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MULTIGRID METHOD FOR ELASTICITY PROBLEMS'
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§ 1. Introductlon

The mulh.gnd msthod is a fas’s 1tera.t1va method developed durmg the sixties
for solving elliptio partial differential equations with boundary value condition. Itg
difference irom other iteration methods is that the convergence rate is independent.
of the grid size 2, a.nd the operating amount for’ obtalmng the approximate solutions
with the same accuracy is O(N) where N is the number of the unknowns in
equations, Sinoce the seventies the MG method has been widely used in many other
problems successfully, including some elliplic varialional inequalities, whose
physical baakgrﬂund sincludes some fluid flow through porous medium, and the
water cone problem of an oil well™® %, This paper disousses how the MG method is
used in some elastic mechanical problemﬂ, mcludlng general two- or three—
dimensional elasticity problems and a type of variational inequality of elasticity
problems, whose physical background is elastic-rigid and elastio-elastic contact.
problems without friction. - We will prove the oonverganﬁe of the method and give

some numerical examples. |
We would like to thank Zhnu Shu-zi for his helpful dmousamn and suggeﬂtlon..

§ 2. Mathematical Problems and MG Method

Consider an elastic body Q and a rigid body @, and suppose that o= (x4, @s, 23)
is a set of Cartesian coordinates of a point in the space, u(a)=(uy(®), u(s), ua(2))
is its displacement funoction, sy, oy are tensors of strain and stress respectively, f==
( f1, fa, fo) i8 a vector of the body force, p= (11, pa, ps) i8 a vecitor of the surface.
force, the boundary of Q, 8Q=I"yUI . UL,. On I', and I, displacements and surface.
forces are prescribed respectively. I, is the boundary where £ and £2; are contacting--
or will contact. 8o I'; is unknown in the problem and is assumed to be a smooth
surface. = (ny, ng, %) i & unit external normal vector of 22. Now we consider:
two types of problems: (I) linear problems, (II) nonlinear problems.

Problem (1.I). Finda d.wplaﬁement function u(z), salisfying the followmg-

relations: o
(3!& - By ; ¢ (2.1).

ey (H») = 85(u) ==

(W) = u(8) = g;m(u)_amm(u), (2.2).
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Curbfim0, 0€0, 4 =123 . . (2.8
cuy=p, € I'y, - y | = 8 (2.4)
ui—';f'h o€ Ly, - (2. 5)

where &§;; is Kroneckar g symbnl and A, w are two constants which are agsumed 10
s&tmfy A>0, w>>0. Conventionally, repeated subsonpt é denotes summation for ¢=
Problem (11. 1) Find a displacement vector u{w) and 1;]15 contact bounda.ry

I, satisfying (2.1)-—(2.5) and relations: 3 | ’ e
W"I_—sgﬂ o n'go

Op* (uini_" S) ={) i
where g is the initial gap betweﬁn Q and 24, T ig nﬂrmal stress

Go= oy, | (2.7)
We deﬁna the funotion space H and its'convex subset K ', |
Hﬂ{u=(u'1: u’ﬁ: uﬂ‘)lmeﬂi(g)r t&ﬂu-h ‘.’b‘GFﬂ 2w | (2-8)
K= {t&EH wy— 80, mGF,,} - (2.9)
The norm in H is | - -
N : i 1/3. |
. : | ﬂ im{j' (wﬂ}i"l" ‘U{.,j'u{. j)dﬂ? } - (2.10)
Pefine a bl—hnear functional and a linear functional ag follows: ' |
| | II(H ‘!.?) '='J. C'-"u(ﬂ) B“(‘U)dﬂi ; (2.11)
f(‘l?) I f;‘Ui dz +I _’pﬂh ds. - . (2 .12)

According to the Korn inequallty, a(u, *u) is H —mermve, i.e. there exists a>0
such tha-.t
a(u, v)>aloli, VoE€H. (2.13)
Problems (1.1), (II. 1) have tha f ollowing equivalant varlatmna.l problems‘-“*
Problem (I 2)

{ Fmd uC H such that (2.10)
a(¥, v} = f(v), WGH. '
Problem (1.3). ¢ " s
| | { Find u€ H such thab a4
J (u) QJ(-::), Ve€H, *
where ..T (v) = 5 a.(q;, v) — F(v). T
Problem (11.2). g .
e | {Fmd wCK smzh that (216)
a(x, —u) E#f(v u«), WGK' "R
Problem:(IL.3). - . kg
F‘md uEK Euoh tha.t (2.17)

I (u) <J (v), *qﬂgz, * s
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By the general finite element mathod the problems a.bova have the follnwmg

discrete forms respectively:
Problem (1.4).

(T ¥ guchthat - . .
{FmduER. = » (2.18)
Jr(w)y<Jx(u), YvER?, | .

where J H(-v) —— uTA*u-—v” F, A4 is a coefficient ‘matrix (sﬁ{’t‘ness matriz). From

(2.12); (2. 13) y A ig symmetrmal and positive definite, ¥ iz a vector of eqmvﬂlﬂnt-
HOd.E fﬂrﬂa, U= (01? Wg, e vﬂ) Whﬁm _ﬂhg (ﬁirii 'Uﬁnﬁj 'vluﬂ)

- Problem (I1.4). Yo |
Find u€ K¥ h that
{ ind y € K~ suc at (2.19Y

Jg(u) QJE(‘U), V‘U GKN

where K¥ = {v=(v4, vq, ** * Ux) |‘1’#‘= (%51, Yu9s Vx38), (Vs i)?h 3%0 on I'u}

We introduce a loecal cuordmata system (74, vs, ), Where 7y ig the unit out~
ward normal on I',,  and %y, 7, are tangent vectors. (7, ¥a, 73) forms a right hand
EYS'BBIE. Eow @ ..: it
In this system, the displacement vector v = (v;, v, vs) i8 changed to v=(v1, Vs,
v3) where vg=om,, n, being the direct confine of v;: Thus, the restrictive condition
v — 8<0 is changed 10 D3<<s. ‘At other nodes, which are not on I",, we still use the
global system. To simplify the symbols, we retain the original symbols: 4; v, F. We
denote I, as the numbers of the nurmal mmpenents of the nodes on I, i.e.

a™ {351: 3‘52: 3%}: D 6 I‘

SﬁK”ﬁ&nbewﬁttenas

EH_{”“'('UI: ") ‘”H) li’hnﬁgh 31561#} o ,-(2'20)

Apparently K¥ is'a convex ‘gubset in RY. PR et Rl R T S
Let & .

o™ (1?{;:3} F’iliﬂj *%%s vlﬂﬂ)l o 3%61-# sy " o (2 21‘\

From the Ku.hn—Tnoker theomm“"’, problem (II 4) has the follomng equwa.lenb
form, the so called linear complemeniary problam, whose solution is unique:
Problem (11.5). e : ,
Fmd UEK ¥ such that
AU—-F=0;:. - i
‘Uﬂ}‘ﬂ, 3 WS o e 3 | ) (2‘22)
UE‘(AU'—F)Q-O, o : ¢ =
Uln3,

where S— (31, 83, °**, sl):' (AU*F)EH{(AU_F)‘“H, - -(_A_U_F)‘I'IE}TI %HEI&-
Problems (II 5) § (II 6) can be solved by ug;mg ‘lihE PSOR method“ 71

uﬁi+1)_u§1')+__(f‘_,g EMI:-I-I)__’Z Gﬁu{k))’ %ﬂ,l ers 3N,

max{s,, %! 17‘},, if'iGI., {

(2.28)
uf* D o {
51:+1)’ others
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The algorithm is convergent for 0-<w<:2. - .
For linear problem (I), take uf*P =#{*V, j=1 . 2, ..., 8N. The PSOR method
then becomes a general SOR method. < -
MG Method.
We select a sequence of rheshsize ho>k1:> » > Rgpey > the related forrids are
G.;.C:Git: - qm_;;C:G Generally, we let
h:“'%" fig g ve v %

and N, ig the number of the nﬂdea of gnd G4, U is the dlsplacement vector on G‘;,
U} is a normal component on ounta,ct surface Iy, I} is the subset of I, ﬁorresponding
to g'rid G (Ir=1,), and @, is the coarsest grid.

Wa use the FAS scheme™®, On @,,, we solve problem (P

A U . F‘"?O
U::n. ;3 ‘Slm, ‘.' : | i
(Ur—8™)T (A"~ F™),=0,
UP = on G..l'].l".,,

where d,— A4, F*=F, §"=§, U"=U,

Deﬁne a Pegiriclive upera.tor In™" and an mterpola.tion operator I :-1

I“”""‘1 G‘(Q..) —>G (0 1),
{Iﬂ:—i G(Q-:l)—ﬁ(ﬂn ’

where G(Qm) is the linear space of all grid funoctions on 2,,. Bnppose tha.t u™ is an
approximate solution of (P,). Let v™=U*—u". Then o™ safisfies

Ap"™ =™ — A ™= R™
(u“'——w“).‘,}ﬁ"" - |
(U™ +0"— §™)F (Auv™— R}, =0,
¢™=0 on G‘..,ﬂT

On the coarser grid G'y.y, We s0lve problem (Pm—:l.)

| Ay 9™ 1> I071R"

.r ) (I >, '
| (o™ i+ Ir=1ym™ — 8™ 7 (Am-1 q:"""-I""R").,—O
g™ 1=0 on G,NT,.

(@20

(2. 25)a

¢

(2.26)

(2.27)

Let - :
| um-—:.l HI—I +1‘m—1u!l : \ ) ! | (2_28)
Then u? gatisfles ST L
.A.n.ﬂ&m—i;:‘-*Fn*i,
, f-(w%:t);},gm.-ii e
(™1 =877 (Am-att™ 1~ B 1) =),
=t on GuNT,, o

- (2.29)

where
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= st
Al . . — - " !

_F““‘ I (F = Agt™) 4 Aa (T2 "),

y= (I )T Anln-1, | (2.30)
S“-inr*"*is'* ' =,
After solving u™3, we obtain a coarse-grid correction |
| u™; ™ I7 o (u™t— I ™). (2.81)

As to the smoothing steps, we can use the PSOR mothod (2. 23) The other part of
the algorithm is the same as for general elliptic partial differential equations (cf.
[1]). The caloulating steps run as follows:

s Stn.rbing from I=-m, given ub?, perform the PSOR iteration v times

u' —PSOR’-"(A,, F, u*“) | (2_.32)
—— Qompute the defeci |
i II 1( o Aﬁﬂl )-

~—— Compute an approximate solutmn w1 by solvmg problem (Pri)r>1 times
wﬂh the initial ‘va.lﬂe

w40 = Tyl | | (2.33)

(when =0, solve problem (P,) exactly).
—— Interpolate and cerrect until L=m

whr: eI}y (= T ). " (2.34)

This is one M@ iterative cycle and u™* will be the inifial value of the next oycle.
The flow-chart is shown in Fig. 1.

l igmiO, § ' l

c(l): -0 lm=], : 1
limmm, 4 -u’“rﬂtf .F‘ -F”'
¥

oyt wm PEORY B
L_G(I;Eécl}+i‘} (2.28)

!

AT — a8 4 e (T
' AHi(irt l)fmrt-f" @. aoil

| Solve (Pn) exactly I
-II-E-;-[(-J. P (2 31) c(l)
| | I2m _ |

[T

'——_ u--“-';+l;u‘ I

Fig. 1 Flow-chart for one multigrid cyalo
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Remark 1. In order to ensure (u™),=8" in (2.81), we can use'a restrictive
condition (u™*),=>8""1 instead of (u™1),>8"2 in (2. 29) , Where

§n = {07}, o7 = (IR ) o+ max{s] —uf, SP—ulY, 6, j€L, (2.29)

44> 1)

(Im-iu')! -$ Gyslly, n.‘:ﬁ>0: 2 Bgy= : A

Or use a more restrictive condition (w““i)ﬁ} S™1 -where |
| . 87 Lo (Im1ym),, (2.29b)
1t is eagy to verify that (2.29a),.(2.29b) can both ensure
(U)ot = (W™ + Iy (™t — In ™)) ;= 8,

But, calculation shows that the convergence is the begt when we use the restrictive
condition (u¢™ 1), =81,

‘Remark 2. ' [38] proposed a Blightly dlﬁerent algnnthm , in which two rules
are given to decide whether we should go t0 a coarser grid or return to a finer from

the coarser grid. The practice .of caloulations shows the effects of these two
algorithms are almost the same. -

) § 3. The Convergéncy of tﬁe Algorithm

We will prove the convergency of the algdrithm in this section. We use u™ 97
to represent the initial value of the (j+1)-th cycle on grid @,. When j=0 let
u™»%=0, gtarting with ¥™%!, After doing one cycla showed in Fig. 1, we evaluate

u™ I m P (™ %9), From the algorithm in § 2, ‘we know &, (u) is a  continuous
function of ». Thus (2.81), (2.88) can be respectively written as

U0 I g nd L T (=101 TETgumed)
umh =Ty 11, 2, e, m,  §=0,1, 2, e, (3.1)
From the definition of J;, it ig easy to -verify that
| J o (U0 5+1) = T (™) - T, (0L _ Im—:lum,r,!)
e J o (™ #09) + T et (U wed — T=tymyv,9) + IRy (U2 0+ Tmtym-1,5,1))
o= o] o (u"" ST m-1 {uP~demd_ [m=1ym,v,9) +.7 "—2 u"" 950l I By )

— m(um.p,;)_}_g 71-1(25' 1w d_ i Jut.r,!)’ - (3.2)

where

.?’,(u —% "Au—ut By,

Fy= (IP)T(F*— Ay, e e
According to the PSOR 1'&91'3‘510]1, T u(u™?) iga monotone decreasing sequence o!

(3.8)

pti TJ, i e. .
o A (umm.!) QJ (um.n-lpf) Q.. QJm(uﬂrﬂ :f) i ' (3_4}
It ig eagy to verify two identical equations below dzreatly.
Let

J(u) = u‘?&u—u"ﬁ'
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Since A is a symmetric matrix, 80 for any vectors u, v, ¢ we have

T (@) =T (0) =2 (u— )T A (u—0) + (u—0)" (Ao F), _
| (3.5)

7 () — T (0= 0) = (u— )" A (=) + (=) (dv— (F+40)).

From (3.5) and PSOR iteration (2.23), we can verify easily that Ty (i —
Ii-1yh*¥) is & monotone decreasing. function of » in the first term w1+, i.e.

j’l (ul-l, 7 1:_1‘!.6!' I'-f) Qj’l—i (ul-i, :r-—:l_.,_f s E—jﬁl, ¥, j)ﬁ o

<J 3 w10 — Ty ), (3.6)
Again from (8.1), we have # B | |
| J i (_11'1‘1""- Ii'fu‘ %023 'ij 1-2(0) -0, =1, <, m. (3.7)
From (8.2), (8.4) and (3.7) we have o
. | | Jﬂ(uﬂhﬂ,ﬂd) qu(um.ﬂJ)_ : : '(3.8)’

So J.(u™"f) is a monotone—decreasing function of j. Since 4,=A and 4 i8 a
positive definite matrix, we know that J, has a lower bound. Thus Ja u™07)

converges to a limit Ja, i.e.
»

. ) Jm{u™") >y J>0 (3.9)
So [u™’| is a bounded Beqniénﬂe gnd_there exists a Eubsequeneé Ji L Jal o L Jaloe
and a %™ such that | |

o R  (3.10)
From u0/«3>s", GP=>¢" is apparent ($€L,), ie. -
Urm (Uls, »=; vas) =8, 3i€ Lo (3.11)
From (3.10) we have P | f
' J o (™) 5T (™), n—>00. (8.12)

Also from the continuily of di., wo have
T nadl o:’n‘l‘i ﬂ @lﬂ (ui’ﬂl Q, fn) _}@m (‘E-“) L | (3 ’ 13)

Bocause Jm(w™%) is the monotone decreasing function of j, we have
J_(u-,u.:..'ﬂ) T (U™ LT (un,n.iu).

BSo |

J o (u O3t ) 5 T (™), (8.14)
From (8.13), (8.14) < S
e | T (D () =T (@)
If we denote U ™0, 'jihé;; !P,(E'“)s u™%? and the above formula is ﬁhangéd o
| B 7 T o ) VR . (3.15)

Now, we prove that |
e, 3.16)
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If not, from PSOR (2.28), we can prove easily
J,. ,um.o,o) >J (.un,.t n)
Add.ttmnally, from (8.2), we have
J (un.u,ﬂ):} J'..('!L“‘l'ﬂ) - J‘ (un,r.n) - Jm(um.ﬂ,i)

This contradicts (8.15). So (3.16) implies that if we take @™ ag an initial value, -
after one PSOR iteration (2.23), itigstill ™. That means »™ is one solution of
(Pw). By the unigueness of the solution, %™ is also the limit of the whole gequence
{um%i}) e, -

g, d-sob, “w (3.17)

Thus the convergence of the algorithm has been proved,

§ 4. Numerical Exﬁtﬁpl&s

?i t F.'- ;

We have made two general MG ealculationa] progra.ma MG—i MG-2. The,
former is for solving rectangular domaing, a.nd adopts bi-linear elements. The
latter is for general polygonal domaing (the curve bound cah be approached with
broken-line) and adopts tnangu.lahon and linear elements. Both can solve elliptic
partial differential equations and elastio mechanical equations (including linear
problems ~ and minimization problems with restrictions). We calculate the

following examples: -

Ezample 1. Solve the two dlmensmnal llnea.r problem (I) on a square domain.
Q=[0, 1] X [0, 1] with ky=1/2, No=8x 8=9, elastio modulus X =7200, and Pmﬂsnn
rabio y=0.8. Suppose that the problem has an exact solution (u;, ug)

U1 (@1, @) =10024(1—27) w3 (1),
g (@1, @) =10023(1 ~ 23 )2 (1 —23).
From (2.1)—(2.8), caloulate fi, fa, . @ |
Uy =ty =0, _ (511_ @) COQ. (4.2)
The computing resulfs are shown in Table 1 (by program MG-1) and Table 2 (by

program MG-2), where the column “gingle grid” is oblained with PSOR (2.23) on
the finest grid G',. The error of the iteration is fs,{< s where

Jou] =max (W —u> . (4.8)

(4.1)
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____-—_____...——_____._-_u—un-_—___n_——-_-—_
Number of | Number of pon | Multigrid ‘ Single grid -
levels nodea 20 T g
m N 1 _E. bW .m I , " - %

8 .| 289 ws | 1.0 . | 1086 ] 1.70 376
e Lalr =7 1089 10-¢ " 1.0 | 1b4.5° I - . 1.80 . 1610
T R R
e b ’q': PR 1 L i ® L = i _. ' ' 1 e DR S : : i

Remark 3.

. 1) In Table 1, the OPU time for m=6is
t=399" (multigrid),  ¢=—6480" (single grid).
In Table 2, the OPU time for m=4is
{=1'30" (multigrid), ¢=16'48" (single grid).

2) The unit of WU in the tables is the operating amount of running one
iteration (2.23) on the finest grid Ga. 8o WU will be 4*™ for running one
iteration on @; (I<m). | | _' = i

 8) For the MG in Table 1, WU (m=35, 6) is less than WU (m=4). This is
because of the difference in initial error [s.f. | |
-~ Ezample 2. Congider the following elastic contact problem: a solid axis Q
embedded in a circdlar ring. Before loaded, they contact at point A. I.oad a
horizontel concenitrated force p. S8imply, suppose that the initial gap s=0. Friotion
is not considered. The elements (devided for grid Go) 'are shown in' Fig. 2. The
caloulating results by program MG-2, are shown in Table 8.

Hig. 2
| Table 3
I - Multigrid “Single grid
m | Ng, g ' — e .
- w WU | JPU times w WU CPU 'times
2 | s |- 100 | b8 | et | e | 195 | 465 | e
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The caleulation above shows that for elastic problems, whether linear or noft,
the MG iteration is much more eofficient than the SG iteration, especially for bi-
linear elements on a rectangular domain. For elastio contact problems such ag
example 2, beoause of the inferior feature of the stiffness matrix, the iteration using
SG converges very slowly, but using MG it will do much faster. Obviously the
operating amount is still more than that of the linear problem which has the same

size,

Besides, how 10 choose the best w and whether the convergence rate is

independent of A for nonlinear prﬂblemﬂ are gtill open problems
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