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Abstract

Tn this paper we first introduce the definition of contractivity region of Runge-Kutta methods and
then examine the general features of the contractivity regions. We find that the intersections of the
contractivity region and the axis plane in C* are always either the whole axis plane or a generalized
disk introduced by Dehlquist and Jeltsch. We also define the AN-contractivity and show that it is
equivalent to the algebraic atability and can be determined locally in & neighborhood of the origin.
However, many implicit methods are only r-cirele contractive, but not AN-contractive. A simple
bound for the radius r of the r-circle contractive methods is given.

1. Introduction

We shall consider the namerical solution of initial value problems
y=f(e, y), y(0) given (1.1)
where ¢, € R® or 0°. Assume that f safisfies the following monotonicity eondition
Re {f(z, y) —f(w, 2), y—2><0 fory, 2€ 1" or e, (1.2)

where {», *> stands for an arbitrary inner produet in C°, and | + | is the corresponding
norm. Let 4 and 7 be two solutions to (1.1) corresponding to the initial values yo and
yo Tespectively. By condition {1.2) we have

2 |y@) -5 () |*<0 (1.3)

which shows that |y (z) —y («) | does not inerease when » inoreases.
The general m—stage Runge-Kutta, methods for system (1.1) have the form

!’Yi;:yﬂ—iﬂ-l—ﬁjzﬂﬁf(ml-ib}_hch Yf): 'E'=1: 2: ee Ty,
=1

1 y-m%—i'i‘hgbff(wn-rl‘hﬂh ¥Y), n=1i, 12, -, (1.4)

L

™
L &= 2 Ay
k=1

Given A= (&) mxm a0d b= (b1, ba, -+, bm)T, we shall denote the corresponding method
(1.4) by M (4, b). In terms of the Kroneoker product symbol & it can be written as

{Y=1®y,_1+hA®I.F,._1(Y), 1.5)
yﬂr='yn-1+hbT ® IEF._;LCY)'
where I, is the 8% s identity matrix and

* Raceived October 13, 1981.
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Yi f(ﬂ?._j_ "‘hﬂi - Yi) b 1
E n-11hog, ¥ 1

Y= -= ’ Fﬂ—i(y)= f(m : . ﬂﬂ; H) ") 1]= e [*
¥ m f(mn—i‘l‘hom; Ym)-‘ 1

In applications it is expected that the numerical methods preserve the oontracti-
vity property (1.3) of the differential equation, namely if the computation starts with
a slightly perturbed initial value y,, instead of %o, the obtained solution 7, and the
unperturbed solution y, satisfy

|Jyn""§n“€|lyn—1“§ﬂ—1|l for n=1, 2, «», (1.6)
Such requirement for the nonlinear problem (1.1) leads to the concept of BN-
stability (B-stability for the autonomous problem: o' =7 (y), 4 (0) =y,)introduced by
Butcher in [1] and leads to the concept of A N—stability for the linear non-autonomons
problem (A-stability for the linear autonomous problem). Another stability eriterion
named algebraic stability was developed by Butcher'® and Crouzeix'®, which is signi-
ficant in the study of BN- and B-stability properties of implicit Runge-Kutta
methods. Dahlquist and Jeltsch introduced in {4] a concept of generalized disk contrae-
tivity for explicit and implicit Runge-Kutta methods, which is an extension of the
AN-and BN-gtability that are reasonable only for implicit methods.

In this paper we first introduce the definition of contraetivity region of Runge-
Kutta methods (implicit or explicit) and then examine the general features of the
contractivity region, We find that the intersections of the contractivity region and
the axis planes in O" are always either the whole axig plane or a generalized disk
introduced by Dahlquist and Jeltsch™?. This faet gives some evidence to the conocept
of generalized disk oontractivity. Set O~ ={2€0; Rez<0}. A method M (4, b) is
referred to as “AN—contractive” if ity contractivity region contains (C~)™. We ghall
show that thig property is equivalent to the algebraic stability and can be determined
locally in a neighborhood of the origin. However, we shall see that many implicit
methods are only s—oircle contractive, but not 4AN-contractive. We shall provide a
simple bound for the radius r of the r—circle contractive methods.

2. Contractivity Region

T'o motivate the definition we consider the following test problem
y' =A@y, y(0) =y, (2.1)
where A, R*=>C'is a given funotion and Re A (z) <0 for z € R*. Set
Zi=hA(®y_y+he), t=1, 2, «--, m,
(= (21, 23, **, Zm),
4 =diag (24, 23, =+, Zm).
For this problem, (1.4) takes the form |
| {Y=y,.-1‘i+AZY, (2.2)
g,..=yn_1+bTZI"J
and by substitution ¥ = (I,— AZ) " (y,_41) we have
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i Tr—] Dy

(2.3)

yﬂ': K(g) yﬂ—ij
where K (&) is a rational function of complex variables 21, 2a, *-*, ?m. If the A(z) in

(2.1) is constant, we have, with 2=/hA,
K@) =R =1+2"(In—24) "1,
K ({)and R(z)are named the* K —function” and “R-funoction” of the method M (4, b)
regpeotively.
Definition 1. Given Runge-Kutta method M (A4, b), the following subsst of (C)™
is called the contractivity region of M (4, b)
(4, by ={{c )™ | K{)|<1},
whare C denotes the complex plane closed by the pownt oo.
Definition 2. Given subset D ()™, method M (A, b) s called D-contractive if
Q(A, b) DD. Particularly, it is called AN-contractive +f G(4, 5)D(07)™,
It can be easily seen that the AN-stability introduced by Butcher'™ is equivalent

(2.4)

to
Q(AJ b)D{EEG’”; Re ﬂi'QOJ =% if Ci= 0y, 'I'vj j=1, 2J Se” ‘TR-}

and the A-stability is equivalent %o
Q(A, B)D{LEC™ =2, =1, 2, -+, M, Re 20},
Obviously 4N-ocontractivity implies AN-stability and A-stability.
We introduce the matrix
A* = (@) mxm, ;=05 ay,
By applying the Oramer rule t0 the linear system
(Igp—AZ)Y =95-11,
the function K ({) can be expressed as a quotiont of two determinants™

_ det(I,+A"Z) |
G v o e

Thus by the maximum modunlus theorem of complex function with several complex

variables we have
Theorem 1. A Runge-Kutia met

det (In—AZ) has no zero in (O7)™ and
| K (0)|=<1

for all {= (21, 22, *>*, 2m) € C™ such that Re 2;=0, 4=1, 2, «-+, m,

In the next settion we need the following lemmas.
Lemma 1 (Burrage and Butcher™). Let D) be the set of all { in C™ such that

det(I,—AZ) +0, and let u= (I,—AZ) 1. Then for L€ D,

hod M (A, b) is AN-contractive if and only of

| KO -1=2 2 bRe(z) |w|*— 2 QuRALZAY, (2.6)

where Gy = byt by — 0:0,. |
Obviously D contains a neighborhood of the origin in O™ We see from this
b) is determined by

lemama that the surface S(4, b) of the contractivity region £2(4,
the equation
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2 E bi. | Uy I BR'E" (Z;) — ij2=1 g”Ei'!_L;ziu; — O. (2 ,7)

Lemma 2. For any Runge—Kuitta method M (A, b),

(i) S(A, b) passes through the origin { =0;

(ii) £2(4, b) is symmelric with respect to the real axis plane in O™

(iii) 2C(A, b) is elosed.

Proof. (i) holds obviously by (2.7). Since the coefficients of the method, ay; and
bj, are real numbers, in addition to u= (I,,— AZ)"*{ we have u= (I,—AZ) ™ ; henoe
| K({)|*=|K(@)|*and (ii) follows. (iii) can be shown by the continuity of | X ({) |
and the definition of 2(4, 5).

We shall denote the ¢—th real axis and imaginary axig of O™ by B, and I; respecti-
vely, and use the notations

B, _={{cO0™ 2,€(—s, 0), ;=0 for j%4, j=1, 2, ---, m}
L,={{cOom™ z€[—~—1s, &/—1c], =0for j%4, j=1, 2, -« m}
Q= (¢i) mxms Gi5="0:2y+ bsan—b:dy, (2.8)
Lemma 3. For any Runge-Kutta method M (A, b),
(i) Ri,_.<Q(A, b) for some >0 if and only if b,;=0, for ¢=1, 2, -, m;
(ii) Let {41, 4a, -+, 4.} be a subset of T={1, 2, ---, m}. Then I, X1 XX
I, .=02(4, b) for some e>>0 if and only if

g‘hh qij.il i qi.l"r‘
Q, = | Tur it *7* Gisr | 0

lllllllllllllllllllll

Gean ik " Jips,
Proof. Let {*= (21, 23, -+, z) be such that z; = — & and 2; =0 for j#¢. When 2 is
sufliciently small we have by (2.6) |
| K (%) |2 —1= — 28| | %6 +0(s?), (2.9)
which shows &; must be nonnegative if B; _,cQ(A4, b) for some £>0. Notice that if
b;=0, then ¢;=0, and [ K ({*) |?—1=0, so that the condition >0 is also sufficient
for the inclusion B, Q{4 b).
To show (ii) we observe that for sufficiently small >0,

w (L) =1+, (D), =1, 2, «, m, for {{|<s, (2.10)
where Y, ({)—0 as 2—0,
Now we ohoose {*= (2], 25, =+, z,,) such that
{2:12\/:%5’ e R, (2.11)
2;=0 for j€ {i1, 43, **+, %x}.

Thus for >0 sufficiently small we have by (2.7)
| K (L) |?~1=—8(Qm, n) +6%0(s), (2.12)

where n= (m,, %, **+, 7,) and O(e)—0 as e—>0. Asgume I, XX I, ,c2(4, b) for
some &>>0. If ), were negative, there would exist an 7,& R" such that (Q,ns, mo) <0.
Thus by (2.11) and (2.12), for any small 8>0 we could find such €7, , X+ X
I, ., that
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| K (&) |?—1>0.

This is a contradiotion with the assumption. Hence €,>0 is a necessary ocondition for
the inolusion

| I, . X+-XxI, ,cQ(4, b),
The inverse is also ture from (2.12).

3. Some Conclusions

As a direct consequence of Lemma 3 we have the following result.
Theorem 2. An m-stage Runge—Kutia method M (A, b) 18 AN-contractive if and

only if it 4s algebraiocally stable, t. e.
b,=0, j=1, 2, =+, m, @=0,
And it 43 AN-contractive if and only if it 4s contractive n an arbitrary small neigh-
borhood of the origin, ¢. e. for some 80
zeom [l <s, Rez<0, ¢=1, 2, +-, myCQR(A, &),
Corollary 1. Given matrix A= (@y)mxm, the sysiem
(I,—AZYY =F (2.13)
has a unique solution for any F, {€ (0-)™ if A is a lower triangle mairix or if there
exist nonnegative weights by, ba, ***, Om guch that
Q= (qu) mxm==0 where gy = by 0585 — bid;.

Proof. The first part holds obviously. If there exist by, b, *-+, by such that @=
(qs) mxm==0, by Theorem 2 the method M (4, b)is AN-contractive, and by Theorem 1
det(In— AZ) 40 for any L€ (O7)™ Hence system (2.13) bhas a unique solution for
any F& C™. ' -

Now we further examine the intersections of the contractivity region and the

axis planes ;=B X L;, ¢=1, 2, +--, m,
Set [,€ R, and |{o| =. Then (o€ S(4, b) if and only if  satisfies

28, (sign (Lo) )& — qua® =0, (2.14)
where gy=2bay—b;. When b;=0, (2.14) is an identity for all #=0, and if gu#0,
(2.14) has a non-zero root ’

z—=2b,(sign (Lo) ) / qu— 25ign (Co) / (Cau—bi),
whioch is positive only if {, and 2a,4—b; have the same sign. Thus (2.14) shows thai
R,cS(A4, b) if =0,
S (A4, b) has no intersection with Ry if ay>b;/2+0,
S(4, b) has no intersection with B if a,<bi/2+#0,
the only intersection point of S(4, b) and B, is { =0 if ag="50,/2++0,

Set L,E€I; and |{o] =y. Then by (2.7) LeES (4, b) if and only if quf=0,
which shows that -

I;C:S(A, b) if g“m{]_,
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To find the intersection of Q(A, d) and O, we now consider {*= (21, 23, ***, 2Zn)
where z =24~/ —1y and 2;=0 for §#4. Thus if {*€S(4, b) we have

29 — qul{®+47) =0
0 Y g BN
or ( gﬂ) +g2_(_g:) if QHEEO,
which represents a eirole in the C; somplex plane as shown in Fig. 1,

b 4
for a;;<Ct;/2 20 Cplane

for 4,;>8,/2 a0

b 3

for n,-,-=b.;;"2ﬁsﬂ
Fig. 1

When 5;,=0, we have g;=2ba4— b2 =0; hence
GiEIiXRiCS(AJ b),

From these we have the following result.

Theorem 3. For any given Runge—Kuita method M (A, b), the intersection of the
sontractivity region Q (A, b) and the Orplans is always either the whole Orplane or a
generalized disk. More precisely, with notations =0 (A4, ) NC; and r=|bi/qu| we
hawe

£2;,=0, if b;=0,
2,={{€C;; Re <0} if 5,>0, ay=>5,/2,
2;={L€C; |{+ri<r} ifb>0, a,<b,/2,
Q={0€C,; [{—r|=r} if b,>0, ay>b/2,
Q,—{{E0,;; Re (=0} if §;<<0, a;=25,/2,
Q={{&Cy |{+r|=r) if 5<<0, ay<<bi/2,
Qi={{€C; |{—r|<r} if <0, ay>b,/2.
Corollary 2. A Runge-Kutta method M (4, b) is Oy—contraotive if and only if
it is By -ocontractive, and this happens if and only if
bi=0 and a,=>b,/2,

By Theorem 2 we see that M (A4, b) is B;-contractive only when ;=0 or 4,0
and @y>>b;/2, but then M (A4, &) is C;—contractive also. So this corollary holds.
Dahlquist and Jeltseh™ introduced the generalized disks

ACC; |Atr|<r} iifr>0,
D(r) ={{AE0; Re A0}  if r=o0,
{A€CC; |Atr|=—r} if r<0

and the following cirele contraotivity conoept.
Definition 4. 4 Runge-Kuitta method M (A, b) is called r-circle contractive if
D(r) is the largest generalized disk with r+ 0 such that
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| K Q) | <1 for all L&D (r).

Theorem 3 shows that the intersection of the contractivity region with each indi-
vidual complex plane C; hag the disk shape (the interior or exterior region of a cirole).
So this theorem gives evidence o the conceps of ecircle contractivity in some extent.

A Rungc-Kutta method M (A, b) is proved in [4] 1o be r—cirele contraotive if

1 ig the largest number such that

(2.15)

and only if 5,0 for j=1, 2, =+, M and p
(w, Qui) >p(w, Bw), for all wE B™,
where B=d1&g (b;;_, bg‘, i bm)..

By Theorem 3 we ocan provide a simp

contractive method.
Corollary 3. Assume that M (4, b) is r—cirole contractive. Then

r<{max (2a;— b

lai<m

le bound for the radius r of an r—circle

b0

especially, = {ln::;afx (2au—b) )t

be=p O

if Q= (qy) is a diagonal matrix.
The first part holds directly from Theorem 3 and the s

(2.15).

econd part follows from

4. Examples

In this section we show the feature of the contractivity regions of some implicit

Runge-Kutta methods.
Ezample 1. The 2-stage Runge-Kutta method M (A4, b):

11
|8 8 1 AN
a-ly o b o-(3 9)-
L8 8-
This mothod is A-stable, since the R-function satisfies
|R¢2) | =$ gfz <1 for Re2<0, -
Here we have by, ba>>0 and
1 1

Y an—by/2=—5<0, Gss—ba/2=5>0.

By Theorem 3 we find easily that the intersections of the contractivity region

with Oi;—and Ce-plane are
Q= {LE0y |{+4|<4}, Qa={{ECx |{ —4| >4}
once this method is not AN-contractive.

(see Fig. 2) where £ i3 a bounded domain. H
—b)} =4 and ¢ is a

However, it i r—circle contractive with r=4, sinoe {max (2004
!

diagonal matrix.
Example 2. The Runge-Kuita methods of types III, and 1llg baged on Lobatto

formulas (see [6] or [6]). These methods have positive weights and their nodes
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C,—plane

2,
- /s =

satisfy ¢;=¢; for ¢+ 4. The family of 111, methods is charaoterized by
@y =0 and a,;=2>5; for =1, 2, -+, m
and the family of IITg by
aim=0 and a; =04 for j=1, 2, +-, m,
It is known that the 111, and I1Ig methods are A-stable. For III, methods we
note that

Hence by Theorem 3
2-{teoy |t+o-|<+} Gn-{teom [t-5-|>1}
1 24

We see that 111, methods are not Ri—oeoniraotive, and so can not be .AN—contractive.
However, they may be r—cirole contractive with 7=<1/64. For IlIz methods, since

2011— 01=01>0, 2{3mm—bm="—bm-<:0_,

L+

we find Q-_.={CEUI; " ?i} m___{CEGmi 4 . "‘\:—L}
b b1
Therefore, 111y methods are not H,-contractive, but may be q'—mrﬁle contractive with
r<cl/b.y.
Example 3. The family of m—stage diagonal implicit methods given by
- -
by A
.A= bj_ bg }.. 5 b=(bi, 62, R bm)T,
_b1 ba e bma A

where }u, b]_, ng i ™ Op_170,
The K -function of these methods has the form

E () =11 {1+ G-/ A-M)}h

Noting that |K (D) | <1 for { € (O)™ if and only if
| A+ @=L/ A-Mp) | <L for ,ECT, j=1, 2, «-, m,

we see that these methods are .A,N ~gontraotive if and only if they are R, —gontraoctive
for j=1, 2, -+, m, i. e.

oAb;=>0, for j=1, 2, -, m,
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One may ask whether R;-oontractivity (§=1, 2, -, M) OF (R™)™contractivity
implies .AN-contractivity. Thig ig not ture. To show this, we bave the following
example.

Exzample 4. A 2-stage Runge-Kutta method given by
[*& 0"

-A'= 1 2 b=(01 1)T-

-5 L

We first show that it is (B™)*-contractive and A-stable. The K-funoction is

1""21'—?2135

EQ-G—pa—ty o= 0.

1t is eagy to oheck that when 2, and 7 take monnegative real values, | K ({) | <1.
Honoe this method is (R~)*-contractive. We now oxamine the B-function

1 4
1—2—5+
R(g)“__K(f"'I)_ (2_1)2

Noting that R(z) is analytio in O- and that on the imaginary axis (2= N —1y) we
have

1 3
L 1+597) +9°
|R(~ —1y) | = (1-—23;3)2-1—43;2 <1,

by the maximum modulus theorem of complex function we have
|R(z) | <1, forz€C,

Henoe this method is A-stable.
Since the matrix @ of this method is

=

ol
ol

which has the negative csigen;.ralue (1—~/2)/2, the condition Q=0 does not hold and
by Theorem 2 it is not A N—contractive. This method is not r-cirele contractive either
gince for all p& R the matrix

_.0- _—l_
Q—pB= ‘

. dl. g I

R

has the negative eigenvalue {(1—p)—~A—p)*+1} /2, 1. e. condition (2.15) is not
~valid. *
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