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§ 1. lntroductmn

| 'I‘he Balratow method ig & well—known iteration for datermmmg a real quadratm
fautor af 8 polynomm.l with real meﬁments

F(m) gm;mﬂ“. = B (1)

'I'he method gstemmed from applying the Newton method *I;o a system of equations
with two variables. Its adva.nta.ges are that the computational program is simple and
that the convergenoce-is quadratlﬂ if there are only smpla roots or real double roots
in the polynomial (gee [1]).

In designing filters the compuiational accuracy is an mporlnnt problem. In
computbstions we have to find all quadratio factors of the “product polynomial”

F@)=P)+K-Q), (2)
where P(z), Q(2) take the form

;Iji (z—7) I (3)
OT

II(:B — QT — Vsa) (4)

and K, ;, ¥4, %a are real numbers (see [2]) In general, the polynomial (2) is
transformed into the form (1). When a quadratic factor has been found by the
Bairstow method, the polynomial is divided by the factor and the iferation is
confinued with the quotient polynomial. In this way, all quadratic factors can be
found (see [8]). However, in the transformation of (2) into (1) and in the
deflation there are acoumulstions of rounding errors in the ooefficients of the
polynomial, Wilkinson™’ showed that for the polynomial with olustered roots very
small perturbations in coefficients will make comparatively large errors in the roots.
The polynomials mentioned in the design of filters are just so. To avoid the
acoumulation of errors in deflation we can make purification ad given in (4}, i.e. we
can use the factors obtained by deflation as initial approximations for iteration in the
original polynomial (1). However, numerical practice shows that there is a danger
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in purification. Although a facl:er obtained by deﬂetmn ig’ cloger 10 some facter of
(1), the iteration may converge to another factor. Thus, some of the faebers obtained
in purification may be repeated or be a new combination of factors and the others:
disappear. If we use parallel iteration to find all factors of a polynomial
simnlteneously, then the deflation ig not necessary and the danger may be avoided:
(see examples in Seotlon 5) Moreover, that iterafion is suilable for vector
computers.

- In this paper, from the wewpom'b of linear mterpelatlen we give a general rule
for constructing a method finding quadratio factors of a polynomial, from which the |
Bairstow method may be derived and a family of parallel iterations for finding all
‘quadratio factors of a polynomial simultaneously is given too. The latter method is
applicable in principle to -811 polynomials: given in any form, provided that their
linear interpolation polynomials can be computed in certain ways. In partioular, if
we apply it directly to,(2), the computational program is still simple. We show that
its convergence is of erder ¢-+1 and displays good behavior. For comparison, some
gimple numerieal exemples are presented

5 2. The Linear Interpo_lai;iom for Pu.lyne{mia]s
g and Rational Functions

We denote by R* the real n—-dimensional space. Let P be a set of polynemlals
with real coeflicients, P*={ f&P| the degree of f is not greater than n}, {f/g|
f, gEP}. For &= (w1, ug)™ €R®, we write -

QM L, iy ' (5)

and denote by | |
| L{fy=L(f; u, ¢; o) =L(f; 8, ¢) (z—c)+1:(f; ©, 0) (6)
the linear interpolation polynomial for f&F with nodes e, s, where a, @y are the
roots of Q(u, ) and ¢€R! is a number independent of f. L(f) is determined
uniquely in spite of o, but a suitable choice of ¢ may reduce the computations (see
below). In this section we consider the computation of such linear interpolations for
the polynomials given by (1) or (2) and for the rational functions.
It is elear thas finding L (f) is equivalent to finding -

* l(f) '=l(f: U, G)= (L(S; 6, c), la(f; 4, ﬂ))r' (7)
Clearly, : g
T {L(af+bg) —aL(DHBE@, g
- 1(af-+bg) =al(f)+8(9), Vo, LR, £, g€F,

L(Q(ll), u, o; 2)=0, e s T (9)
- lQw);'w, o) =10, K )
For any ©= (94, %)"GR’ S
Q('-" ﬂ’)"ﬂ”—wv—‘ﬁa"Q(“ w)+(!&-®1)ﬁ+ua—
| Therefere-.* Y G e e el el AR e e 00 e e P Tl
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{L(Q(’U) u, c; fﬂ) (th—'vi) (z— o) +ta— 'vs—}-ﬂ(m—mi), b _.(-16)
I(Q(v)," o) (u':l.""vi;u'ﬂ ‘U.-z‘i'ﬂ(u:l )% - P
Thus, from |

L(fg; u, c; )= L(L(f) - L(g)) .
= L(L(f) (a— c)+1a(f)][lu(g)(m—c)-l-ln(y)]) |
=L () (g) L(a®—2cm+6*) + [T (f)la(g) +Is(Fla(g)] (w—c) +1a(fla(g)
= [(ur— zﬂ)zl(f)‘i"'a(f)ﬂi(ﬂ)+l1(f)zﬂ(9)}(m_0) | -
| +(ws+um oa)h(f)h(g)ﬂn(f)ls(y) |

Waaeathat | | §
. - Ufgiw, 0)= = A(f; u, O)U(f; 4, o:), T )
where | ' -
(1 — 20)11(3'," ﬂ)+la(f,u 0) l1(}" @, o) |
athiw 0= i i c>) .
Using " - o
Fla) =b(f)(@—0c)+la(f), @=1, 2, h=o0y+ay U= — 00,
we can easily verify thaj
) det A( f; @, 0) =f (o) f(aa). (13)
Hﬂnﬂe, if g(as) g (as) #0, applying (11) to f=g(f/g), We have |
| U f/g; u, 0)=A(g; 4, 0)"(f; 4, 0). (14)

Thus it is not difficult to compute the linear interpolations for the rational funotions
by using that for the polynomials. Using (8) and (11) we can conveniently compute
the linear interpolations for the polynomials with form (1) or (2). o B

~ If FEPY is given by (1), writing Fo(w) =ao, Fi(z) = a:F;.i(m)-l-a;, §= 1 , N
_ :a;nd chonamg 0=1Uj, WO have I(a: o, )= (1, u)¥,

Az; u, ui) (0 1).

- I(Fo)=(0, @o)",
I(F,) ==A(m, u, u)l(Fi 1)+ (0, a)
-(IH(FI—:E); Gi"l‘uizn(Fi-i)'l'UaIﬂ(Fi-n)) ,' 'au=1 seen, N.
Let b;=12(F). We have

.Algorwthm A Ecgmﬂ“ u, ui) (bx_i, by)" WhEI‘B b,a.re inen by recursion

From (8) and (il), we obtain

{b-1=0 bﬂ"aﬂl sl o |
i 5 b;nﬂ;+mb;.1+uab;.g,_ .’J 1 }V;) s 1‘
IfGEPisgiven by . ,,.__.”,,

t i .-.--!'f {\ -"

. G(=) “‘ﬂoﬂﬂi(ﬂ’)a GE e ey
wnting Gﬂ(m) = o, Gi(m) =y;(m)G.._1(m), p=1, +ov, 0, thﬂn fIDIII. (11) wo have, .

L
Ty S
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Algorithm B. l(cm ili[lgi(m);h u, o) =1, i given by recursion

{zﬂ= (O: ao)r? '
| l;=A(g;; u, G)z;.-:l, §=1, «*, .

- In particular, if G(») is a polynomial of form (3) or (4), then the
corresponding ¢;(@) are &—r; or 2" — Vu%— Vs, tespeotively. From (8) and (10), the
corresponding L(g; #, o) are (1, o—r)% or (ua— %, Ua— Via+oltls — 2a)) ", respectively.
Then we place them into (12) 1o obtain A(gs; %, ¢). From (12) we see that we may
choose 0=0, 11/2 or ¥y in order to reduce the computations in the recursion. If the
roots @y, o 0f @® —uyw—uy are real numbers, then we may also choose c=ay Or ¢=0xs.
Some A(gy 8, 0), corresponding to 0=0, Or ¢=gy, are listed in Table 1. -

o e

Table 1 The forms of partial 4(gg; u, o)

r 8¢ Qv
. | (ﬂi—ﬂ. 1) | '.I | (u:(ui—wﬂwa—vn mfvn)
thy — Ty thy (th—vg) iy — V3
| | _
. & (aa'—-n 1 ) (da(ﬂi“ﬂd.)+“s“ﬂﬂ “—~ M)
| 0 o (thy — V) +tip—

§ 3. Linear Intefpolation and Splitting Factors of Polynomials

It is clear that L(f: 1, 0) =1(f; &, ) —¢(0, L(f; 4, 0))”. Therefore, we always
suppose ¢ =0 in the following and write
L(f; u; ) =L(f; 8, 6; 2), I(f; u)=U(f; 8, 0), A(f;u)=A(f; u,0).
Suppose Pi=(od, Ps)*ER?, Q(P) =Q(P, ®) =0"—puw—po i8 the i—th factor
of F(z): | |
F (%) =Q(p, #) F(®). S €
If v, = (wa, a)T €R? is an approximation of p, and ay, o are the roobs of Q(u;, =) =
o — Uy &~ gy, Fi(ow) Fi(oa) %0, then we obtain from (10) 2(Q({ p.); ©;) =u—p;. But
Qp)=F@)/Fe), 0 e
o p=u—l(F/F; w). | (16)
If an approximate polynomial G(z) of F(z) can be given in one way Or another,
G ()G (og) %0, and if L(F; ;) and I(G; &) can be computed by some gchemes,
‘then we obtain from (16) and (14) a new approximation of p;
- o e U/ )~ A w)UF W), (D)
For example; -if 7 (o) is given by (1), compering the coefficients, we see that
for any ﬂm(m_;lh)’ER’, ' ,"-::"_z.: e ,L_:i;. : SRR g B E e L T
- F (2) = (w’—uim_.u,)-(;(m)q_,b;_,J(m__ui),l_b iij-:' BRI T Fkc Y
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where G(z) =I§ b =34, by (§==0, :i_, e+, N) are determined by Algorithm A. If @

is a good approximation of p,, then by.s, by are close to 0, and we may approximate
Fw) by G(z) in (15) and I(G; 1) can be again obtained by Algorithm A. This is
just the Bairstow method.

- In the following we suppose that ¥ € R™ (otharwwe we oons:der xF (o) instead
of .F(m)) Then there are p;= (pu, pﬂ)"ER“ 4=1, «++, n, such that

F(@) =ao [[ QP »)=a II (w"-*Pum“Pm) Q(Pu W)F:(ﬂ)
- Q( P, m)-aoIIQ(P:, m) -8y

Except when otherwise staled we alwa.}'a suppose that parameter g is a natural
number, and that subseripis ¢, 4, & a.re_eva.lmte_d 1, 2, .-, nin order; and we denofe
by m=0, 1, --- the numbers of iteration steps and by =1, -, g the numbers of

substeps from m~th to (m+1)-th step. Let u(m+ 5 bo the (m +—'[f-—!'-)-—th approx-
imation of p,. To oblain the (m +&) —th of p,, we approx]mate 7y (m) (15) by

—1

G:(H+L)(w)=aoIIQ(u; T, 8. (19)
Then 2(G@{™**7); &) and A(@\™"T);
B. 'Therefore we have
Parallel Tteration P(q)

(""‘ﬁ) ,“MJ_I(F/G(M-E:}-) utn)) ., 2

ui) can be ea.s:lly computed by Algorithm.

-1 | _
-ﬁﬂ?‘} — A(Gi(“'l"&i_); ﬂfﬂl}) -1:(1}'; n}ﬂﬂ)j m=ﬁj 1’ T F"=1.'l eee, g, (20).

. § 4. The Convergengé of Parallel Iteration P (g)

For u= (1, u2)T ER® we write

o] = o]

Fu:st *;va prove two lemmag, o
Lammal Suppose that u, u,, v.ER ju—0,| <3, i=1, -, %

. _ n(m) ==l=:[I Q(uh ﬂ:), “(!E) ]__.[ Q(vh m)

. |z(U F.? u)ﬂ=0(8) o Bl g 5 (21)
.- . Proof. By (8),. (10) , 4@ (u,) —QW®); u)=v—u, (21l holds olearly when.
‘n.u1 If (21) holds for a—1, from (8), (11) and di i B

v Ua=Va={Q(8s) —-Q(v))U._aq-Q(v.) (U...r—l?'-:)

Wo Ses tha.t (21) bolds also. Lemma 1 ig proved. i
- Lemma 2. If FEP*, ER, d=1, s, 0, 3hon .. 7
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THIFEITH i

F(@) =B L(F/G; us )Gy(@) +ao [l QU o), = (22)
where a, ¢s the cosfficient of o™, G,(a;) = @y ;],;;Ij Q{uy, ). | |

Proof. We denote by Lg,_s(z) the first sum in (22). It is clear that Ly, ;€
Pa-1 Fyrom (9) weo seo that L(@,; u;; ) =0, j+%4¢. Therefore we obtain from (8)

. L(Lm-:l: ﬂi; ) '=L(L (F/Gy) L(G,)).
Since L(F; u; ©) = L{L(F/G) Q) = L(L(F/G)-L(G)), so -
Lign1(0s) = L(Lina-2; 8;;. 045) = L(F; th; ay) ~=F(ay), j=1, 2;é=1, -, n,

where ag, oy denote again the roots of Q(&;, ). Using the uniqueness of the
interpolation polypomisal if 2n points ay are different from each other, otherwise
using also the continuity of this polynomial with respect to the nodes, we see that
Ligy-1{@) is the interpolation polynomial of degree 2n—1 for ¥ (z) with nodes «;.
Then (22) is obtained by the Lagranige interpolation formula. Lemma 2 is proved.
Theorem 1. If the voois of Q(py; o) are different from those of Q( Py ), j#4,

then starting from switable approzimations u® of P, the parallel iteration P(g) ds
convergent with order g+1,

Ty q

Pq*ao f. Let 3"~ ﬂ) = 1131&::: A iy p./| and let &, = #{™ in (16). Subtmt—
b ;
ing (16) frém (20) and writing G;——G;(m i , we obtain from (8), (11), (14)

u;( &) —p=l(F/F—F /G uE""—")

( (F/Fy) éﬁi-ﬂ) ,,w) ” A(G u™)LA(F/F u™)I(G—Fy ui™). (28)

Using (16), (12) and Lemma 1, we have
I(F/F; ui™) =u™—p,
|A(F/F;; um) | =0, (24)

(mq-..ﬂ

1@~ F;; uim)| =0\ T)), (26)
According to the condition of. the theorem and (13), A(F; p,) is invertible and

,:&-—1
there is & number 8 € R! such that [ A(F; p,) | <B. Clearly, if §™—0, 3( | )-—}0
then A(G; u{™)—=>A(F; p;). Therefore, by the perturbation lemima (see [6]),
A(G u{™) is invertible f0o and there is a number 8; €R’ such that |A(G:; ™) ]

«<pB;. Then (™ +“)—p,ﬂ=O(S(M+L)8‘m}) from (23)—(25). Thus, by wusing

. mithematical induction for p we have
| 5(™+7) ;O((Scmj)nﬁ)? P
In partfioular, S O( (&"‘*)4“"1) TlLe theorem is proved.
From (20), (19) and (18) we see that a necessary condition to ensure that the
iteration P(g) can proceed is that the initial approximaiions 4(® are ohosen such that

the roots of Q(uj”, &) are dlﬁ'arent fmm tho&a of Q(uf“’ z), j%é. Henoe, we choose
genera]ly i . |
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o =i (1P V=L, i1, k=1, 2,

' * 2 -

(4~ (42"
It seems tha.t fow faalureﬂ appear in numerical practice for iteration P(1), starting
from such initial a.pproxlma.twns The following theorem shows that the arithmatio
mean of all 2n roots of the approximate quadratio factors oblained after one iteration
P(1) is equal to that of exact factors, no matter how we choose u{®, This provideq

an explanation for the above phenomenon in a sense..:.
Theorem 2. No matier how we o]wosa the mtmal c&mommtms uf“’ the

equation

i.e.,

S0 Sipum—aifae, m=0,l @8)

holds for parailel éteration P{q).
Proof. Ieb p=11in (20). We obtain

l(F/Gt(m) “(n)) - ll("') w u(!l‘fr)

»
and .

L(F]G™; ul™; o) = (u?’—u&“+%))¢+ug"—u,gm+%).
Substitating L(F/G; u{™; o) into Lemma 2, we have

P (@) = a0 S0 —uS™ D)o+ (i — uf™ )] [~ uips—ui?)

T e

Comparing the coetficients of 2™ in (27) with those in (18) and (1), we obtain
(28). The theorem is proved.

§ 5. Numerical Examples

_ The pumerical resulis in finding in four Ways all qua.d.mha factors Q(p; =) (i=
1, 2, 8) uf the polynomal -

F(@)=1I (m—-r;,) - _ (28)

are ha‘ted in Table 2. The ways (I), (I), (III) Btarli from - the same mma.]
approximations uE“} and all 11;erahonﬂ are Btt)pped when
(m+1)

3;, QQOOOOl 5—1233 -1, 2, :

whem i . 2 G : '.r'...". -e‘

e { Im&“""”l-ﬂ?
= 1, |ul?|>1
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Table 2 The numerieal results In finding all quadratic factors of f[i(m:—'- r;) In fonr ways
__ (I) . @D (I | S awm
P(1) is applied (28) is transformed into (1){ (38) is transformed into | The results of (II1) are
divectly to (28). | and P(1) isapplied to (1).| (1). Bairstow method is | -purified in (1).
y | applied to (1) and. is -
continned with deflating |
polynomial.
ml Roots of Zui™, z) ml Boots of @{ui™, 2)* I Roots of @{uf™, ) ml Roots of @ {ul™, z)
rat 1.0, 2.0, 8.0, 8.0, 2.0, 1.0 %P =0.990y, 4P =1.01py
1{ (0.9996548{1.000345 | 0.9939114! 1.001095 | 8 | 0.9999931-+0,0016009374 1 | 0.9994584 | 1.000545
41512.000000 2,000000 1.999985--0,0067658344| 8 | 1.9999514-0.007 4 8 [1.909997 +0.0035210464
8| [2.098618 [3.001380 | |8.000066:£0.007751225%| 1 | 8.000056:£0. 00805204045 | 2.995190 |3 004758
| r,: 0,11, 0.12, 0.18, 0.14, 0.15, 0.16 u?”-(:f 0/2)9-—1)1
1] 10.1899998)0. 1400009 |0.1458043-0. 002017304279 0.1100322 | 0.1605745 f14 0.1097232 | 0.1610188
2 (2800.130000300,129909812450.1196649 | 0,1308117 | 28] 0.120899 | 0.1464660 [B4) 0.1097183 | 0.1611020
8| 10.110000010.1599999) [0.1102714 |0.1598955 | 1)0.1283793 | 0. 1441531 0.1103406 0.1598999

Then we aﬂnﬂp’ﬁ u™ as p;. For ﬁompanson with the exact roots of Q(p, w) , the
results listed in the fable are the roots of R(u{™*Y, z). The computations were
completed on & microcomputer COROMEMOCO.

{1}
[2]
[3]
(4]

[5]
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