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Abstract

In this paper, a family of 3-dimemsional elements different from isoparametric sevendipity is
developed according to the variational prineiple and the convergence criteria of the mixed stiffness finite
eloment method® 9 101, For the new family, which iz named mixed stiffness olements, the number of
nodes on the quadratic (resp. cubic) element is not 20 (resp. 32) but 14 (resp. 26) . Theoretical analysis
and various computational comparisons have found the mixed stiffness element superior over the
isoparametric serendipity element, especially a substantial improvement in eomputational efficiency can
be achieved by replacing the 20 node-isoparametric olement with the 14-node mixed stiffness elemsnt,

1. Introduction

For finite element analysis of a 8—dimensional continnum, an extengively used
guadratic element is the 20-node isoparametric element. The element with the gerendi-
pity family as shape functions is sophisticated and has many advantages, but its
practical use in large-scale problems always leads to very high requirement for
compuier memory capacity and to large amount of computational work.

The trouble is caused by excesive nodes over one olement. Hence a guestion:
Can another kind of distorted rectangular blook elements with less than 20 nodes and
the same accuracy be constructed? The history of the finite element method has
indicated that it seems impossible to find any such element in the domain of standard
£nite eloments. Recent advances of nonstandard finite element methods™~%5-% make
it possible to take another way and consequenily give an affirmative answer to the
question, By means of the mixed stiffness finite olement method™®1% a new family of
curved elements is developed in the paper. A progressively increasing number of
nodes and hence improved accuracy characterize each new member of the family.
With the exception of the linear element, the number of nodes on each element of
the new family is less than that of old serendipity family by six. For quadratic and
cubic elements, they are 14 and 26 respectively.

Despite of the frequent use of linear and cubic elements in engineering design
offices, we will focus our discussion, on account of the typicalness and practical
importance of the guadratic element, on the 14-node mixed stiffness element.
- Through theorstical analysis and computational comparison with the 20-node isopara-
metric element, we will see that the performance of the new elements is quite
satisfactory.

The paper is outlined as follows. In Sect. 2 the variational formulations of the
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mixed stiffness method are briefly introduced. Sect. 8 is devoted to description of the
essentials of direct formulation. In Sect. 4 three convergence criteria of the mixed
stiffness method are posed, and the approximation of the 14-node element examined.
Sect. 5 is concerned with computational comparisons. Sect. 6 is the conclusion.

9. Mixed Stiffness Finite Element Method

Let us consider the basic boundary problem of elasticity

-—BT( o )DB( ami)““ £ in 0, (2.1)

% | p, = o, (2.2)
TG) |r,=To, (2.8)

whore B (_51_)

—matrix of differential operator defining the strain-displacement

relations,
D= olagtic mairix,

T = vector of surface tractions and T (v) = B (cos(n, z)) DB( 0

)u, where
ox;
n is the surface normal,

I, =boundary of the domain £ over which tractions T, are prescribed,
I',=boundary of 2 over which displacements u, are prescribed, and
. Iy= aﬂ\r o3 Fi

f=distributed body force.
A variational formulation equivalent to the boundary-value problem can be

expressed as™ ¥

e _1_ T-1 . é »
Hﬂ-— g{jﬂa |:2 g D {T+f ’M]dﬂ-l— - Tﬂ Mds

-], (B ))ea—4, ruas]} @.4)

? = oang,

= stationary,

where o =stresses,
u=displacements assumed to satisfy the prescribed boundary conditions,

{0} =a gubdivision of £ associated with the stresses,
{8} = — another subdivision of Q associated with the displacements, such that for

any pair (£, Q) of subdomains &(2;N(2,)\22; either is empty or runs
~ through the interior of £;,
I'yy=0(2,N Q) \84,,
Contrasting this with the Hellinger-Reissner Prineiple, which can be expressed as

M T CTEA P R

= glationary,
we see the following differences between the two variational principles:
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1) The terms of surface integral 1> %P T'«uds appear in the new principle;
n f Y,

2) The bilinear functional Ix(c, u) is defined on (La(R2))°® x (HL (Q)) where
H; (Q) ={u€ (H'(2))3%:u| pe=1uy} and H*(Q) =Sobolev space, whereag II; is defined
on Hy x Hy(uy), where

Hy—{o¢ [LQ(Q)]E:BT(—B%)Q'[D* CIL(@DT, n=1,3, -}

and Hy(uo) ={u € [La(Q@)1%:u)o, € [H(Q) 13, j=1, 2, -, u|p,=up}.

In other words, the continuity of permissible displacements at the intersubdomain
boundaries 80Q,\8Q is relaxed with the new principle al the expense of constrained
stresses s0 that the surface tractions 77 are continuons almost everywhere at 902,\0Q,

Fortunately the additional continuity requirement for 7" ean be easily satbisfied ag
for the finite element implement of the new principle since {oc€[Ly (Q)]%:0 (0 =
polynomials, n=1, 2, ... }cC H,. Therefore such variational principle has actually
been obtained in which both the permissible displacements and the permisgible
stresges are piecewise continuous.

Thug the mixed stiffness finite element method for approximating the problem
(2.1)—(2.8) consigts in secking a saddle point (o4, %) of II* on finite element
subspaces VX UyCHy X Hy. More specifically, on V,xU,;, we obfain its discrete

problem,
Find (o3, w) €V xUx(1y) such that
d(oy, o) —E(a, w) =0, Yo&l, (2.5)
E (s, v) =Lf-wd9+5£1, Torvds, YveU»(0), 2.6)

where d{(o, t)=2>| oTD*rdQ,

&y

};;Umuja(a(%)u)mh . T-uds]
5

(J’aj G‘(B(—;E)u) s 20 ,\20 T-wds],

U,(@) =finite element subspace such that the boundary condition ¢ is
satisfied at boundary nodes.

We find this method atfractive in the following features:

(1) The degrees of freedom associated with siress variables can be eliminated at
element level. Then, ag will be seen in the next section, the pattern of the standard
finite element process is not violated and the available resources of finite element
computer programs can be shared by the mixed stiffness method.

(2) Any piecewise polynomials which are eleoted according only to both the
requirement of accuracy and computational economy can beused as displacement
functions. Then the losses of computational efficiency in the standard methods from
making the digsplacements satisfy the compaiible conditions can be averted.

Owing to this point, just as will be seen later, we succeed in improving the
isoparametric elements of the serendipity family.

(3) In addition to the variational principle, the convergence of mixed stiffness

Ko, v)
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finite slement solutions is assured mainly by choosing the appropriate stress funclions.
Since stresses need not obey any coustraint, there i plenty of room for this choioce.
For the details of mathematical foundations of the method and other applications,

see [8—13].

3. Direct Formulation of 14-node Element Characteristics

8.1. Shape of element and coordinate transformation

The shape of 14-node mixed siiffness element is almost the same as the 20-node
isoparametric element in a
Qartesian Space. It is obtained
as well by distorting a cube
in the manner indicated in
Fig. 1,

In order to establish a
certain one-t0-one GOrrespon-
dence between Cartesian and
curvilinear coordinates, a
typical element ¢ and its re- Local coordinate Uartesian map
ferential cube are first divided Fig. 1 Thres dimensional ‘‘mapping” of a cubical element
into equal number of flat or curved tetrahedra. The continuous one-to-one correspon-
dence between every tetrahedron and its dual body can be established by piecewise
quadric polynomials. Then we get

X= o ﬁF{gl; yﬂ: ‘_Ua) -2 [Nfl.r FE: - ;!:l Xﬂ: (3‘1)

where N =piecewise polynomials of degree <<2. Apari frem the curved *‘boundary”
element, N, are piecewise linear in the remaining case.

X o=column vector of Oartesian coordinate of “shape nodes” describing the
form of elements. The ‘“shape nodes” consist generally of 8 corner nedes
except that the curved boundary element needs a fresh supply of ‘“‘mid-
gide” points.

Under Qiarlet and Raviart’s regularity conditions (cf. [8], § 4.8), the mappings
F are indeed one-to-one continuous and their Jacobians Jr do not vanish provided
h=diam(e)is small enough,

8.2. Displacement function and stress function

Just as the isoparametric elements, it suffices to represent these functions
explicitly on a referential cube.

For .the mixed stiffness quadratic element, the displacement nodes consish of 3
corner points and 6 mid-side points as shown in Fig. 1. Such arrangement of nodes
guarantees 6 nodes well on each flat face. It is not only necessary for determining
uniquely the displacements represented by quadric polynomials on each flat face, but
its making the total number of nodes more than 10 is also sufficient for these nodal
parameters to he able to represent any completely guadric polynomial. Thus the
permissible digplacements at any point within a typical element ¢ can be defined as a
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ocoluomn vector

% N i |
U=4 Uy = ﬁ Q}f} o [-N] {qu}n (3 -2)
U3 N)La® J,

where {4,},denotes a list of nodal displacements for a particular element. X areshape
functions not in a normal but in a generalized sensge. Since no quadric polynomial
can simulfaneously satisfy the fourteen conditions of Lagrangian interpolation,
actually N are piecewise polynomials but globally discontinnous functions. The cube
is divided into two parts by the discontinuous surface I'. In the part confaining the
node No. 1,

ﬁ= [Ni_: Nﬂ’j Nﬂ: " Nia.l Nld']-'
where N3=N19=N13=N14=0J

N1=2§4(§4 %) B(£ak1+Eals+E:E5),

Na=§£:1(281—E5—&a—1),
Ns=¢£2(26a—£21—E—1),
Ny=£3(26— 6 — 61— 1),

Nﬁ=§9§1; N9=4§1(1_'£1):
Na’*fﬁa; N:m:‘ifﬂ(l_fﬂ):
N7 =E3Es, Nyy=4£5(1—Es)

and (&1, €a, £s, €4) are the volume coordinates defined by four nodes No. 2, 3, 4, 1. In
the other part, N are defined in a similar manner.

In addition, it is worth pointing out that the 22,\00Q in (2.4) consist of the
images of the surface £ through the bijections F.

The permissible stress o can also be deiined as a column vector

o= [Y]{9,}. (3.3)

in which{4,}, denotes a listing of nodeless variables and the elements of matrix [¥']
are piecewise polynomials of degree 1 and must be continuous at I'. This construction
of [W] can reduce the calculation of the inverse matrix in (8.7) and ensure the
convergence criterion 2 in Seot. 4.
3.3. Approximate stress-atrain relationship

In the mixed stiffness method, the relationship between siress and strain is not
derived from the generalized Hooke’s law and the straing determined by the displace-
ments with differential relation, but from the variational formulation (2.4). In fact,
since d(o, o), i8 of @ positive definite form, for the digplacement u, expressed in terms
of given nodal displacement vector 9, by using the relation (3.2), there exisis a
unique stress o,= [¥]9, (u) such that

d(ou, 0)e=E (0, u),, Yo EVs, (3.4)
Let us define two matrices

S=L [@7D-[W]dRQ, (3.5)

7, 7
p-3ff 1018 () Wida—§ [TEDI NI, (3.6)
where I'y=@&(e[1Q;)\0¢ are the surfaces at which the displacemenis u are discon-
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tinuous, T'([¥]) =B (cos(n, z,)) [¥].
Then a matrix equation equivalent to(3.4)is as follows

84, (w) = B9,

o= [T]9, (v) = [¥'] 5254, (3.7)

which is the desired stress-strain relationship in a discrete form.

Remark. Since ifi is different from the assumed stress hybrid method that the
permissible stresses do not obey any equilibrium constraints in the mixed stiffness
method, the §~* in (8.7) does not imply more calculation of element stiffness matrix
needs more computer time than that of the conventional isoparametric element, even
if it is able to ovaluate the inverse matrix S—* economically by using a few inverse
matrices of lower order.

8.4. Equivalent nodal forces and element stiffness matrix

Let linear operator T Uz—¥V . be the displacement-stress relationship defined
piecewise by equations (3.4). The finite element variational problem (2.5), (2.6)
can be reduced to: Find u, € U, (24 ) such that

> BTy, m),=jn frvdQ+¢ To-uds, YoEUO). (3.8)

Physically, this is a virtual work prineciple in a discrete form. Following the
typical steps of the conventional finite element procedure (see [14], oh. 2), the nodal
forces{F}, equivalen} statically to the boundary stresses and distributed loads on the
element are wrilten as

orT

{F}e=B'S7 B+ {Filet{Fite, (3.9)
where [K7=DBTS-%E ig the stiffness matrix,

(Fy} o= —L- [N]7-£dQ are nodal forces due to distributed loads,

{F's}e= —% [N]%«Tsds are nodal forces due to boundary stresses.

Ponoe

Onoce the nodal displacements @ have been determined by solution of the overall
“structural” type equations, the stresses at any point of the element can be found
from the weighted averages over the relation (3.7) and the following

| a /]
o —DB(EE;) NI% (3.10)

Theoretically, the relations(8.7)and(83.10) are equally efficient. But calculations
in Sect. 5 demonstrates that (3.7) is more accurate.

We conolude this section with the remark that the linear element with 8 nodes
and the cubic element with 26 nodes in the family can be obtained respectively by
congtraining the nodal displacements at mid-side points and adding one node at every
edge. Of course, the permissible stress functions should also change and the piecewise

polynomials of degree 0 and 2 can be used correspondingly.

4. Convergence Analysis

In view of the complex form of nonstandard finite element methods, such as
assumed stress hybrid model and mixed stiffness model, it seems very difficult to
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ensure the convergence to the correct result, as known from the discussion on
preventing any kinematic deformation models in [7]. Considerable efforts have been
made in the last ten years to give a complete mathematical analysis of non-standard
finite element methods®-%8-10  Ag far as the mixed sfiffness method is concerned,
three convergence criteria (which can be considered as an extension of the three
criteria for the conventional finite element methods) are available,

1) Consistency criterion. The displacement and stress funotions should be so
chosen that the following equalities hold almost everywhere at interiaces between
subdomains of both the displacement and stress partitions:

Blcos(n, o)) (cy—o_ ) (ur—u_)=0, (4.1)
where o;—o_(or ¥, —u_) =the jump of function ¢(or u)at interfaces,
n==the unit outward normal to the interfaces.
In [9, 8], this is term the condition of virtual work for the jumps and it is
pointed out that the condition ensures the consistency of finite element schemes with
the approximated problems.

In the cage of V;,=DB( o

o,
ig equal to the continuity criterion since condition (4.1) will net hold unless the
displacement functions are continnous.

2) Zero energy mode criterion. The chosen displacement and stress functions
should be such that the zero work condition:

E(o, 'u.){,}-—z[ e, (ai)udﬂ PHT uds] 0, YocV, (4.2)

holds only if the nodal displacements are caused by a rigid body displacement.
Mathematically, it has to ensure that condition (4.2) implies

30| BGE] 4049,, I vt |0

It has boen proved®*" that this condition is sufficient and necessary for the
Babuska-Brezzi inequality to be satisfied, Therefore the condition is crucial for the
exigtence and convergence of mixed stiffness finite element solutions, as known from
[2, 8, 10].

38) Constant stress criterion. The digplacement and stress functions have fo be of
such a form that if nodal displacements and node siress parameters are compatible
with a constant strain-stress condition, such constant strain and constant stress will
in fact be obtained.

Provided that the requirements of Oriterian 1 and 2 are satisfied, by one of the
main results in [2, 8, 10], we have the following error estimale

o~ o]yt [g—wp]p<C{ inf |u— u[]u-l- mf lo—o|v},

U pltg)

) U;, i. e. of conventional displacement approach, this

where [o(2=|c|20+ Eﬁ? [o |3, 01,

]2 =2[ B(2 2 )u|” +h—135 oty —_|* ds
3:2:4 0302 { 20 ; % & :
Then it is obvious from the interpolation theory in the Sobolev spaces™ that the
constant stress-strain condition implies |¢—oullv+ |u— v =0(k) (h=max A;), i. e.
the convergence of mixed stiffness finite element solution (o3, %) to an exact solution
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(¢ , u)with the decreaging element size k.

It can be verified that the 14-node mixed stiffness element satisfies all of the
three criteria at least in the case that A is small enough, but we do not intend to
disonss it here and skip the detailed mathematical analysis, especially the error
estimates of |G —ox|v+ |6 —u|p =00 and |&—u|e,0=0(%*), to the forthcoming
paper.

5. Numerical Experiments

In order to test the computational efficiency of the 14-node mixed stiffness
element and to make a foew observations, we will check some numerical results and
compare them with the results of the 20-node isoparametric element. All the com-
putations were performed on a Siemens 7760 computer in double precision arithmetic,
by using SAP-5 and MISEP programs, for the calculations concerned with isopara-
metric elements of the serendipity family and 14 nodes mixed stiffness element
respectively. The MISEP program ig obtained by inserting the new element stifiness’
generation and other subroutines into SAF program written in [1].

Example 1. We consider the finite element stress analysis of an elastic prism
with curved boundary which is subjected to distributed loads

ok (@) Mz 1) + 2|
S e 1 j
f= fﬂ = (1-[-'1’) (1—-2?)) (a:2+1) dlIl{‘-’ﬂﬂ‘Fl) +__
i 3 (m3+1):]11(m3+1) +—“:_

in which E=7.2%10% »=0.28 and kinematic boundary conditions uy=1u|;p where u
is the exact displacement solution

Uy (w1 +1)3 In (a2 + 1) + 6202, |
T =% (#a+1)2 In (@3 +1) +6212s |.
(w3+1)% In(23+1) 46212, _
The domain £ occupied by the prism is as follows

i —1‘\::31%?}1 (mﬂ)
Q=J, ({1‘;1’ mg_, ﬂ?a): "*1%51;2:{«2;2(3}1) »

where g =1+0.1ginmwa,, y.(2;)=1—0.1sinze,. The cross section 2, of Q and its
6 X 6 grid are shown in Fig. 2.

By dividing @ into nXnXn prism element (n=2, 4, 5, 6), the finite element
stress analygis was carried out by employing the 14-node mixed stiffness element and
20-node isoparametric element respectively. The averaged relative errors between the
exact and approximate nodal displacements (resp. stresses), expended UPU iime and
some referential data such as total number of nodes, bandwidth and so on, are
presented in Table 1. The calculations by different elements are denoted respectively
by the symbol strings MIS14 and ISO20 in the Table 1.
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Table

N =Number of elements
N¢=Total number of nodes

Np=Number of equations
Wiy=Maximum bandwidth

W n=Mpan half bandwidth

e N S S S - T ek

Items
Beferential data Computer time (epuisec)
: I I -
Examples Hlements
N, | Ny (Mo | W |l oy |2l | 2| o,
| !

Results

. 18020 8 | 8 | 243 123 1 | 36 |3.125| 30| a7

2% 2% 2 | MIS14 8] 57| 21| 18| 10| 1 | 13| 1.3 2| 16

Subdivision I8020 8 | 81 | 243 123 * 38 | 8.85| 32| 71

el MIS14 gl 57| 20| 18| 10| 1 | 131 1.3 a| 16

l 18020 64 | 425 | 1275 | 321 4 309 | 2.9 { 870 | 1183

Ex. 1 MIS14 64 | 281 | 261 108 | 70 | 6 | 10t | 1.3 | 28| 135

4x4x4 18014 64 | 281 | 843 | 218 3 | 167 | 1.77] 280 451

Subdivision IS020 84 | 425 | 1275 | 321 4 | 366 | 2.97| 998 | 1368

Ex. 2 MIS14 64 | 281 | 261|208 | 70| 6 | 104 | 1.3 | 27| 137

ISO14 64 | 281 | 843 216 8 | 191 | 1.81| 305 499

o 18020 125 | 756 | 2268 | 458 7 | 683 | 2.79] 3180 | 3879

Ex. 1 MIS14 125 | 486 | 552 | 174 | 120 [ o [ 198 | 1.3 | 102 | 300

5x5x5 18014 125 | 486 | 1458 | 303 ¢ | 413 | 1.77] 1059 | 1476

Subdivision IS020 125 | 756 | 2268 | 456 6 | 678 | 2.78| 3160 | 3845
Ex, 2 MIS14 125 | 486 | 552 | 174 | 120 | 10 | 201 | 1.3 | 102 313

. ISO14 125 | 486 | 1458 | 303 4 | 420 | 1.81] 1070 | 1404

ISO14 216 | 793 | 2379 | 405 7 | 650 | 1.67| 2631 | 3283

G | MIS14 216 | 793 1077 | 249 | 187 | 15 | 288 | 1.3 | 383 | 736

Bubdivision 18014 216 | 793 | 2379 | 405 7 667 | 1.69| 2625 | 3299

w2 MIS14 | 216 | 793 | 1077 | 249 | 187 | 15 | 343 | 1.3 | 880 | 743

h 15020 | 16 | 165 | 470 | 119 1 | 83| 4.31| 32| 118

Ax1x8
Ex. 3 MIS14 16 | 100 | 35| 63| 42 1 | 24| 1.3 9 34
(beam)
ISO14 16 | 110 | 3051 63 1 | 31| 1568 15| 47
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1
T;=Time for input phase

T,.=Time for caleulation of structure stiffness matrix and total load vector
7 .=Time for calculation of element stifiness matrix

T,='Time for static analysis
T,==Total solution time

Averaged relative errors

| Displacements: Stresses: E ];(igx_l?‘({g?;)ll & 4(o)
|u(ps) —n (pa) |
&1 Npmax|u(py) |
L i AT 4Gy, NG gz} I A(F gyz,) ‘ A0 2,2,) ‘ (O eyey)
| 0.055284 0.105946 | 0.121936 | 0.088596 | 0.277989 | 0.026991 | 0.043778
T 0.004079 0.019460 | 0.020216 | 0.018532 | 0.026286 { 0.051769 | 0.053660
‘ 0.573966 0.527705 | 0.210669 | 0.247688 | 0.776681 | 0,125374 | 0.132401 )
0.060948 0.261033 | 0.108078 | 0.128128 | 0.364076 | 0.128826 | 0.310248
- 0.001668 0.015904 | 0.016433 | 0.016173 | 0.009935 | 0.003955 0.005120
0.001667 0.004602 | 0.004448 | 0.005370 | 0.008760 | 0.015351 | 0,013205
0.005924 0.075816 | 0.075782 | 0.076258 | 0.033644 | 0.028044 | 0.026860
: 0.090049 0.097215 | 0.077177 | 0.047921 | 0.139455 | 0.173%06 | 0.075996
0.023859 0.081863 | 0.040221 | 0.040592 | 0.069853 | 0.041249 | 0.062537
0.095916 0.207453 | 0.159784 | ©0.179051 | 0.186285 | 0.168450 | 0.118084
0.001001 0.010174 | 0.010431 | 0.010298 | 0,005837 | 0.002285 | 0.003709
0.,000957 0.003627 | 0.004617 | 0.003561 | 0.009648 | 0.009375 | 0.008268
0.003739 0.059874 | 0.059327 | 0.059438 | 0,031616 | 0.026434 | 0.023146
. 0.073298 0.056244 | 0.076522 | 0.033529 | 0.119814 | 0.161748 | 0.0456]19
0.014720 0.047082 | 0.02278% | 0.025025 | 0.048518 { 0.0286795 | 0.046026
0.079842 0.288566 | 0.14977L | 0.142615 | 0.163284 | 0.175408 | 0.094392
0.002074 0.051688 | 0.050761 | ©.051017 | 0.029232 | 0.024949 | 0.022008
0.000695 0.002871 | 0.004036 | 0.002729 | 0.007799 | 0.007195 | 0.006223 )
0.055408 0.207548 | 0.140043 | 0.125184 | 0.155378 | 0.169944 | 0.087218
0.008751 0.032695 | 0.0158024 | 0.017122 | 0.033246 | 0.017458 | 0.030863
| | —7.0183 x 1074 —~441.8
Maximum displacemsnt Maximum stress
—6.9984 x 104 —301.6
(—6.912x 104 (—432)
—5.3827 x 104 —410.7

Y . B
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Fig. 2 The cross section of the prism and 6 X6 grid

In order to make another comparison, the third kind of calcunlations wag
carried out by 14-node isoparametric element on every grid, which is achieved by
constraining linearly 6 nodal paramelers of the 20-node element so that the arrange-
ment of its nodes is the same ag the 14-node mixed stiffness element. In Table 1,
this kind of caloulation is denoted by symbol string ISO14. Although the numbers of
the nodes on two sorts of elements are equal, the degrees of accuracy shown in Table
1 form a sharp contrast. The numerical results confirm the theoretical conoclusion
that the 14-node isoparametric element ig only linear but the 14-node mixzed stiffness

element ig quadric.

Example 2. Except the distributed loads and kinematic boundary conditions,
Examples 2 and 1 are the same in all other aspects. In Example 2, we consider such
loads and boundary conditions that the boundary value problem (2.1)—(2.3) has a
unique solution of the following form:

g | [ sin 3(Waatay)
u=! s |=| sin(zszi+a;)
| Us | | coB 2(@y@atx3) _
Hence the distributed loads considered in the calculations are as follows:
P .
J=|fs|= (I+v) (1—2v)
 fa
— . : 1'_23-* 9 0 1 .
9sin 8 (22 +a,) l(l— y) -+ 5 (25 + ma)] +-2—[$35111(¢1m3+ﬂ’2) T
"|"'4mﬂ Gﬂs(ﬂﬁlﬁﬂ—l“iﬁg) J
¥ : 1_21’ o 1 .
}( Sin (@23 + %3) [(1—3‘) S (zf + 23) +§[9m3 gin (@qzg-+1)
+ 44 c08 2 (w9 +205) ] L

+- 2y 6in (@123 +29) ]

4008 22129 +25) [ (1— )4 1—22” (% + xﬁ)J—-—%—[ngsin(wgwa—le)

For numerical resulls, see Table 1.
. Example 8. Oonsider the 8-dimensional finite element stress analysis of a
simply-supported beam (Fig. 3).
In the case, the exact solution of the problem is unknown. Then in Table 1, the
maximum deflection 0.6912x107* and the maximum stress 432 on the symmetrio
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Fig. 8 The simply-supported beam subjected o concentrated loads

middle face obtained from classical beam theory are used as a referential standard of

acouracy for the comparison between the various numerical results obtained by the
different elements.

Example 4.
problem

In addition to 3—dimensional stress analysis, we also consider the

—du= (1—af) (1—28) + (1 ~25) (1 —2f) + (1 —=3) (1 — i)
in 2= (0, 1) x (0, 1) x (0, 1),

ul?ﬂ"___ﬁ.f

where the exact solution = % (1—a®) (1—a3) (1—a3),

The numerical results obiained by using 14-node mixed stiffness element are
shown in Table 2(seo[9], too):

Table 2
Irregular mesh(any four vertices of
Regular mesh
il an element might be noncoplanar)
In A
1
A (6 (ps) —un(po) | ) & {u(pe) —ua(2s) |2 \2
1’“(% — N 2 v, )
—0.69314 - 5.2155 ~4.9764
-0.91629 —5.8608 —5.7264
—1.38629 —7.4770 —7.4279

They imply that

Hence

curs as well.

1

Na ' T
111[‘_21 u(p) —ur(p) | / Na | <81nh+const.

Ny

1

3
"H’u_”hﬂﬂ;ﬂgcf(g]“(ﬁi) —u (D1) fﬂ) <Ch®,

where II: H3(Q) N Hi(Q)—U), is a Lagrangian interpolator. Then Table 2 shows that
lte— ] 0,05 Ju— | 0,0+ | s — s ] 0,0=0 (%%}, i. e. optimal rate of convergence oc-

In addition, we found through the numerical observations that there exist stress
“good” points at which more accurate approximate stresses can be obtained.
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6. Conclusion

To sum up, the 14mode mixed stiffness element ig superior over the 20-node
isoparametric element because of the following reasons:

1) The mixed gtiffness element and isoparametric element are equally satisfactory
in the data preparation, the flexibility for cocmplex geomefry and the same rate of
convergence. Furthermore, as shown in Table 1, an improvement of accuracy arises
with the same meshes when the new element is used.

2) The computing time needed to evaluate the stiffness matrix of the new
element is one half less than that for the isoparametric element when 8 X3x3 (Fauss
integralion rule is nsed.

8) Since the total number of nodes and the mean half bandwidth of new and old

eloments is of a ratio of about 5n+8 to 8n+2(i. 6. (n+1)* LD (nr1)8 (4n+1))

for n X nXn subdivision, the amount of data needed to store in the two methods is of
a ratio of about one to two, and the computational efficiency of the 14-—node mixed
stiffness element is 8—4 times the 20-node isoparametric element because the number
of arithmetical operations for the triangulation of the sparse mafirix is roughly equal
to const. X (total number of nodesg) x (mean half bandwidih)? and hence the computing
time (OPU) for the triangulaiion in the two methods is of a ratio of about (5n--3)% to
(8n+2)3.

The guobstantial improvement of compuiational efficiency has been in fact
confirmed by the fotal solution times corresponding to ISO20 and ISO14 in Table 1.
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