oy satisfy (2.14).

The above theorem shows that though the constant step method would not give
convergence, it can solve problem (1.1) within any given accuracy by choosing
small step—size.

The first technique of choosing o3 to force convergence for Algorithm 2.1 seems
to be given by Ermol’ev (1966) and Poljak (1967) mdependent]y They chose such
oy that satisfy -

>0, lim 0=, S g =00, (2.16)
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The following theorem is due to Poljak (1967).
‘ Theorem 2.4 (Poljak, 1967). Assume f(2) ¢8 conves, X" is nomempty and
bounded. Let x, be generated by Algorithm 2.1 with (2.16). Then

lim p(2, X°)=0, | (2-17}

I R—

where the function p(z, ¥ ) has the value ﬂf the distance from the point x to the set ¥,
that is,

p(z, ¥) '=miﬂ||m—‘yﬂ : (2.18)
yEY

Proof. Due to the convexity of f(z), there exisis a nondecreaging function
6{3) ~( such that for any positive 2 the inequality

flo)<f*+8 (2.19)
holds if |
p(e, X")<8(2). | (2.20)
For every %, we define |
sp= f(ax) — f*. (2.21)

Then if e,>0, due to the convexity of f(«), we have
|@xs1— 2" = hﬂ?:r- — 2"+ o — 200 (2 — " ) g/ th"

T
=H%—-m ﬂ—l-txk-*gakﬂk)ﬂn—zﬂk(ﬂ?k 4 —3{_3;) "g: |) g;;/“gyﬂ

<y — 2|2+ aZ— 28 (&p) o, | | o (2.22)
which shows that ’

oo, X = [p(mn, X< —an(28() —a). (2.29)
The above inequality holds for all ¥ if we define 8§(0)=0. Taking the sum over k
from 1 to infinity on both sides of (2.23), we have

lim inf 8(ey) =0. (2.24)

fo~acm

Congequently,
lim inf p(ay, X*)=0. (2.25)

k-0

If the theorem is not true, due to (2.25), there exist an 8>0 and infinitely
many ¥ such that

p(@us1, X")>p(an, X°) | | (2.26)
and that
- -3 (2.27)
Now inequalities (2.23), (2.26) and (2.27) show that
26 ey) <o (2.28)

for mﬁmtely many k which contradicts the f&ﬂtﬂ that B(e,,}:vﬁ(s’)}l) and thab

a,—>0. Therefore the theorem ig irue. | |
The above proof is a modification of that of Poljak (1967) Ermol’ev showed the

same resuli under an addltmnal condition that
- | lg:] <O, forallk, | - - (2.29)
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for some positive constant J.
From the inequality

|e— 2| + | Tapr— 2 | o, | (2.80)
Algorithm 2.1 cannot converge faster than o, tends to zero. Due to the condition

iwwm, Algorithm 2.1 with (2.16) never converges R-linearly. Here we say oy

k=1

converges to o* B-linearly if there exist ¢ & (0, 1) and M >0 such that

| — " <M (2.31)
for all % (see Ortega and Rheinboldt, 1970).
To enforce R-rate convergence, Shor (1968) suggested that

oy =0y, 0<g<l. (2.32)
It is easy to see that i o, <<.oo; hence the convergence regult (2,17) is not valid. In

k=i

fact, for any given op and g, if the starting point 2, is far away from the set of
golution points (ﬂay, p(my, X*)> liﬁg ),_ the points {;} will be bounded away from

the set X*. A positive result of the formula (2.32) is the following.

Theorem 2.5 (Shor, 1968). Assume f(a) is convez and there exisis a positive
constant 1 such that

(w—a")?0f (=) =] of (z) | o~ (2.83)
for alt ©. Then there exist positive constants q and a such that if ¢g<¢<1 and GoZ> A,
then Algorithm 2.1 with (2.82) will ensure thai
. jan—a*| = Mg (2.34)
for some x* € X°, where g and & are dependent of | and | 2, — "], and where M depends
on the values ¢ and ap.

- Though the rate of convergence is R-linear, (2.82) is not implementable in
practice, since it requires information about the objective function f(wz) (for
example, the value I and the distance j#1 —a”|). More details of the method are given
by Goffin (1977).

The rate of convergence of Algorithm 2.1 can be improved if we know the
optimal function valune f*. Such cases exigt in practics, for example, in transferring
a gystem of nonlinear inequalities into @ minimax problem (see Poljak, 1978).

The following technique,

ﬂkﬂhﬁ(%ﬂ;%(m*))? 0{}‘{2, (2_35)
-
was first suggested by Eremin (1965) to solve the minimax problem

min f(z) =max {fi(®), O} (2.36)

Poljak (1969) developed this technique in general nonsmooth optimization. The
step-size rule (2.35), when applying to the minimax problem (2.86), coincides with
the relaxation method for solving the inequality system :

| | fi)<0, 1<j<m. (2.87)
The relaxation method is traced back as far as Agmon (1954), and Mofzkin and
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Schoenberg (1954). For more details and its relation with nondifferentiable
optimization, see Goffin (1978).

The following convergence theorem is given by Poljak (1969), which is also
proved by Eremin (1965) for the minimax problem (2.36).

Theorem 2.6 (Poljak, 1969). Assume f(z) is conves, the set X* i3 nonemply,

end f(@) satisfies
5 [ef(=) [ <O (2.38)
Jor oll z such that [a—wy | <play, X*), and that
f(2)—f*>lp(z, X7) (2.39)

Jor all = satisfying ple, X")<p(w:y, X"). Then the sequence {z} generated by
Algorithm 2.1 with step-size rule (2.85) converges to a point "€ X* R-linearly, that

23,
|~ ™| < Mg, (2.40)
wwhere M is a constant, and ¢ has the value
g=[1—-A(2— ?«.)F/G""]!(:l (2.41)

?olja.k (1969) also gives a modification of (2.85) for the case when the optimal
function value f* is unknown.

Shor (1970) introduced the space dilatation method to accelerate convergence of
‘the subgradient method. The main idea of the method is to use not only ¢, but also
g1 1o form the search direction at the k—th iteration. More details of the method
<an be found in Poljak (1978) and Zowe (1985). The following symmetrical form
wag suggested by Skokv (1974), and the notations are due to Zowe (1985).

Algorithm 2.7 (Space Dilatation Method).

Step 0: Given initial vector x4, initial matrix H,==al for some posifive «.

Step 1:  QCaleulate a vector g, € 3f ().

Step 2: Choose a step—size a,>0.

Step §: Bet 1
Tus1 =T — o g/ (g8 Hxgn )% (2.42)
Step 4:  Choose positive 7y, and B,; set
Hyqwot H
> ( H kGl L b 2.43
k1= Vil Ly — B ——5- ng‘?# ) ( )

Bet k=%+1 and go 130 Step 1.
1t is easy to see that H are all positive deﬁmte if 8;<1. One choice of a;, B,
and 7, was given by Shor (1977), where he chose constant parameters
1 2 T
n417 Pu= L (n?—1)
for all 4, where » is the dimension of the space. The following theorem is true;
more details can be found in Goffin (1981), Shor (1977) and Zowe (1985).
Theorem 2.8. Assums f(a) is conves, the set X* is nonempty and p(@, X*)<y.
The sequence generated by Algorithm 2.7 with (2. 44) satisfies
lim inf S —F" o (2.45)

N i g*

Ot (2,44}




80 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. &

where g has the value

1 1
g=n[1-2/(n+1)]% /(n*-1)% (2.46)
Many other space dilatation methods are discussed in Poljak (1978) and Shor
(1983 ). |
There are many extensions of the suweradient method, such as the finite

difference approximation method of Gupal (1977) and the ellipsoid method of Shor
(1977). For more details, see Lemarechal (1978a), Poljak (1978) and Zowe (198D).

§ 3. Cutting Plane Method

The cutting plane method for solving convex nptlm;zatlon problems was giver
b:sr Cheney and Goldstein (1959) and Kelley (1959) independently. The method is
congtrncted for finding the minimum value of & convex function f(z) in a
polyhedron 8. At each iteration, a new hyperplane is iniroduced to reduce the
polyhedron. AIl optimal points will remain in the new polyhedron, since no
optimal points can lie in the region that is cut away from the original polyhedron.

At the k-th iteration, the method requires solving the following linear programming
problem . :

min », 2&€RY, (3.1}

subject to # €8 and |
v f(w)+ o] (v—25), =1, 2, <, k. . (3.2)
Since f(x) is convex, we have | .
f(@)=sup sup [f(y) +y""(a= y)]. (3.3).

Hence the problem of minimizing f(m) in the region § is equivalent to solving
(3.1) subject to €S and

v=>f(y)+9" (@ —y) (3.4)
for all y €8 and g€8f(y). We can eagily see that the linear system (3.2) is a finite.
approximation to the infinite system (3.4).

A formal description of the algorithm is ag follows:

Algorithm 3.1 (The Cutting Plane Method).

Step 0: Given a polyhedron 8, o, €8S, set b=1.

Step 1: Compute ¢, €of ().

Step 2: Solve (8.1)—(8.2) giving vy.1 and @1,

Set k=k-+1 and go to Step 1.

The convergence theorem of the above algorithm states that

Theorem 3.2 (Cheney and Goldstein, 1959). Lei {3} and {w;,} be gemratad by
Algorithm 8.1. If f(») is conver and bounded below, then
1) vaup <> f;
2) every accumulation point of {z} is an optimal point of f(x) in 8.
The method behaves very badly when f{z) ig smooth, since in thig case Vf{a;)'
is very small for all large %, consequently (3.2) are similar gsystems for all large 4.
Another difficulty with the method is that the linear programming problem.
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(3.1)—(8.2) will have t0oo many constraints and the simplex matrices tend to
become gingular for large #. To the author’s knowledge, there has not been any
result about the rate of convergence of the method. Hence the cutting plane method
has never been in great favour, though it is the first method for solving general
convex optimization problems. However, it is thought that a fast rate of convergence

can be expected if the objective function f(z) satisfies |
|f(2) - f(a") |Zm|o—a®], forallz, (8.5)
for some pogitive congltant m -

§ 4. The Bundle Methods

The bundle methods are a class of descent methods for solving problem (1.1).
The sequence {a;} genera:hed by a bundle method has the property that f(zy.s) < f(a)
for all %.

A sub—class of bundle methods are cnnjuga.te a'ubgradlant methﬁds plonﬁered by
Wolfe (1975). At the k~th iteration, a set I,—{1, 2, «--, k} is defined, and a search
direction dy is chosen so that —d,, is the vector in tha convex hull of g,;{j & I;} whlch
has the lease 2-norm. That is,

- ; = — : . : : 4;1
dl'i Ex ‘WJE?# | ( )

where w; (jEI;) solve

i . 2 4.2
. min HER wgs| (4.2)
gabject to
an;—— w20, (4.3)
A 1111& search ig made to obtain a gtep-size a;. Define
Yps1 =g+ ouly, | (4.4)
and choose |
- P41 € OF (Ypi1)- | | (4.5)
The line search technigue requires that
Frs10p=> -milldnﬂﬂ, | (4-6)
where m, € (0, 1) is a constant independent of %, and either |
| Flyusr) <f(aw) —maoy|dp|® | (4.7)
( Armijo cﬂndiﬁon) , OT o
Jvpsr— ] <<mss (4.8)

(null step condition), where my € (0, m,) and ms € (0, 1) are const&nts, and g >0 is
a small positive number (Lemarechal, 1980).
The following algorithm, stated in Lemarechal (1980), is a modification of
Wolfe's (1975) original methed. |

Algorithm 4.1 (Conjugate Subgradient Method).

Stap 0: Choose z; ER", calenlate gy €0f ().

Choose 0<mg<mg<:%, 0<mg<<1, 8>>0 and n>0. Bet k=1, I,={1}.
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Step 1: Obtain d;, by solving (4.2)—(4.3). If [y <n then stop.
Step 2: - Find gy, of the form (4.4) such that (4.5) holds and either (4.7) or
(4.8) holds. '
Step 8: Bet Zy,1 =1y if (4.6) holds, otherwise 86t Ty41=Zs-
Step 4: Let Iy.a—I,U{k+1}T;, where T,={1, +-, k} is the set of indices such
that

Nyr—oxea|>8. (4.9)

Set k=%k-+1 and go to Step 1.

The following result is due to Wolfe (197B).

Theorem 4.2 (Wolfe, 1975). Assume f(=) is convew, and [f(x)| is bounded on
an open set that contains the st {z| (@) <f(®1)}. Let {w,} be the sequence gemerated by
Algorithm 4.1, If (=) is bounded below, then the algorithm stops afiter @ finite number
of iterations. |

If f(z) is & quadratic convex function, if the line searches are exact and if we
let Ip,1=1, U {k}, then the directions are mutually conjugate, and consequently the
algorithm finds an optimal point after at most n iterations. s o o

The bundle methods are a generalization of conjugate subgradient methods.
Instead of selecting a,set Iy at every iteration, bundle methods introduce nonnegative
weighted parameters af®(j=1, 2, ---, k). At the k-th iteration, bundle mefhods

[
compute dy= — ;f‘ w;g;, where w; (j=1, 2, -+, k) solve the problem

min| 3wl (4.10)

subject to ; _
E*w,=1, w0 (4.11)

and .
ﬁw,aﬁmcgs. (4.12)

It is easy to see that (4.10)—(4.12) is equivalent to (4.2)—(4.8) if we let
a®®=0 (j€I,) and aP=oco (j&Iy). The following implementation igs due to
Lemarechal (1980).

Algorithm 4.8 (Bundle Method).

Step 0: Choose z; ER”, caleulate g: €2f(21).

Choose O{mg-:imﬂfil-, 0<ma<1, >0 and n>0. Set k=1, ai’=1.

Step 1: Obtain d; by solving (4.10)—(4.12). If | «&;ﬁ then stop.
Step 2: Find yy,q of the form (4.4) such that (4.5) holds and either (4.7) or
F(Yue1) — anGer10n=>f (2x) —8 . (4.13)
(null step condition) holds.
If (4.7) holds then go to Step 4.
Step 3:  Set vy1=Yus1, Ghri =1, and
af*? =af’+ f(wn,1) — f (o) — ougi . (4.14)
- for j=1, 2, «+, k. Set k=k+1 and go fo Step 1.
Step 4: Set zy,1 =2 and af+ =a® (j=1, 2, «-, k).
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Let

@it = = f (En) = (Sf'hu) +ﬂk§b+1dn (4.15)

Set k=%-+1 and go to Step 1.

The convergence of the algorithm is stated as follows.

Theorem 4.4 (Lemarechal, 1978b). Under the conditions of Theorem 4.2, the
algorithm stops after a finite number of iterations. |

For other bundle methods, and the relation between bundle methods and other
methods, such as the cutting plane method and the steepest descent method, see
Lemarechal (1978a, 1978b, 1980), Lemarechal, Strodiot and Bibain (1981) and
Zowe (1985). |

§ 5. Trust Region Methods

- Trust region methods are methods that replace the original problem by an
eagy—fo-solve problem at every iteration. At each iteration a small region (normly
a ball or box with z;, being the center) is chosen, and the approximate problem is
solved within the region in order to obtain a trial stop. The small region at each
iteration is called # trust region, whose size is adjusted at every iteration. Normally,
a trust region "has the form {z||z— x| <4}, where 4, is called the trust region
bound. Bome tests are made to verify whether the trial step is “good”, for example,
t0 sce whether the objective function can be reduced, that is, flap+di) < f(z).
Bagically, if the trial step is “good”, then the trust region bound will not reduce and
we accept the trial step (by which we mean that x4 =x,+ dy); otherwise we reduce
the trust region bound and resolve the approximation problem.

The trust region method was introduced by Levenberg (1944) to solve nonlinear
least square problems. Levenberg’s method was rediscovered by Marquardt (1963).
For an overview of trust region methods for smooth ﬂphmlzatmn see Fletcher
(1980) and More (1982). | '

In this section, we consider trust region methods for solving the following
composite problem

min A(#(z)), (5.1)
where h(+) is a convex function defined on ‘R™ and is bonnded below, and

J(@)=(f1(2), fo(®),*+, fu(®))" is a mapping from R" to R™ and f,(2)(j=1, 2, -+, m)
are all confinuonsly differentiable functions on R*®.
At the k—th iteration, we let the approximation problem is

min $u(d)=A(F(@)+(Vf (@) d)+5 d*Bd, dRy,  (5.2)
subject to

where Am‘}o is the trust region bound at the t—th iteration. Let di be a solution of
(6.2)—(5.8) Then the ratio |

/?»(%) q-(’k(dh)



84 JOURNAL OF COMPUTATIONAL MATHEMATICS  Yol. 5

ig ealulated, Which plays an important role in edjusting tho trust egion bound for

the next iteration and in choosing the nexf iterate ..
Fletcher (1982a) first congidered trust region methods for solving the composiie
problem (5.1). The following algorithm is a meodification of Fletcher’'s (1982a)
model algorithm.
Algorithm 8.1 (Model Trust Region Algorithm).
Step 0: Given 7, €R", B1€ R,
Choose ¢,>0 (§=1, 2, 8, 4) that 0,<1<01 and ogsca<l.
Set £=1. |

Step 1: Solving (5.2)—(5.3), giving dy.
Calculate 74 by (B5.4).

Step 2: Set

o+ dy, if 1> 05
T (5.5)
L, otherwise,

and let 4 satisfy
{ [ldsl, min (614, 4)], if m=>>es
Fﬁk.i.j_c : N
[Ga ndjgu, G.;A];,], otherwise.

Step 8: Update By, set k=F%-+1 and go to Step 1.

The following convergence result was given by Fletcher (1981).

Theorem 5.2 (Fletcher, 1981). Let {2} be generated by Algorithm B.1 with B,
uni formly boundsd. Then {x} 8 not bounded awaey from sﬁa_ﬁlmry points of problem
(6.1). | -

The above theorem is still true if we replace the boundedness of B, by some
conditions that can be normally satisfied by a certain updating formula and that
cannot imply the houndedness explicitly. One can prove that the following result
is valid: | _ "
Theorem 5.8 (Yuan, 1986a). Theorem 0.2 s still true if we seplace the
boundedness of { By} by either | -

(5.6}

E 3

| By <05+ Cs E 4, (B.7)
for all &, or by
UB];“‘@\:GT"}" OgJTI? (5.8)

for all k, where ¢; (§=b, 6, T, 8) are any given positive constants.

The rate of convergence of Algorithm 5.1 has been studied by many. authors,
including Powell and Yuan (1984) and Womersley (1985).

Assumption D.4.

1) ap—z”, -

2) The second order sufficiency condition holds, that is,

d*W d>0 (5.9)
for all d satisfying P*d=0, where P* is a projector from R to the null space of

(A(a") and where W* is the matrix ﬁ NVRf(a*) snd Aj(j=1, -+, m) satis(y
gnwf(m*)-o.
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Under eerm:ncéonditions, inclnding Assumption 5.4 one can prove
Theorem §.86 (Powell and Yuan, 1984, Womersley, 1985). =, converges fo z°

Q-superbinearly (Oriega and Rheinbold, 1970), if and only if

lim A2 (W —Bo)du| ¢ (5.10)
k-+oo | |
and the trust region bound is ineciive for all large k.

Unfortunately, it is not always true for the inactive trust region bound.
Actually, by congtructing a minimax problem, Yuan (1984) showed that it is not
possible to prove a superlinear convergence result for Algorithm 5.1.

One way of improving the rate of convergence is due to Fletcher (1982b), A
gocond order correction method proposed by Fleicher (19821) is stated below:
Algorithm 8.6 (Fletcher, 1982h).
Step 0: Given x; €ER", B; CR™™".
Choose ¢;,>>0 (j=1, 2, 3, 4) that cs<1<Ces and o3<e, <1,
Set k=1.
Step 1: Solving (5.2)—(b.8), giving d.
Calculate 5, by (5.4). If a';,>0 75 then go to Step 7
Step 2: Solve

" min Py d) =Pp(dy+d) +A( f (ox+di) + Aidy)

—h( f(ap) + A% [dutd] ), (5.11)
subject to | |
| dyt-2 | < g (5.12)
Let dy, be a solution of (5.11)— (5 12).
Define
7O =, |- th(0) — 1l (d) (6.13)

¢ (0) — dr(de)
If r,<0.26 then go to Step 4.
Step 3: If rP€[0.9, 1.1], set 41=24 and go to Step 0.
- Otherwigse go to Step 8.
Step 4: If r® € [0.75, 1.25] go to Step b.
E‘Vﬂ,lua.te the ratio

_A(fle) —h(fmr it dD) -
: r _f ‘i’k(ﬁ) ';bh(d’k) | | (5'14)
| Aﬁlgﬂ dﬁ dk"l' db: T ='rk '
I er,>T7.5gotoStep 7..
 If 1,>0.2b go 1o Step 8.
- Step B:  Bet dyya=a|daf, m&[0.1, 0.5].
~ If >0 then go to Step 9.
Step 6: @3, =a3, go 0 Step 10,
Step T:  If |di] < 4y then go to Step 8.
' If 'P;,;>0.9 then .._d;;.'.i: =41, olse ﬂy+;=2/‘.‘h.
Go to Step 9.

Niep 8: "i’ls+:!,.z= .
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Step 9:  Set 2,1 =2+ dj,.

Step 10: Generate By,4, set £=%-+1 and go to Step 1.

The convergence of the method can be proved similarly to Theorem 5.2. For
more details, see Flefcher (1982h).

The guperlinear convergence of Algorithm 5.6 was proved by Yuan (1985b).
We state the result as follows.

Theorem 8.7 (Yuan, 1985b). I f the function h(f) is a polyhedral convew
fwnctm, o f the gradients f,{m Y(j=1, 2, -, m) are linearly independent, i f the first and.
second, order sufficiency condition holds, and if x—2" and \p—>A(z"), then Algorithm
5.6 converges to z* Q—supeq'hnmly, ¢f By tends to the Hessian of the Lagrangian at the
solution.

We believe the above theorem holds for any general convex function, but we:
have not produced a sound proof for our conjecture.

Trust region methods for composite optimization problems are also studied by
many other authors, inclunding Burke (1985), where convergence properfies of a
clags of methods are analyzed. |

An obvious difficulty for the methods dlScHESBd in this section is how #o solve
the sub—problem (5.2)—(5.3). Since the objective function in (5.2) is the sum of
a convex function. anfl a quadratic function, we still nesed to apply some other
methods for nonsmooth optimization to solve (5.2)—(5.3), if A(-) is a general
convex function. However, if A(+) is a polyhedral convex function, we can rewrite
(5.2) into a linearly constrained guadratic optimization problem.
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