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Abstract

An existence thcorem of rational interpolation function for the sufficient condition has correctly
been stated by Macon-Dupree in [2], but some arguments in their proof ars not true. In this paper:(i)
A related theorem for both the sufficient and necessary conditiom ig asserted and proved by a new and
rigorous approach, namely by introducing the notion of (m/n) quasi-rational interpolant of 2 given
fanction. (i) With use of these regults thus obtained an open problem proposed by P. Torin in [4]
is completely solved.

§ 1. Introduction

»
Let f(#) be a bdunded real-valued function defined on an interval [a, ], let
m and n be non-negative integers, and let ;€ [, &] (¢=0, 1, ---, m-+n) be distinect
points. The problem of rational interpolation is that of finding a rational function
R(z)=RER(m, n) satisfying
R(z:)=y:  (@=f(w); =0, 1, -, m+n), (1.1)
where R(m, n)={R: B=N/D, N€H,, DEH,\{0}},
herein H; denotes the class of all polynomials of degree at most £.
Ag we know, while the problem of polynomial interpolation is constantly
solvable, the solution of the problem (1.1) does not always exist ([1, p. 2], [2,

p. 764]). In order to get its possible solution, one may consider the linearized infer-
polation problem satisfying, instead of condition (1.1), the following linear equations:

N () —yD{(a;) =0, 2=0, 1, -, m-+n. (1.1a)
Now, this system of m-+n-+1 homogeneous equations in m+n+2 unknowns has

always nontrivial solutions. However, the two problems (1.1) and (1.1a) are not

equivalent. From the following known thsorems one may then find their conditioned
conneoctions.

Theorem 1.1([1, p. 5], [2, p. 784], [B, p. B4]). There ewisis a rational
Junction REC B(m, n) satisfying condition (1.1) if and only if the pwir N and D,
obigined by dividing out all common factors in any nontrivial solution N E H, and
De H, of (1.1a), remains to be a solution of (1.1a). |

Another more practical and useful theorem may be stated in a convenient form
by introducing notations for the matrices

I ol s s S (1.2)

1 Tmin *** ‘-’dft-}-n Ymin Yminlmyn *°° ‘ym+ﬂm;+n
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and O;(w, v) which denotes the matrix obtained by deleting ¢—th row of O(u, »). We
note immediately that the rﬁ;ﬁonal"funﬁtiﬂn R{x) = iﬂ gt / i b', which corresponds
: = i=0{

to the nontrivial solution &= (@:@,—bo+—5,)T of the equation O(u, v) £=0,
satisfies (1.1a). Thereby, we have |

Theorem 1.2([1, p. 14], [2, p. 758]) If the rank of C; (m—1, n—1) is constant
for =0, 1, -, m+n, there ewisis a rational function RC R (m, n) satisfying the
interpolation condition (1.1).

Nevartheless, we should remark in passing that Theorem 1.2 is a frue one, but
within its proof, as given in the quoted references, some assertion concerning the
magnitude of the rank of the related matrices can not hold. A simple counter-example,
such ag, given m=n=2, N (2)=D(2) —z(az+B), B8+0, with the interpolating points
(0, 0), (1, D), (2, 1), (8, 1) and (4, 1), will do the illustration.

In the next gection we make further effort to scrutinize the existence problem
of rational interpolation functions. A new, rigorous proof is given for the existence
Theorem 1.2 in an extended sense, namely, the condition thersin given is not only
sufficient but also necessary (see Theorems 2.2—2.4).

Using thess concerned results as background we have solved an open problem in
the field of approximation theory proposed by P. Turin in 1974 ([4, p. 79], Problem
LXXXII). The problem is as follows:

Let m, = be given. For m+n-+41 variable knots @y, i, ***, Zmys, wWhat is the
maximal number M =M (m, n) such that, at least M of the relations (1.1) can be
satisfied for any choiece of #.?

§ 2. Existence of Rational Interpolation Functions

Let Ry(m, n)={R: RGR(m n) satisfying (1.1a)}.
From (1.1a), we easily get the following

Lemma 2.1, Let N/ DER,(m, n) Then N=0 &f and only if ot Isast m+1 of
the y,’s vanish.

On account of Lemma 2.1, it follows that, in oase Ic(k?m+1) of the g,’s vanish,
the problem (1.1) is solvable if and only if all of the #/’¢ vanish. Hence, unless

spema.l'ly remarked, we always assume, throughout thig section, that no more than m
of the 4,’s can be zeros. Thus, for any N/DE€ Ry(m, n), we ha.va N=0. Now, if we

define -
m'=min{2(N): N/DER;(m, n)}, 2.1y
n*e=min{d(D): N/DcRi(m, n)}, '
then m">0, n*:>0. Here 9(P) denotes the degree of polynomial P, and we define (0)
-—1.
Lemma 2.2(cf. {3, p. 295]) Let N/D and N1/Di€ Ry(m, n). Th@n ND,=N,D.
Lemma 2.8. For m" and n* defined by (2.1), there ewists the wnique (withou?
couniing the common constant factor in nwmerator and denomvingior) R'=N"/D"¢
Ro(m, n) such that | .
| - A(N*)=m’, O(D*) =n’;
and that any R=N/Dc Ry(m, n) can be reduced into B" by dividing out some common
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factor. |
~ Proof. Suppose there exist both N*/D" and N1/D, € By(m, n) such that, e(N*)
—m*, 8(D)=>n" and (N =m", 8(D,) —=n". From Lomma 2.2, we have 8(N")+
o(Dy) =8(N4) +8(D"). Consequently, &(D")=n". So the existence of R" is proved.
Let N/D be any element in Ry(m, n). Then 2(N)=m', o(D)>=n". We may
write

N =g N*"+mr, (1) {'m";
.D——-Q'QD*"— Ta, 3("1‘5) <mn’.

By Lemma 2.2, we can get ¢;=¢s=¢. Furthermore, using (2.2) we have

(2.2)

ri (@) —yira(z;) =0, =0, 1, +--, m4n,

Tt follows, from the definition of m* and n*, that ry=r,=0. This implies the
second conclusion of the lemma. In particular, if (N)=m", 8(D)=n", then ¢ i a
constant. Hence we get the nniqueness of B, |

For eage of diserimination, the rational funection B in Lemma 2.8 is hereafter
called the (m/m) quasi-rational interpolant of f over the knots (=0, 1, --,
m+n). Lemma 2.3 indicates that the quasi-rational interpolant of f always exisid
and is unigque. Me&nwflile, we have

Lemma 2.4, Let R*=N"/D*C Ry(m, n) be the (m/n) quasi—rational interpolant
of f. Then for any w; (0<i<<m+n), |

R*(x0) =
if and only &f D" (a) #0.

Proof. If D*(w)+0, it follows from (l.la) that R'(z:) =y Conversely, if
D* (%) =0, then N* (%) =0. Let N*=(o—a;) N and D*=(z—a;) D. It turns out B”(x;)
=q,. For, if R"(@) =y, we get N/ D€ Ro(m, n). This contradiots the definition of B".

By Lemma 2.4, we can immediately get the following theorem, which ig similar
+0 Theorem 1.1 but can be stated in a clear and definitive manner.

Theorem 2.1. Let R*'=N"/D*E Ry(m, n) be the (m/n) quasi—rational interpo-
lant of f. There ewists a solution of the rational interpolation problem (1.1) if and only
if D" (2:) +0 for ¢=0, 1, ++, m+n, |

Lemmia 2.5. Suppose my and ny are integers possessing following properites:

(1) Osmy<m, O<myi<ny

(ii) the rank of O(my, ni) 8 less than my+n+2;

(iii) the matrices O (my—1, ng) and C{my, ny—1) have the same rank my+ni+1.
Then

Tt = 1

)

Ty = 'n"J

where m* and n* are those defined by (2.1). Conversely, the concerned m” and n' pPossess
the same properties as my and ny, and of course the rational funciton, corresponding to
the nontrivial solittion of the equation |

O(m", n")Y{=0 | (2.3)
is the (m/n) quasi-rational interpolant of f. -
Proof. If m; and ny have properties (1), (ii) and (iii), then the equation
O(my, ny)§=0
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has the unique nontrivial solution (without counting a constant factor). It is evident
that the rational function R=N/D corresponding to this solution is in Ho(m, n),
where N € H,, and DE H,,. Hence we have by Lemma 2.8 that N=¢gN" and D=
gD*. Now if 8(¢) =1, N*/D" € Ry(m, n) implies that the equation

O(my1—0(q), n1—a(g))§=0

has nontrivial solutions. This contradiots (iii). Oonsequently, &(¢)=0. It means
that 'mi-m*, ﬂ1=ﬂn*. |

Conversely, for m"*, n* defined by (2.1), property (i) holds obviously. By Lemma
2.8, the equation (2.8) has the nontrivial solution corresponding to the (m/n) quasi-
rational interpolant of f. Therefore (ii) must be valid. From the minimality of m
and n", property (iii) follows. So the lemma is completely proved.

It is worthy to remark here that from the minimality of m* and n”", we can also
get directly -

Lemma 2.6. The matric O(m*—1, n) kas rank m*+n+1 and the matriz O(m,
n'—1) has rank m+n"+1.

Now, we are ready to establish the following theorems.

Theorem 2.2. Let B*=N"/D*"CR,(m, n) be the (m/n) quasi—rational imterpo-
lant of f. Thewy for any (0<i<m—+n),

) R () =

if and only if P{O,(m*—1, n"—1)} =m*+n’, where r{A} denotes the rank of mairiz
A,

Proof. (a) Suppose r{0((m"—1, a*—~1)}=m"+n" and R*(x;) #-vy;. Then we
have by Lemma 2.4 that D"(#;) =0, so N"(#;) =0. Let us-put

N*(z)=(2~2)N1(z), D*(2)=(z—2)Di(s).

Then for 0<<j(#4) <m-+n,

| | Ny(2g) —y;D1(wy) = [N*(@;) —y: D" (2) 1/ (25— ) =0.
It implies that the equation

Ol 1, WDl (2.4)

hag nontrivial solutions. Therefore, #{0(m"—1, n*—1)}<m"+n’, a ocontradiction.
Thus, B*(@;) =.
Amid the above sufficienoy proof, we should mention in passing thal it must
‘be Ni(w)—yDi(x) #0. Otherwise, N;/Di€ Bo(m, n), and this contradicts the
definition of R*. This faot means that, if there exist common roots in the numerator
and the denominator of the (m/n) quasi-rational interpolant, each of them musi be
gimple. | |

(b) We turn to prove the necessity part of the theorem. Suppose r{C(m"—1,
n*—1)}<m*+n’. Then equation (2.4) must have a nontrivial solution. Let its
corresponding rational funotion be Ri=N;/D;. Then

Ni(w;) —y;Di(m;) =0, j=0, +--, 4—1, 241, «--, m+n,
Define -
N(z) = (z—a)Ni(o), D(@)=(2—a)Di(2).

Then N/DE Ro(m, n) and 8(N)<m", 8(D)<n’. From the minimality of m" and
«*. it follows that N/D must be the (m/n) quasi-rational interpolant. However,

b
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D(=x,) =0. Thig causes, by Lemma 2.4, a contradiction. So the proof is completed.

It follows at once from Theorem 2.2 the following

Theorem 2.3. There ewists a solution of the rational mt&rpaimtwn problem (1.1)
of and only if for oll 4 (0<<i<m-n),

r{C(m*'—1, " —1)} =m"+n".

Now, in what follows, we are going fo prove from Theorem 1.2 the extended
theorem of existence, where the extension means that the condition speocified in thg
former is not only sufficient but also necessary.

Theorem 2.4.° There ewists o solution of rational tnterpolation problem (1.1) 4j
and only &f the rank of C;(m—1, n—1) is constant for i=0, 1, +--, m+n.

Proof. (a) By Lemma 2.5, we have £{0U(m"*—1, a'—1)}=m"+n". So tha
matrix O(m"—1, n*—1) can be augmented with some other columns from C(m—1,
n—1) in swch a way that it coniains only the maximal independent system of the
columns of the latter. Let O'(m"*—1, n*—1) denote the matrix thus augmented. I'hen

{0 (m*—1, ' —1)}=r{0(m—1, n—1)}.

Suppose
r{O0f(m—1, n—1)} =k, 1=0, 1, +++, m-+mn.

Of course, we have presently |
k=r{0(m ., »n—l)} ={0'(m*—1, n 1)},

Now, if there exists no solution of the problem (1.1), it follows from Theorem 2.2

that there must be some index iy (0<<iy<<m-n) such that the rank of O, (m"—1,
n*—1) i3 less than m"*+n". Therefors, -

- r{0, (m"—1, n*—1)}<k. (2.56)
However, from the definition of O’(m*—1, n*—1), we have that every column of
O(m—1, n—1) can be linearly expressed by the columns of O'(m"—1, »"—1).

Naturally, each column of O;(m—1, n—1) can also be lmea.r]y expressed by the
{}0111]:&113 of O} (m*—1, n*—1). This means that for ¢=0, 1, +, m4n,

r{O(m*"—1, a"—=1)} =k.
This contradicts (2.5). Thus the interpolation problem (1.1) must have a solution.
(b) We assume that there exists a solution of the problem (1 .1). We shall
prove in turn that, for ¢=0, 1, ---, m—+n, the rank of Ci(m—1, n—1) is constant.
Lot #{0(m—1, n—1)} =%k and O’ be a matrix consisting of a maxzimal independent
system of the columns of the matrix C(m—1, n—1). Then

r{i0}=r{0(m-—1, n—L}<k,  i=0,1, »-, m+n.

Therefors, it needs only to prove that for 4=0, 1, m+n, {0} =k. Now, if thera

is e (0<4p<m+n) such that #{C}<k, then the rational function R;=N;/D;

(N.€H,_1, Di€ H, ), corresponding to a nonirivial - solution of the equation
i £ =0, satisfies

Niimi) _‘yiDl(.mi) =DJ '2.=0: 1: sir, MRS 1"#‘2’0:
Ny (@4,) — 3,01 (24} # 0. - (2.6)

1 Remark. It is not difficnlt to verify directly from (1.2) that in case more than m of the ¢,’s vanish,
Theorem 2.4 still holds.
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EEE:

The ineguality (2.8) can eagily be obtained from the fact that #{C’} =%. Let
N@)=(@—a,)N:(z), D)= (r—=z,)Di(z).

Then B=N/DE Ry(m, n). By Lemma 2.8, R oan be reduced into the (m/n) quasi-
rational interpolant by dividing out some common faotor. The inequality (2.6)
implieg that the factor (z—a;,) can not be divided out. Thus D*(z,)=0. By Lemma
2.4, thig yields a contradiction. Therefore, for 2=0, 1, ++-, m+a, #{C;(m—-1,n—1)}
= k. This completes the proof of the theorem, which is the main theorem of existenee
in our paper.

Ag a corollary of Theorem 2.4 in the case r{C(m, n) } =m+n+1, we shall
speak about it at length. This case was freated in [1, p. 11] and [2, p.. 765] as the
main theorem. Therefrom Theorem 1.2 was offered to be its generalization. However,
as we have remarked in § 1, there are unsatisfactory points for Thecrem 1.2. Hers,
we have rather sfarted from a different approaﬂh The following ﬂnrﬂllary may be
simply deduced from Theorem 2.4. !

Corollary. Suppose the rank of C(m, n.) ig m+n+1 Then ther& oxists a
golution of the rational mterpolatmn problem (1.1) if and only if all the matrices
Ci(m—1, n—1), ¢=0, 1, «++, m-+n, are nonsingular.

Proof. Ifa{C(m, n)}==m+n+1 the solution gpace S of equatmns (1 12) must
be one-dimensional. Henoce both m*'<m and n*<n can not hold gimultaneously.
Otherwise the rational functions obtained by multiplying the numérator and the
denominator of the (m/ n) quagi—rational interpolant by a linear factor are atlll in
Ry(m, n). This leads to a contradiction for §. -

Without loss of generality, we may assume that m"=m. Thls INeans that the
(m+1)-th column of the matrix C(m, n) can be linearly expressed by others.

Therefore,
r{0(m, n)}=r{0(m—1, )} =m+n+1,
and of course |
r{0(m—1, n—1)} =m-+n.

Consequently, at least one of the matrices C; (m — 1 n—1) (¢=0, 1, ++, m+n) hag
rank m+-n. By Theorem 2.4, the corollary holds. |

With reference to the full rank of C(m, n), it is note:wnrthy to indicate some
points of interest.

(1) The condition “r{C(m, n)}=m-+n--1" in our corollary is equivalent to
the oondltmn “,8 (z, y) =0” of the theorem in the quoted references [1] and-{2], where

C(m, n)
= _ i :
Ale, y) Et( 1 22" gy gyo ym“)
(ii) From Lemma 2.6, we have - S
r{O0(m, n)} =max{m" +n+1 m+n +1} B (2.7)

In fact, if we notice that for any polynomial A€ H inpnems,nenyy, BN*/AD*E RBo(m, n),
then we can prove that

r{C(m, n)} =maz{m*+n+1, m+n*+1}. (2.8)

It follows that the condifion “#{C(m, ﬁ)}-m—l—n—l—l” is equivalent to m*=m or
n'=n, -
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§ 3. A Problem of P. Turan

In 1974, P. Turin proposed 83 open problems in the field of approximation
theory™. Some of them have been completely or partially solved in recent years.
Literatures dealing with some of these problems are listed in [6]. In this paper we
only oconsider Problem LXXXII (see, §1), which was proposed when Professor
Turin studied the convergence of rational interpolation functions.

First, we answer this problem in Ey(m, n).

Theorem 8.1. For any RE Ry(m, n), at least m~+1 of the relations (1.1) can
be satisfied; and for arbitrarily given distinct points @; (O<i<m-n), there exist y

(0<i<m+n) such that, for any RE Ry(m, n), at most m+1 af the relations (1.1) can
be satisfied, b.6., M =m+1 in Hy(m, n).

Proof. For any B=N/DER,(m, n), if R(a;) ¥4, we must have D(x) =0.
Therefore, at least m-+n+1—&(D) of the relations (1.1) are wvalid. It follows
M=m4-1,

On the other hand, taking ¢y=yi =+ =9, =0, Yp,1= =Y. a=1, then we have,

by Lemma 2.1, that for any R=N/D€ Ro(m, n), N=0. Hence, only m—+1 of the
relations (1.1) hold, #e., M<m+1.

Now, we proceed to the solution of Turin’s problem in £(m, n). First of all,
we establish the following lemmas,

Lemma 8.1. Let (&, g), i=1, 2, -, n+k, k=1, be n+k points with
distimct. There ewists P, (m) & H, such that

ﬂ(ml) =, T 1 2 n, Pﬂ(mﬂ-l-i) #ny-i: i’slx 2: i~ k.
Proof. Choose pﬂlynommla no1(®), Qu_1(@) € H,_, such that
Pm—l (ﬂ?;) =1, Qn—l (mi) "_"'37?: ﬂ'=1: 2: ey N

Define

P.(A, @) =P, _;1(z) +A[e"—Q._1(x)].
QObviously, for any A, P,(A, @)=4;{(4=1, 2, «--, n), and for any pEz (=1, 2, -+, n),
z"— @, 1 (@) =0 (otherwise Q,_1(») =2a"). Herme}, for 4=1, 2, «»«, k, @), s— Q,,_i (mﬂ £4)
= () and there exists A, suoch that

}"0 [mﬂn+i Qﬂ—i (mﬂ.].i)] =.'é gn.;.l -1 (mn+i)

I+ follows that Py(Ao, @npi) #*Ynys for =1, 2, ---, k. The polynomial P (Ao, ®) is What
we want.

Lemma 3.2. Suppose the rank of C(m, n) is less than m—+n+1. Then we can
properly change one point of (x;, y;) (=0, 1, «--, m+n) such that the rank of C(m,n)
38 imereased by at least one

Proof. Let r{C(m, n)}=r. From the property of Vandermonde deierminant,
m+1<r<m+n+1. For definiteness, we may assume that the first r rows of C(m, n)

are linearly independent and may assume the same for the first r columns. This
means that the matrix
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is nonsingular, where n’'=r— (m=+2) (in case of r=m+1, by the definition 2(0) =
—1, the matrix & has only first m+1 columns).
Consider the determinant |

‘y{l mh:’-?—l
det E : = Ol (m) -+ @’Bﬂ".pl (ﬂ?) P

41
Ye_10, 7
n'+1

1 g ee0 @™ gy gz < yd;“’ Y

where o, C Hu, Bwp1 € Hu,1. Since the matrix F is nonsingular, 8,.,1%0. Therefore,
there exists a point («*, ¢”) such that

0 (@) + 1 Bary1(27) 0.

Consequently, replacing the point (#,, %) by (2", 4°), we get that the rank of
C(m, n) is increased by at least one.

Lemma 3.8. If the rank of C(m, n) t8 m—+n+1, then we can change at most one
point of (@, 4) (=0, 1, ---, m-n) such that all the matrices Oi(m—1, n—1), =0,
1, ---, m+n, are nonsingular. | '

Proof. If every matrix Ci(m—1, n—1) is nonsingular, the lemma is obviously
valid. From the proof of the corollary in §2, it follows that at least one of the
matrices C;(m—1, n—1) is nonsingular. Without loss of generality, we may assume
that this matrix is Op(m—1, n—1). Since any. two matrices Ci(m—1, n—1) and
C,(m—1, n—1) (0<i*j<m-+n) have m-+n—1 common rows, the matrices Ci,(m—1,
n—1) (1<i<m-+n) have rank at least m-+n—1. We shall show below thai the
point (@, ¥o) may be so changed that every matrix Ci(m—1, n—1) (I<i<m+n)
oan be made nonsingular. Since the matrices C;(m—1, n—1) (¢=1, 2, :--, m+n) are
all related to (2o, ¥o) and we may regard (zy, %) as a variable point (@, 4), the
determinant of each matrix O;(m—1, n—1) (I<i<\m+n), similar to the proof of
Lemma 3.2, can be expresscd as follows:

det Gi(m—l, ‘ﬂ-—l) :ﬂfﬁ}_l($) +y8“3.1($)_, ‘£=1J 2, " M -+~ N.

Because all the rows of C;{(m—1, n—1) (A<i<<m+n), except the row corresponding
to (@, 4), are included in Cy(m—1, n—1), the relations ¢y ;=0 and B ;=0 can not
be valid simultaneously. Now, let the set of zeros be defined by

Z={x:a¥ ()=0 but ai 1#0, or
B (x) =0 bhut BYi#0, g=1, 2, «+, m+a}.

Then Z is a finite set. We may arbitrarily choose one point 2" € Z U {z;: 0<<e<<m-+n}
and put |

&P (@) =a;, BY1(a") =b..
Then |a|~+ [8;]#0 for i=1, 2, «--, m+n. Henoce the gystem of inequalities
ﬂi—l—b;y%ﬂ, ‘Z-.-=1, 2_, eer, MM

is obviously consistent. Let 4 be one of its solutions, Thus, with use of (#",¢") instead

of (ze, %), overy Ci(m—1, n—1) is made fo be nongingular., This conocludes the
proof of the Jemma.

Theorem 8.2. Lei z,(i=0, 1, ---, m-n) be arbitrary and distinct poinis. Then
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for y; ($=0, 1, =, m—I—n) arbitrarily given, there exists @ rational function RE R(m, n)
such that at least m+ H 5 ]—[—1 of relations (1.1) can be satisfied; fwtherwe there
ewist g; (6=0, 1, -, m-+n) such that, for any RE R(m, n), at most m+E[2]+1

of relations (1.1) can be samsﬁed, i.e.,

3+

M.=m+E[2

where B [A] denotes the maximal inieger not greater than A.
Proof. (a) We ghall show that M<m-+ K [%] 41, Take

i y o= e 7
y___Jﬂ’ fsl, 1, e, m+E[2], 51
1, i=m—l—E[-gi-]—l—1, oo, mtn.

;J-l-l of relations (1.1) are

valid. We may further prove that for any RER(m, n), no more than m4- & [ 5 ]—!—1

Concerning this sot of ¢;, clearly for R=0, m+ & [

equalities of (1.1) can hold. If not, there must have £ € R(m, n) such that at least
m+ B [ 5 ]4—2 equalities of (1.1) are satisfied. Since in (3.1) only n— & [ 5 ] of the 7,’s
are equal t0 one, there are at most n— & [?] of all #; which safisfies the relations

B (z,) =y;=1. Consequently, at least m+ K [2 ]—1—2 (m:. E[ D(:‘:--m-i— 1) of them
have to be zeros. That is, A has at least m-+1 zeros. So B =0. However, we know, if
B=0, only m+E[%] 41 relations in (1.1) are satisfied. This is a contradietion.

(b) We prooeed to prove that for any set of ,(¢=0, 1, -, m-+n), thers exisls
a rational function R€ R(m, ﬂ-) such that at least m+H [ ;’] -1 relations in (1.1)

hold. We need to congider different cases aﬂaordmg to the number & of zeros among
all Ty

(i) k>m+E [%] +1. It is sufficient to chooss R=0.

3% ) m{kﬁim—l—E[-%].. We may assume

go=r++=a_1=0, %0, <=k, -+, m-n,
Tet

By Lemma 3.1, there exists a polynamla.l D(z) of degree at most m-+n+1—k such
that

D(a) =N{z)y?, ¢=k, «-, m+n and D(x;) %0, 2=0, 1, ---, £—1.
Henoce, at the points xo, @1, *1¢, m-1, Tx, ***, Tmn, B=N/Dc R(m, n) satisfies (1.1),
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ie., m4(m+nti—Fk) ( :,?:m+E[121‘—]+1) rolations in (1.1) are satisfied.

(iii) 0<k<m. We can presently use the results obtained in § 2 together with

the lemmag in this seotion. If n'<<n— i [%—], Lemms 2.4 implies that for any

RE Ro(m, n), at least m+n-+1 (n—E[—%])(=m+E[—g—]+l) relations in (1.1)

are satisfied. Now, letn">n—E [—E’—] (this implies n>=2). From (2.8), we have

r{C(m, n)}?m+n‘+1}m+n—E[-g—]+2= (m+n+1)— (E[—;l] -—1).

Therefore, from Lemma 3.2, We can change at most B [—E} —1 points in {(@, ¥ 0<1

2
<m-+n} such that the resultant matrix C (m, n) has rank m-+n+1. And then, using
Lemma 3.8, we can change at mogt one point of (z;, yo) (=0, 1, », m-+n) so that all
+he matrices Ci(m—1, n—1) are nonsingular for +=0, 1, «--, m+n. Let the original
points (z, ¥:), ¢=0, 1, ««+, m-+n, after some of them are changed as desoribed above,
be denoted by (i, #i). Since the number of the changed points is not more than

E [32*-] it is ovident that at least m-+nt+l1—KE [12‘-] (;qm— E [-"'%]4—1) points in

{(z,,4)): 0<i<m--n} aTo the same as the original points (w;, 4 (=0, 1, -, m+n).
For the points (), ¢i), from the corollary of Theorem 2.4, it follows that there exists
a rational fanction R € R(m, n) such that

R(x}) =, i=0, 1, <+, m+n
hold. Therefore, for this R and the original points (e, #4) (4=0, 1, =, m-+n), at

leagt m-i—E[-%} +1 relations in (1.1) are satisfied. This completes the proof of the

theorem.

Acknowledgment. 1 would like t0 express my hearty thanks to my tutor Professor
Xu Xian-yu and Professor Li Jia—kai for their kind guidance and many helpful

disoussions. I am also grateful fo Professor Shi Ying-guang for his suggestions
and comments during the preparation of this paper. | '

Beferences

[11 R.H.Wang, Numerical Bational Approximation (in Chinese}, Shanghai Scientifie Technological Press,
1980.

{27 N. Macon, D. E. Dupree, Existence and uniqueness of interpolating rational functions, Amer. Math.
Monihly, 6% (1962), 751—759. |

[3] H. Machly, Ch. Witzgall, Tschebyacheff-approximationen in Kleinen inteﬁallen 1T, Numer. Math.,
2 (1960), 293--307.

{47 P. Turfn, On some open problems of approximation theory, J. Approx. Theory, 2% 1 (1980), 23—=85.

57 L. Wuoytack, On some aspecis of the rational interpolation problem, SIAM J. Numer. Anal., 1131
(1974}, 52—=60.

[6] G.G. Lorents, P. G. Nevai, V. B6s, J. Bzabados, Becent papers dealipg with Turin'’s problemas, J.
Approz. Theory, 28: 1 (1980), 86—29.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg

