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Abstract

In this paper, a local multilevel product algorithm and its additive version are con-

sidered for linear systems arising from adaptive nonconforming P1 finite element approx-

imations of second order elliptic boundary value problems. The abstract Schwarz theory

is applied to analyze the multilevel methods with Jacobi or Gauss-Seidel smoothers per-

formed on local nodes on coarse meshes and global nodes on the finest mesh. It is shown

that the local multilevel methods are optimal, i.e., the convergence rate of the multilevel

methods is independent of the mesh sizes and mesh levels. Numerical experiments are

given to confirm the theoretical results.
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1. Introduction

Multigrid methods and other multilevel preconditioning methods for nonconforming finite

elements have been studied by many researchers (cf. [4–7,16,22–25,27,30–32,36,38]). The BPX

framework developed in [4] provides a unified convergence analysis for nonnested multigrid

methods. Duan et al. [16] extended the result to general V-cycle nonnested multigrid methods,

but only the case of full elliptic regularity was considered. Besides, Brenner [7] established

a framework for the nonconforming V-cycle multigrid method under less restrictive regularity

assumptions. All the above convergence results for nonconforming multigrid methods are based

on the requirement of a sufficiently large number of smoothing steps at each level. For multilevel

preconditioning methods, Oswald developed a hierarchical basis multilevel method [23] and

a BPX-type multilevel preconditioner [24] for nonconforming finite elements. On the other
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hand, Vassilevski and Wang [30] presented multilevel algorithms with only one smoothing step

per level. These multilevel algorithms may be considered as successive subspace correction

methods (SSC) (cf. [34] for details). They are completely different from standard nonconforming

multigrid methods [5]. By using the well-known Schwarz framework, a uniform convergence

result has been obtained. The idea that the conforming finite element spaces are contained

in their nonconforming counterparts is essential in the analysis of the multilevel algorithms

(cf. [30] for details). In this paper, we will use this idea to design optimal multilevel methods for

adaptive nonconforming P1 element methods (ANFEM). We note that Hoppe and Wohlmuth

[18] considered multilevel preconditioned conjugate gradient methods for nonconforming P1

finite element approximations with respect to adaptively generated hierarchies of nonuniform

meshes based on residual type a posteriori error estimators.

Recent studies (cf., e.g., [2, 11–13, 19, 21, 28]) indicate optimal convergence properties of

adaptive conforming and nonconforming finite element methods. Therefore, in order to achieve

an optimal numerical solution, it is imperative to study efficient iterative algorithms for the

solution of linear systems arising from adaptive finite element methods (AFEM). Since the

number of degrees of freedom N per level may not grow exponentially with mesh levels, as

Mitchell has pointed out in [20] for adaptive conforming finite element methods, the number of

operations used for multigrid methods with smoothers performed on all nodes can be as bad as

O(N2), and a similar situation may also occur in the nonconforming case.

For adaptive conforming finite element methods, the optimality of local multilevel methods

for 2D and 3D H1(Ω)-elliptic problems has been studied in [17, 33, 35, 37]. The hierarchy

of meshes used in the local multilevel methods can be obtained either by successive adaptive

refinement of an initial coarse mesh or by successive coarsening of a fine mesh. Wu and Chen [33]

applied the adaptively refined hierarchy of meshes generated by the newest vertex bisection

and obtained uniform convergence for the multigrid V-cycle algorithm with local Gauss-Seidel

smoother in 2D. The optimal multigrid methods developed by Xu, Chen and Nochetto [35]

are based on the reconstruction of hierarchy of meshes. There are some assumptions of this

strategy on the initial mesh and the fine mesh to guarantee that the compatible patches of

meshes do exist (cf. [35]). We do not reconstruct a virtual refinement hierarchy of meshes in

our algorithms, but use the hierarchy generated by the ANFEM. We also note that Dahmen and

Kunoth [15] proved the optimality of BPX preconditioner for piecewise linear finite elements

on the quasi-uniform meshes and the nonuniform meshes generated by red-green refinement.

Brenner, Cui and Sung [8] proved the uniform convergence of W-cycle multigrid algorithm

with sufficiently large number of smoothing steps for the symmetric interior penalty method

on graded meshes in 2D. To our knowledge, so far there does not exist an optimal multilevel

method for nonconforming finite element methods on locally refined meshes. Indeed, there are

two difficulties in the theoretical analysis which need to be overcome. First, since the multilevel

spaces are nonnested in this situation, we should consider how to design a stable decomposition

of the finest nonconforming finite element space. The second difficulty is how to establish the

strengthened Cauchy-Schwarz inequality on nonnested multilevel spaces. In this paper, we will

construct a special prolongation operator from the coarse space to the finest space, and obtain

the key global strengthened Cauchy-Schwarz inequality. Two multilevel methods, the product

and additive version, are proposed. Applying the well-known Schwarz theory (cf. [29]), we

show that local multilevel methods for adaptive nonconforming P1 finite element methods are

optimal.

The remainder of this paper is organized as follows: In Section 2, we introduce some nota-
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tions and briefly review nonconforming P1 finite element methods. Section 3 is concerned with

the study of condition number estimates of linear systems arising from the ANFEM by apply-

ing the techniques presented by Bank and Scott in [1]. In Section 4, we analyze the stability

property of a proposed prolongation operator, and address the multilevel methods featuring

local Jacobi and local Gauss-Seidel smoothers. The convergence theory of the local multilevel

methods is developed in Section 5 within the abstract framework of the Schwarz theory, and

we also present the detailed analysis for the two types of local smoothers. In the final Section

6, we give some numerical experiments to confirm the theoretical results.

2. Notations and Preliminaries

Throughout this paper, we adopt standard notation from Lebesgue and Sobolev spaces

theory (cf., e.g., [14]). In particular, we refer to (·, ·) as the inner product in L2(Ω) and to

‖ · ‖1,Ω as the norm in the Sobolev space H1(Ω). Let C, with or without subscript, denote a

generic positive constant which is independent of mesh sizes and mesh levels, but depends on

the shape regularity of the meshes. These constants can take on different values in different

occurrences.

Given a bounded Lipschitz polyhedron Ω ⊂ R
d, d = 2, 3, we consider the following second

order elliptic boundary value problem

−div(a(x)∇u) = f in Ω, (2.1)

u = 0 on ∂Ω, (2.2)

where the source function f ∈ L2(Ω). The choice of a homogeneous Dirichlet boundary condi-

tion is made for ease of presentation only. Similar results are valid for other types of boundary

conditions and equation (2.1) with a lower order term as well. We further assume that the

coefficient function in (2.1) satisfies the following property: a(x) ∈ W 1,∞(Ω) is a measurable

function and there exist constants β1 ≥ β0 > 0 such that

β0 ≤ a(x) ≤ β1 f.a.a. x ∈ Ω. (2.3)

The weak formulation of (2.1) and (2.2) is to find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v), v ∈ H1
0 (Ω), (2.4)

where the bilinear form a : H1
0 (Ω)×H1

0 (Ω) → R is given by

a(u, v) =
(
a(x)∇u,∇v

)
, u, v ∈ H1

0 (Ω). (2.5)

Since the bilinear form (2.5) is bounded and V -elliptic, the existence and uniqueness of the

solution of (2.4) follow from the Lax-Milgram theorem.

Let {Tl, l = 0, 1, · · · , L} be a shape regular family of nested geometrically conforming sim-

plicial triangulations of the computational domain Ω obtained by successive refinement of an

intentionally chosen coarse mesh T0 using newest vertex bisection algorithm. Let #S denote

the cardinality of any set S. For any T ∈ Tl, hT refers to the diameter of T . We refer to Nl as

the set of interior vertices of Tl. The set of faces on Tl is denoted by Fl. Let F0
l be the set of

interior faces of Tl and Ml be the set of all the barycenters of F0
l . We denote by Vl the lowest

order Crouzeix-Raviart nonconforming finite element space with respect to Tl, i.e.,

Vl = {vl ∈ L2(Ω) : vl|T ∈ P1(T ), T ∈ Tl ,
∫

F

JvlKds = 0, F ∈ Fl},
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where F ∈ Fl, JvlK refers to the jump of vl across F ∈ F0
l and is set to be vl|F for F ⊂ ∂Ω.

Moreover, we define the conforming P1 finite element space on Tl by

V cl = {vl ∈ H1
0 (Ω) : vl|T ∈ P1(T ), T ∈ Tl}.

The nonconforming finite element approximation of (2.4) is to find ul ∈ Vl such that

al(ul, vl) = (f, vl), vl ∈ Vl, (2.6)

where al(·, ·) stands for the mesh-dependent bilinear form

al(ul, vl) =
∑

T∈Tl

(
a(x)∇ul,∇vl

)
0,T
. (2.7)

Existence and uniqueness of the solution ul again follow from the Lax-Milgram theorem. In

the sequel, we refer to ‖ · ‖A,l as the mesh-dependent energy norm

‖vl‖2A,l =
∑

T∈Tl

al(vl, vl), vl ∈ Vl.

For brevity, when l = L we will drop the subscript L from some of the above quantities, if

no confusion is possible, e.g., we will write a(·, ·) instead of aL(·, ·) and ‖ · ‖A instead of ‖ · ‖A,L.

3. Condition Number Estimate

In this section, we consider the condition number estimate of the linear system arising

from the discrete problem (2.6) based on a natural scaling of the basis functions on TL. The

techniques presented in [1] and a prolongation operator from underlying nonconforming finite

element space to finer conforming finite element space are used.

The computation of the solution uL of (2.6) on TL always requires to solve a matrix equation

using particular basis functions for the finite element space VL. Suppose that {φi, i = 1, · · · , N}
is a given basis for VL, where N is the dimension of VL, and define the matrix A and the vector

F according to

(A)ij := a(φi, φj) and (F)i := (f, φi), i, j = 1, · · · , N.

Then, equation (2.6) is equivalent to the linear algebraic system

AU = F, (3.1)

where uL =
∑N
i=1 uiφi and (U)i = ui. We will specify conditions on VL and the basis {φi, i =

1, · · · , N} that will allow us to establish upper bounds for the condition number of A.

Let the computational domain Ω ⊂ R
d, d ≥ 2. We assume that TL contains at most α

d/2
1 N

elements, with α1 denoting a fixed constant. The following estimate holds true (cf., e.g., [14]):

C‖v‖21,T ≤ hd−2
T ‖v‖2L∞(T ) ≤ C‖v‖2L2d/(d−2)(T ), T ∈ TL, v ∈ VL, d ≥ 3. (3.2)

In the special case of two dimension, we supplement the following inequality to the latter one

in (3.2),

‖v‖L∞(T ) ≤ Ch
−2/p
T ‖v‖Lp(T ), T ∈ TL, v ∈ VL, 1 ≤ p ≤ ∞. (3.3)
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Under the assumptions on the domain Ω, there exists a continuous embedding H1(Ω) →֒ Lp(Ω).

For d ≥ 3, Sobolev’s inequality

‖v‖L2d/(d−2)(Ω) ≤ C‖v‖1,Ω, v ∈ H1(Ω). (3.4)

holds true. In two dimensions, we have a more explicit estimate (cf., e.g., [1])

‖v‖Lp(Ω) ≤ C
√
p‖v‖1,Ω, v ∈ H1(Ω), p <∞. (3.5)

As far as the basis {φi, i = 1, · · · , N} of VL is concerned, we assume that it is a local basis:

max
1≤i≤N

#{T ∈ TL : supp(φi) ∩ T 6= ∅} ≤ α2, (3.6)

where α2 is a fixed constant. Finally, we impose a more important assumption with regard to

the scaling of the basis:

Chd−2
T ‖v‖2L∞(T ) ≤

∑

supp(φi)∩T 6=∅

v2i ≤ Chd−2
T ‖v‖2L∞(T ), T ∈ TL, (3.7)

where v =
∑N

i=1 viφi and {vi}Ni=1 is arbitrary. For instance, if {ϕi, i = 1, · · · , N} denotes

the lowest order Crouzeix-Raviart nonconforming basis functions, we define a new scaled basis

{φi, i = 1, · · · , N} by φi := h
(2−d)/2
i ϕi, where hi is the diameter of the support of ϕi. Then,

the new basis satisfies assumption (3.7). We also impose the same assumption (3.7) for the

conforming finite element basis, when utilized in the sequel.

For the analysis of the condition number estimate, we propose a prolongation operator from

VL to Ṽ cL+1, where Ṽ
c
L+1 is the conforming finite element space based on T̃L+1, and T̃L+1 is a

shape regular conforming mesh obtained from TL by any bisection strategy. The prolongation

operator IL+1
L : VL → Ṽ cL+1 is defined by IL+1

L v(x) = βx if x is an interior vertex of T̃L+1,

where βx is the average of v at x, i.e., βx =
∑

x∈Ts
v|Ts/M . Here M is the number of elements

Ts ∈ TL sharing x as a vertex. Moreover, IL+1
L v(x) = 0, if the vertex x is located on the

Dirichlet boundary.

In this section, T̃L+1 is an auxiliary triangulation, only used in the analysis. In the case

of two dimension, T̃L+1 is obtained from TL by subdividing each T ∈ TL into 4 simplices

by joining the midpoints of the edges. In the case d ≥ 3, T̃L+1 is always obtained from a

refinement of TL such that the set of nodes of degrees of VL contains in NL+1. For instance,

when d = 3, T̃L+1 is obtained from TL by subdividing each T ∈ TL into 12 simplices by

joining the vertices, barycenter of T and barycenters of faces of T . The stability analysis of

the prolongation operator IL+1
L has been derived when T̃L+1 is obtained from TL by the above

bisection algorithm (cf. [30, Lemma 5.2]).

We now give bounds on the condition number of the matrix A, where {φi, i = 1, · · · , N}
is the scaled basis for VL satisfying the above assumptions. In the general case d ≥ 3, we have

the following result.

Theorem 3.1. Suppose that the nonconforming finite element space VL satisfies (3.2) and the

basis {φi, i = 1, · · · , N} satisfies (3.6) and (3.7). Then, the ℓ2-condition number κ(A) of the

matrix A is bounded by

κ(A) ≤ CN2/d. (3.8)
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Proof. We set v =
∑N
i=1 viφi, then a(v, v) = XtAX, where (X)i = vi. By a similar

technique as in the proof of Theorem 3.1 in [1], we have a(v, v) ≤ CXtX. On the other hand,

we apply the prolongation operator IL+1
L to v, and set

IL+1
L v =

∑

xi∈NL+1(T̃L+1)

IL+1
L v(xi)ψ̃i,L+1,

where {ψ̃i,L+1} is the conforming finite element basis of Ṽ cL+1. By Hölder’s inequality, Sobolev’s

inequality, and the stability of IL+1
L , we derive a complementary inequality according to

XtX ≤
∑

T∈T̃L+1

∑

supp(ψ̃i,L+1)∩T 6=∅

IL+1
L v2(xi) ≤ C

∑

T∈T̃L+1

hd−2
T ‖IL+1

L v‖2L∞(T )

≤ C
∑

T∈T̃L+1

‖IL+1
L v‖2L2d/(d−2)(T ) ≤ CN2/d‖IL+1

L v‖2L2d/(d−2)(Ω)

≤ CN2/d‖IL+1
L v‖21,Ω ≤ CN2/d‖v‖21,L ≤ CN2/da(v, v).

Using the above estimates, we obtain N−2/dXtX ≤ CXtAX ≤ CXtX, which implies

N−2/d ≤ Cλmin(A) and λmax(A) ≤ C.

Recalling κ(A) = λmax(A)/λmin(A), the above two estimates yield (3.8). �

In the special case d = 2, a similar result can be deduced as follows.

Theorem 3.2. Suppose that the nonconforming finite element space VL satisfies (3.2) and

(3.3), and that the basis {φi, i = 1, · · · , N} satisfies (3.6) and (3.7). Then, the ℓ2-condition

number κ(A) of the matrix A is bounded by

κ(A) ≤ CN
(
1 + |log(Nh2min)|

)
, (3.9)

where hmin = min{hT : T ∈ TL}.

Proof. We set v =
∑N

i=1 viφi, (X)i = vi and a(v, v) = XtAX. As in the proof of the above

theorem, it suffices to show that

CN−1
(
1 + |log(Nh2min)|

)−1
XtX ≤ XtAX ≤ CXtX. (3.10)

Actually, a(v, v) ≤ CXtX holds true as Theorem 4.1 in [1].

As far as the lower bound in (3.10) is concerned, as in the proof of Theorem 3.1 we have

(p > 2)

XtX ≤
∑

T∈T̃L+1

∑

supp(ψ̃i,L+1)∩T 6=∅

IL+1
L v2(xi) ≤ C

∑

T∈T̃L+1

‖IL+1
L v‖2L∞(T )

≤ C
∑

T∈T̃L+1

h
−4/p
T ‖IL+1

L v‖2Lp(T ) ≤ C
( ∑

T∈T̃L+1

h
−4/(p−2)
T

)(p−2)/p

‖IL+1
L v‖2Lp(T )

≤ C
( ∑

T∈T̃L+1

h
−4/(p−2)
T

)(p−2)/p

p ‖IL+1
L v‖21,Ω

≤ C
( ∑

T∈T̃L+1

h
−4/(p−2)
T

)(p−2)/p

p a(v, v) ≤ CN
(
Nh2min

)−2/p
p a(v, v).
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The special choice p = max{2,
∣∣log(Nh2min)

∣∣} allows to conclude. �

For a fixed triangulation, the conforming P1 finite element space is contained in the non-

conforming P1 finite element space. Hence, the sharpness of the bounds in Theorem 3.2 can be

verified by the same example as in [1].

4. Local Multilevel Methods

The above section clearly shows that for the solution of a large scale problem the convergence

of standard iterations such as Gauss-Seidel or CG will become very slow. This motivates the

construction of more efficient iterative algorithms for those algebraic systems resulting from

adaptive nonconforming finite element approximations.

We will present our local multilevel methods for adaptive nonconforming P1 finite element

discretizations based on the Crouzeix-Raviart elements. As a prerequisite, for the shape regular

family of nested conforming meshes {Tl}Ll=0 generated in the ANFEM using the newest vertex

bisection algorithm, when l < L, we again use the prolongation operator I l+1
l : Vl → V cl+1

defined as in section 3. The prolongation operator I l+1
l defines the values of I l+1

l v at the

vertices of elements of level l+1, yielding a continuous piecewise linear function on Tl+1. I
l+1
l v

is a function in Vl+1, and it naturally represents a function in the finest space VL. Hence, the

operator Il given by

Ilv := I l+1
l v, v ∈ Vl, 0 ≤ l < L,

defines an intergrid operator from Vl to VL. Now, proving stability of the “iterated” prolongation

operator ILl = ĨL−1 · · · Ĩl+1Il : Vl → V cL ⊂ VL, where Ĩk : V ck → V ck+1 is the natural injection

operator, is basically reduced to proving stability of the single two-level operator Il while the

influence of the multilevel operator ĨL−1 · · · Ĩl+1 is basically taken care of by results for the

nested conforming P1 case. This basic idea is the key in the design of our local multilevel

methods.

Next we provide analysis of the stability estimate of the operator Il.

Lemma 4.1. Let Tl+1 be obtained from Tl by the newest vertex algorithm. There exist positive

constants C̃I , CI independent of mesh sizes and mesh levels such that

(Ilv, Ilv) ≤ C̃I(v, v), a(Ilv, Ilv) ≤ CIal(v, v), v ∈ Vl. (4.1)

Proof. The first inequality in (4.1) is trivial for Ilv being defined by local averaging. It

suffices to derive the second one. For simplicity, we present the analysis in the 2D case. The

three dimensional case can be derived similarly.

The origin of vertices of T ∈ Tl+1 includes four cases depending whether the vertex of T is

the midpoint of an edge or a vertex in Tl. In particular, let m,n denote the number of vertices

of T ∈ Tl+1 representing midpoints or vertices in Tl, respectively. Setting S = {(m,n) : m+n =

3, m, n = 0, 1, 2, 3}, we have #S = 4. We only consider one of the possible cases: the vertices

of T ∈ Tl+1 are all vertices in Tl, i.e., T is not refined in the transition from Tl to Tl+1, e.g.,

T2 ∈ Tl+1 is also K2 ∈ Tl in Fig. 4.1. A similar analysis can be carried out in all other cases.

Note that a(Ilv, Ilv)|T2 is equivalent to

(
Ilv(x1)− Ilv(x2)

)2
+
(
Ilv(x1)− Ilv(x3)

)2
. (4.2)
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Fig. 4.1. The 2D case: the left figure illustrates a local grid of Tl, and the right one displays its

refinement as part of Tl+1.

We recall that Ilv(xi) is the average of v at xi over the triangles Ki, i = 1, ...,Mxi, where Mxi

is the number of triangles containing xi. Hence, the first term of (4.2) can be written as

1

Mx1

Mx1∑

i=1

(
v|Ki(x1)− v(m1)

)
+

1

Mx2

Mx2∑

s=1

(
v(m1)− v|Ks(x2)

)
. (4.3)

A similar result can be obtained for the second term of (4.2). Since

v|Ki(x1)− v(m1) = v|Ki(x1)− v(ml) +

l−1∑

j=1

(
v(mj+1)− v(mj)

)
,

it suffices to find a constant C such that the first term of (4.3) can be bounded by

Mx1∑

i=1

(
v|Ki(x1)− v(m1)

)
≤ Cal(v, v)|K̃ , (4.4)

where K̃ = ∪Mx1

i=1 Ki. The same analysis can be carried out for the second term of (4.3).

Following (4.2-4.4), we get

a(Ilv, Ilv)|T2 ≤ Cal(v, v)|T̃2
(4.5)

with some constant C, where T̃2 is a patch of triangles in Tl also containing the vertices of T2.

For T ∈ Tl+1, ∂T ∩ ∂Ω 6= ∅, let us assume ∂T4 ∩ ∂Ω 6= ∅. Then, a(Ilv, Ilv)|T4 can be

bounded by

C
((
Ilv(m3)− Ilv(x4)

)2
+
(
Ilv(m3)− Ilv(x5)

)2)
= 2C

(
v(m3)− v(m7)

)2
. (4.6)

Combining (4.5), (4.6) and summing up all T ∈ Tl+1 complete the proof. �

With the above prolongation operator Il, we define projections Pl, P
0
l : VL → Vl according

to

al(Plv, w) = a(v, Ilw), (P 0
l v, w) = (v, Ilw), v ∈ VL, w ∈ Vl.

For 0 ≤ l ≤ L, we also define Al : Vl → Vl by means of

(Alv, w) = al(v, w), w ∈ Vl.
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For any node p ∈ Nl, we use the notation ψp

l to represent the associated nodal conforming

basis function of V cl . Let Ñl be the set of new nodes and those old nodes where the support of

the associated basis function has changed, i.e.,

Ñl = {p ∈ Nl : p ∈ Nl \ Nl−1 or p ∈ Nl−1 but ψp

l 6= ψp

l−1}.

Fig. 4.2. The 2D case: coarse mesh (left), fine mesh (right) and illustration of M̃l: the big nodes on

the right refer to Ñl, the small nodes refer to M̃l, l = 1, · · · , L− 1.

For 1 ≤ l < L, let M̃l represent the set of barycenters of faces on which local smoothers are

performed (see Fig. 4.2 of the 2D case for an illustration):

M̃l :=
⋃

p∈Ñl

M0
l

(
supp(ψp

l )
)
, (4.7)

where M0
l

(
supp(ψp

l )
)
represents the barycenters of interior faces F0

l

(
supp(ψp

l )
)
. On the finest

level L, we set M̃L = ML.

For convenience, we set M̃l = {bil , i = 1, · · · , ñl}, where ñl is the cardinality of M̃l, and

refer to ϕil as the lowest order Crouzeix-Raviart nonconforming finite element basis function of

Vl. We also denote V 1
0 := V0, ñ0 = 1. Then, for i = 1, · · · , ñl, let P il , Qil : Vl → V il = span{ϕil}

be defined by

al(P
i
l v, ϕ

i
l) = al(v, ϕ

i
l), (Qilv, ϕ

i
l) = (v, ϕil), v ∈ Vl ,

and let Ail : V
i
l → V il be defined by

(Ailv, ϕ
i
l) = al(v, ϕ

i
l), v ∈ V il .

It is easy to see that the following relationship holds true:

AilP
i
l = QilAl. (4.8)

We assume that the local smoother Rl : Vl → Vl is nonnegative, symmetric or nonsymmetric

with respect to the inner product (·, ·). It will be precisely defined and further studied in section

5. For l = 1, · · · , L−1, Rl is only performed on local barycenters M̃l. R0 is solved directly, i.e.,

R0 = A−1
0 . On the finest level, RL is carried out on all interior barycenters ML. For simplicity,

we set A = AL and denote by IL and PL the identity operator on the finest space VL. We set

Sl := IlRlAlPl, l = 0, 1, · · · , L.
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Now, we scale Sl as follows:

Tl := µL,lSl, l = 0, 1, · · · , L. (4.9)

where µL,l > 0 is a parameter, independent of mesh sizes and mesh levels, chosen to satisfy

a(Tlv, Tlv) ≤ ωl a(Tlv, v), v ∈ VL , wl < 2.

We will also drop the subscript L from µL,l since no confusion is possible in the convergence

analysis.

With the sequences of operators {Tl, l = 0, 1, · · · , L}, we can now state the local multilevel

methods for adaptive nonconforming P1 finite element methods as follows.

Algorithm 4.1. Local multilevel product algorithm (LMPA) Given an arbitrarily chosen

initial iterate u0 ∈ VL, we seek un ∈ VL as follows:

1) Let v0 = un−1. For l = 0, 1, · · · , L, compute vl+1 by

vl+1 = vl + Tl(uL − vl). (4.10)

2) Set un = vL+1.

Algorithm 4.2. Local multilevel additive algorithm (LMAA)

Let T =
∑L

l=0 Tl and let uL be the exact solution of (2.6) on TL. Find ũL ∈ VL such that

T ũL = f̃ , (4.11)

where f̃ =
∑L

l=0 TluL.

In view of the operator equation

AlPl = P 0
l A,

the function f̃ in (4.11) is formally defined by the exact finite element solution uL which can

be computed directly, and so does the iteration (4.10).

Obviously, there exists a unique solution ũL of (4.11) coinciding with uL for (2.6) on TL.
The conjugate-gradient method can be used to solve the new problem, if T is symmetric. We

can also apply the conjugate gradient method to the symmetric version of LMAA (SLMAA)

by solving

T ũL = f

instead of (4.11), where T = 1
2 (T +T ∗), f = 1

2

∑L
l=0(Tl+T ∗

l )uL and T ∗, T ∗
l denote the adjoint

operator of T, Tl with respect to the inner product a(·, ·) respectively .

5. Convergence Theory

In this section, we provide an abstract theory concerned with the convergence of local

multilevel methods for linear systems arising from adaptive nonconforming P1 finite element
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methods. We will use the well-known Schwarz theory developed in [29, 34, 39] to analyze the

algorithms. This basic idea that the conforming P1 finite element spaces are contained in their

nonconforming counterparts plays a key role in the decomposition of the nonconforming P1

finite element space VL and the proof of a global strengthened Cauchy-Schwarz inequality.

5.1. Schwarz theory

Since the spaces {Vl}Ll=0 are nonnested, we can not directly get the space decomposition of VL
by these nonconforming finite element spaces. Based on the basic idea V cl ⊂ VL, l = 0, 1, · · · , L,
we can obtain a stable space decomposition of VL as follows:

VL =

L∑

l=0

Vl = V0 +

L∑

l=1

∑

bi
l∈M̃l

V il . (5.1)

In the next subsection we will illustrate how to construct the above space decomposition. In

the following we show the two key properties of the space decomposition (5.1) in the Schwarz

theory and delay the proof in the next subsection.

(S1) Stability of space decomposition. For any v ∈ VL, there exists a decomposition

v = v0 +

L∑

l=1

ñl∑

i=1

vil , v0 ∈ V0, v
i
l ∈ V il ,

and a positive constant Cstab, independent of mesh sizes and mesh levels, such that

‖v0‖2A,0 +
L∑

l=1

ñl∑

i=1

‖vil‖2A,l ≤ Cstab ‖v‖2A .

(S2) Global strengthened Cauchy-Schwarz inequality. For any functions

vil , w
i
l ∈ V il , 1 ≤ i ≤ ñl, 0 ≤ l ≤ L,

there exists a positive constant Corth, independent of mesh sizes and mesh levels, such that

L∑

l=0

ñl∑

i=1

l−1∑

k=0

ñk∑

j=1

a(Ilv
i
l , Ikw

j
k) ≤ Corth

( L∑

l=0

ñl∑

i=1

‖Ilvil‖2A
) 1

2
( L∑

l=0

ñl∑

i=1

∥∥Ilwil
∥∥2
A

) 1
2

. (5.2)

Let Tl = µlIlRlAlPl, 0 ≤ l ≤ L, where R0 = A−1
0 , for 1 ≤ l ≤ L − 1, Rl is local Jacobi or

local Gauss-Seidel smoother, and RL is a global Jacobi or Gauss-Seidel smoother. Based on

the above two properties S1 and S2, we can further derive the following assumptions with a

positive constant C independent of mesh sizes and mesh levels.

(A1) Let T =
∑L
l=0 Tl be an additive operator, then

‖v‖2A ≤ C

µ
a(Tv, v), v ∈ VL,

where µ = min0≤l≤L{µl}.
(A2) There exists a constant ωl ∈ (0, 2) which depends on µl but is independent of mesh sizes

and mesh levels such that

‖Tlv‖2A ≤ ωla(Tlv, v), v ∈ VL, 0 ≤ l ≤ L.
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(A3) For any vl, wk ∈ VL, 0 ≤ l, k ≤ L, we have

L∑

l=0

l−1∑

k=0

a(Tlvl, Tkwk) ≤ C
( L∑

l=0

a(Tlvl, vl)
) 1

2
( L∑

l=0

a(Tlwl, wl)
) 1

2

.

In the following subsections we will also apply the abstract theory to the algorithms LMPA

and LMAA by verifying assumptions A1-A3 for the adaptive nonconforming P1 finite element

method. There are two types of smoothers Rl, Jacobi and Gauss-Seidel iterations, which will

be considered separately.

The abstract theory of local multilevel methods can be invoked due to the above statements.

For the algorithm LMPA, the abstract theory provides an estimate for the energy norm of the

error operator

EM = (I − TL) · · · (I − T1)(I − T0),

where I is the identity operator in VL. We have the following uniform convergence theorem.

Theorem 5.1. Let the assumptions A1-A3 be satisfied. Then, for the algorithm LMPA, the

energy norm of the error operator EM can be bounded as follows (cf. [29, 34, 39])

a(EMv, EMv) ≤ δ a(v, v), v ∈ VL,

where δ = 1 − µ(2−ω)
C , ω = max

0≤l≤L
{ωl}, C is a positive constant independent of mesh sizes and

mesh levels.

For the additive local multilevel algorithm 4.2, the following theorem provides a spectral

estimate for the operator T =
∑L

l=0 Tl and its symmetric version T .

Theorem 5.2. Let the assumptions A1-A3 hold true. Then, there exists a positive constant C

independent of mesh sizes and mesh levels such that (cf. [29, 34, 39])

µ

C
‖v‖A ≤ ‖Tv‖A ≤ C‖v‖A,

µ

C
‖v‖A ≤ ‖Tv‖A ≤ C‖v‖A, v ∈ VL.

Theorem 5.2 implies that the ℓ2-condition number of T and T can be bounded as follows:

κ(T ) ≤ C

µ
, κ(T ) ≤ C

µ
.

It should be pointed out that the convergence result for LMPA or for the preconditioned con-

jugate gradient method by LMAA depends on the parameter µ, which will be observed in our

numerical experiments.

5.2. Stability of space decomposition and global strengthened Cauchy-Schwarz in-

equality

For any v ∈ VL we consider the decomposition

v =

L∑

l=0

vl, vL = v − ṽ, v0 = Π0ṽ, vl = (Πl −Πl−1)ṽ, l = 1, · · · , L− 1, (5.3)
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where ṽ = Π̃L−1v and Π̃L−1v represents a local regularization of v in V cL−1 (c.f. [10]), e.g., by

a Clément-type interpolation. The operator Πl : H
1
0 (Ω) → V cl stands for the Scott-Zhang type

quasi-interpolation operator [17, 26], and it is defined by

Πlv =
∑

p∈Nl

ψp

l

∫

σp

θpl v, v ∈ H1
0 (Ω),

where σp is a d-simplex or (d − 1)-simplex sharing the vertex p, θpl is the L2(σp)-dual basis

function such that
∫
σp
θpl w = w(p) for all w ∈ P1(σp). When l ≥ 1, for any vertex p ∈ Nl∩Nl−1

satisfying ψp

l = ψp

l−1, we can choose the same σp, thus

(Πlv −Πl−1v)(p) = 0, v ∈ H1
0 (Ω), p ∈ Nl \ Ñl.

By the space decomposition (5.3), for 1 ≤ l ≤ L− 1, we have

vl ∈
⋃

p∈Ñl

span{ψp

l } ⊂
⋃

b∈M̃l

span{ϕb
l },

then vl =
∑

b∈M̃l
vbl , v

b
l = vl(b)ϕ

b
l , ϕ

b
l ∈ Vl is the lowest order Crouzeix-Raviart nonconforming

finite element basis function corresponding to b. Thus, for 1 ≤ l ≤ L− 1, the local smoothing

nodes are those in (4.7). Since vL = v − ṽ, the smoothing relaxation on the finest level L is

done on all nodes of degrees of freedom ML. Although RL is performed on ML, Rl is a local

smoother on other levels 1 ≤ l < L. Thus the computational complexity of the local multilevel

methods is also quasi-optimal. The next lemma shows the statement S1 of the stability estimate

of the space decomposition (5.3).

Lemma 5.1. Let v ∈ VL, v = v0+
∑L

l=1

∑
bi
l∈M̃l

vil be the space decomposition in (5.3). There

exists a positive constant C independent of mesh sizes and mesh levels such that

‖v0‖2A,0 +
L∑

l=1

∑

bi
l∈M̃l

‖vil‖2A,l ≤ C ‖v‖2A . (5.4)

Proof. For 1 ≤ l ≤ L − 1, vl = (Πl −Πl−1)ṽ ∈ V cL−1 ⊂ VL. By the stability estimate of the

space decomposition of conforming P1 finite element space V cL−1 (cf. [17, 33]) and the stability

estimate of the local regularization operator Π̃l−1 [10], we deduce

L−1∑

l=1

ñl∑

i=1

‖vil‖2A,l ≤ C‖ṽ‖2A = C‖Π̃l−1v‖2A ≤ C‖v‖2A.

On the coarsest level l = 0, we have

‖v0‖2A,0 = a0(Π0ṽ,Π0ṽ) ≤ Ca(ṽ, ṽ) ≤ C‖v‖2A.

On the finest level l = L, it follows from the local estimate of Π̃L−1 that

ñL∑

i=1

‖viL‖2A ≤ C

ñL∑

i=1

h−dL,i‖v − ṽ‖20,Ωi
L
≤ C‖v‖2A,

where ΩiL = supp(ϕiL), hL,i = diam(ΩiL). The stated result is obviously obtained by combining

the above estimates. �
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For the local multilevel methods for adaptive conforming finite element methods, the asso-

ciated global strengthened Cauchy-Schwarz inequality has been established in [13, 17, 35]. Due

to the fact that the algorithms LMPA and LMAA are based on the basic property V cl ⊂ VL,

we can apply the techniques used for the conforming case (cf. [13, 17]) to prove the statement

S2.

Lemma 5.2. Let VL be decomposed as in (5.1). Then, the global strengthened Cauchy-Schwarz

inequality (5.2) in statement S2 holds true.

Proof. For convenience we introduce the generation of an element T , G(T ), by the number

of bisections for generating T from one element in T0. It is reasonable to assume that

C0θ
m ≤ hT ≤ C1θ

m, m = G(T ), ∀T ∈
L⋃

l=0

Tl,

where 0 < θ < 1 is a constant and only depends on T0 and the shape regularity of the meshes.

Let Ω̃l =
⋃

b∈M̃l
supp{ϕb

l }, T̃l = {T ∈ Tl : T ⊂ Ω̃l}. We have

I0 :=

L∑

l=1

ñl∑

i=1

l−1∑

k=1

ñk∑

j=1

a(Ilv
i
l , Ikw

j
k)

=

L∑

l=1

l−1∑

k=1

∞∑

m,n=0

∑

T∈T̃l

G(T )=m

∑

K∈T̃k

G(K)=n

∑

b∈M(T )
a∈M(K)

a(Ilṽ
b
l , Ikw̃

a
k ),

where M(T ) denotes the set of barycenters of faces of T ,

ṽbl =

{
vbl /Nl(b), if b ∈ M̃l ,

0, otherwise,

Nl(b) is the number of elements contained in T̃l sharing the barycenter b ∈ M̃l, Nl(b) = 1 or 2.

w̃a
k can be defined similarly.

Suppose m ≤ n and set

w̃n :=

l−1∑

k=1

∑

K∈T̃k

G(K)=n

∑

a∈M(K)

Ikw̃
a
k .

For any T ∈ T̃l,G(T ) = m ≤ n, b ∈ M(T ), 1 ≤ l ≤ L− 1, we first prove the following estimate:

a(Ilṽ
b
l , w̃n) ≤ Cθ

n−m
2 ‖∇Ilṽbl ‖0,Ω̃b

l

( l−1∑

k=1

∑

K∈T̃k

G(K)=n

∑

a∈M(K)

‖∇Ikw̃a
k ‖20,Ω̃b

l

) 1
2

, (5.5)

where Ω̃b
l = supp(Ilṽ

b
l ). Let Ωb

l = supp(ṽbl ), Tl+1(Ω̃
b
l ) = {T ′ ∈ Tl+1 : T ′ ⊂ Ω̃b

l }. There exist

positive constants t0, s0 depending only on the shape regularity of the meshes such that

max
T ′∈Tl+1

T ′⊂Ω̃b
l

G(T ′) ≤ min
T ′∈Tl+1

T ′⊂Ω̃b
l

G(T ′) + t0, min
T ′∈Tl+1

T ′⊂Ω̃b
l

G(T ′) ≤ min
T∈Tl

T⊂Ωb
l

G(T ) + s0.
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If n−m ≤ t0+ s0, the Cauchy-Schwarz inequality and local overlapping of subdomains {Ikw̃a
k :

a ∈ Mk} on each level directly indicate (5.5). For the case n−m > t0 + s0, we note that Ilṽ
b
l

is piecewise linear on Tl+1(Ω̃
b
l ), w̃n is piecewise linear in any T ′ ∈ Tl+1(Ω̃

b
l ). We set

ξn :=

l−1∑

k=1

∑

K∈T̃k

G(K)=n

∑

a∈M(K)
supp(Ikw̃a

k )∩∂T ′ 6=∅

Ikw̃
a
k on ∂T ′.

Let {T̂j}j≥0 be a sequence of quasi-uniformly refined meshes. Here T̂j is generated by subdi-

viding each element T ∈ T̂j−1 into 2d simplices by connecting the edge midpoints starting from

T̂0 = T0. It is clear that

supp(ξn) ∩ T ′ ⊂ ΓT ′ :=
⋃

{K ∈ T̂n : K ⊂ T ′ and ∂K ∩ ∂T ′ 6= ∅}.

Since Ilṽ
b
l is linear in T ′, using Green’s formula we have

∫

T ′

∇Ilṽbl · ∇w̃n =

∫

∂T ′

∂Ilṽ
b
l

∂n
w̃n =

∫

∂T ′

∂Ilṽ
b
l

∂n
ξn =

∫

T ′∩ΓT ′

∇Ilṽbl · ∇ξn

≤ ‖∇Ilṽbl ‖L2(ΓT ′ )‖∇ξn‖L2(ΓT ′ ) ≤ Cθ
n−m

2 ‖∇Ilṽbl ‖0,T ′‖∇ξn‖0,T ′ .

Summing up the above inequality over all Tl+1(Ω̃
b
l ) yields (5.5). When l = L, we can also get

the similar estimate as in (5.5). Applying (5.5) and the local overlapping of the supports of

Ilṽ
b
l and Ikw̃

a
k , we obtain

I1 : =

∞∑

m=0

∞∑

n=m

L∑

l=1

∑

T∈T̃l

G(T )=m

∑

b∈M(T )

a(Ilṽ
b
l ,

l−1∑

k=1

∑

K∈T̃k

G(K)=n

∑

a∈M(K)

Ikw̃
a
k )

≤ C
∞∑

m=0

∞∑

n=m

θ
n−m

2

L∑

l=1

∑

T∈T̃l
G(T )=m

∑

b∈M(T )

‖Ilṽbl ‖A
( l−1∑

k=1

∑

K∈T̃k
G(K)=n

∑

a∈M(K)

‖Ikw̃a
k ‖2A,Ω̃b

l

) 1
2

.

Since the matrix
(
θ|m−n|/2

)∞
m,n=0

has the finite spectrum radius depending only on θ, we deduce

I1 ≤ C

∞∑

m=0

∞∑

n=m

θ
n−m

2

( L∑

l=1

∑

T∈T̃l

G(T )=m

∑

b∈M(T )

‖Ilṽbl ‖2A
) 1

2
( L∑

k=1

∑

K∈T̃k

G(K)=n

∑

a∈M(K)

‖Ikw̃a
k ‖2A

) 1
2

≤ C
( ∞∑

m=0

L∑

l=1

∑

T∈T̃l
G(T )=m

∑

b∈M(T )

‖Ilṽbl ‖2A
) 1

2
( ∞∑

n=0

L∑

k=1

∑

K∈T̃k
G(K)=n

∑

a∈M(K)

‖Ikw̃a
k ‖2A

) 1
2

≤ C
( L∑

l=1

ñl∑

i=1

∥∥Ilvil
∥∥2
A

) 1
2
( L∑

l=1

ñl∑

i=1

∥∥Ilwil
∥∥2
A

) 1
2

.

When m > n, the same arguments show that the remaining terms I0 − I1 can also be bounded

as the above estimate. Thus, we have

I0 ≤ C
( L∑

l=1

ñl∑

i=1

∥∥Ilvil
∥∥2
A

) 1
2
( L∑

l=1

ñl∑

i=1

∥∥Ilwil
∥∥2
A

) 1
2

. (5.6)
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Note that

L∑

l=0

ñl∑

i=1

l−1∑

k=0

ñk∑

j=1

a(Ilv
i
l , Ikw

j
k)

=

L∑

l=1

ñl∑

i=1

l−1∑

k=1

ñk∑

j=1

a(Ilv
i
l , Ikw

j
k) +

L∑

l=1

ñl∑

i=1

a(Ilv
i
l , I0w

1
0). (5.7)

It follows from (5.6) that

‖
L∑

l=1

ñl∑

i=1

Ilv
i
l‖2A = 2

L∑

l=1

ñl∑

i=1

l−1∑

k=1

ñk∑

j=1

a(Ilv
i
l , Ikv

j
k) +

L∑

l=1

ñl∑

i=1

∥∥Ilvil
∥∥2

A

≤ C

L∑

l=1

ñl∑

i=1

∥∥Ilvil
∥∥2
A
. (5.8)

Combining (5.7), (5.6), (5.8) and the Cauchy-Schwarz inequality yields (5.2) and completes the

proof. �

In the next two subsections, we can apply the statements S1 and S2 to verify assumptions

A1-A3 for the abstract convergence theory of algorithms LMPA and LMAA with local Jacobi

and local Gauss-Seidel smoothers.

5.3. Local Jacobi smoother

The local Jacobi smoother is defined as an additive smoother (cf. [3]):

Rl := γ

ñl∑

i=1

(Ail)
−1Qil, 1 ≤ l ≤ L,

where γ ∈ (0, 1) is a suitably chosen positive scaling factor. Let R0 = A−1
0 . Due to (4.8), we

have

T0 = µ0I0P0, Tl = µlIlRlAlPl = µlγIl

ñl∑

i=1

P il Pl, l = 1, · · · , L. (5.9)

Lemma 5.3. Let {Tl}Ll=0 be defined by (5.9). Then, there exist positive constants C and µ =

min0≤l≤L{µl} such that the assumption A1 is satisfied.

Proof. Due to the decomposition of any v ∈ VL in (5.3) and Ilvl = vl, l = 0, 1, · · · , L, where
vl is defined by (5.3), there holds

a(v, v) =

L∑

l=0

a(vl, v) =

L∑

l=0

a(Ilvl, v) =

L∑

l=0

al(vl, Plv). (5.10)

For 1 ≤ l ≤ L, vl =
∑

b∈M̃l
vbl :=

∑ñl

i=1 v
i
l , we have

al(vl, Plv) =

ñl∑

i=1

al(v
i
l , Plv) =

ñl∑

i=1

al(v
i
l , P

i
l Plv)

≤
ñl∑

i=1

a
1
2

l (v
i
l , v

i
l )a

1
2

l (P
i
l Plv, P

i
l Plv)
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≤
( ñl∑

i=1

al(v
i
l , v

i
l )
) 1

2
( ñl∑

i=1

a(IlP
i
l Plv, v)

) 1
2

. (5.11)

By (5.10) and (5.11), we deduce

a(v, v) =

L∑

l=0

al(vl, Plv)

≤
(
a0(v0, v0) +

L∑

l=1

ñl∑

i=1

al(v
i
l , v

i
l )
) 1

2 ·
(
a(I0P0v, v) +

L∑

l=1

ñl∑

i=1

a(IlP
i
l Plv, v)

) 1
2

.

Combining the above estimate and the stability estimate in (5.4) yields

a(v, v) ≤ C̃
(
a(I0P0v, v) +

L∑

l=1

ñl∑

i=1

a(IlP
i
l Plv, v)

)
≤ C̃

γµ

L∑

l=0

a(Tlv, v) =
C̃

γµ
a(Tv, v),

where the positive constant C̃ is independent of mesh sizes and mesh levels. We thus obtain

the stated result by setting C = C̃/γ. �

Lemma 5.4. Let {Tl}Ll=0 be defined by (5.9). Then we can choose suitable scaling factors γ

and µl such that

a(Tlv, Tlv) ≤ ωl a(Tlv, v), v ∈ VL, ωl < 2.

Proof. If l = 0, the stability of I0 implies

a(T0v, T0v) ≤ µ2
0CIa0(P0v, P0v) = µ0CIa(T0v, v), v ∈ VL.

Let ω0 = µ0CI and choose

µ0 < 2/CI , (5.12)

then ωl < 2. When l ≥ 1, we set T il = {P jl : supp(IlP
i
l v) ∩ supp(IlP

j
l v) 6= ∅, v ∈ Vl} and

γij =

{
1, if supp(IlP

i
l v) ∩ supp(IlP

j
l v) 6= ∅ ,

0, otherwise.

The cardinality of T il is bounded by a constant depending only on the shape regularity of the

meshes. For any v ∈ Vl, the Cauchy-Schwarz inequality implies

ñl∑

i,j=1

|a(IlP il v, IlP jl v)| =
ñl∑

i,j=1

γij |a(IlP il v, IlP jl v)|

≤
( ñl∑

i,j=1

γija(IlP
i
l v, IlP

i
l v)

) 1
2
( ñl∑

i,j=1

γija(IlP
j
l v, IlP

j
l v)

) 1
2

≤ Cl

ñl∑

i=1

a(IlP
i
l v, IlP

i
l v). (5.13)
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Taking advantage of the definition of Tl and the stability of Il, we have

a(Tlv, Tlv) = µ2
l γ

2a(

ñl∑

i=1

IlP
i
l Plv,

ñl∑

i=1

IlP
i
l Plv) ≤ µ2

l γ
2

ñl∑

i,j=1

|a(IlP il Plv, IlP jl Plv)|

≤ µ2
l γ

2Cl

ñl∑

i=1

a(IlP
i
l Plv, IlP

i
l Plv) ≤ µ2

l γ
2CICl

ñl∑

i=1

al(P
i
l Plv, P

i
l Plv)

= µ2
l γ

2CICl

ñl∑

i=1

a(IlP
i
l Plv, v) = µlγCICla(Tlv, v).

The proof is completed by setting ωl = µlγCICl and choosing

0 < γ < 1, 0 < µl <
2

γCICl
(5.14)

such that ωl < 2. We remark that due to the fact that IL is the identity on the finest level we

may choose µL = 1 and 0 < γ < 1 such that ωL = γCL < 2. �

Lemma 5.5. Let {Tl}Ll=0 be defined by (5.9). There exists a positive constant C independent

of mesh sizes and mesh levels such that the assumption A3 is satisfied.

Proof. Let γ0 = 1, γl = γ, 1 ≤ l ≤ L. The global strengthened Cauchy-Schwarz inequality

(5.2) and the definition of Tl imply that

L∑

l=0

l−1∑

k=0

a(Tlvl, Tkwk)

≤ C
( L∑

l=0

ñl∑

i=1

γ2l µ
2
l

∥∥IlP il Plvl
∥∥2
A

) 1
2
( L∑

l=0

ñl∑

i=1

γ2l µ
2
l

∥∥IlP il Plwl
∥∥2
A

) 1
2

.

Let ξl = vl or wl, 0 ≤ l ≤ L. By the stability of Il, (5.12) and (5.14), we have

γ2l µ
2
l

∥∥IlP il Plξl
∥∥2
A
≤ CIγ

2
l µ

2
l a(P

i
l Plξl, P

i
l Plξl) ≤ Cγlµla(IlP

i
l Plξl, ξl),

whence
ñl∑

i=1

γ2l µ
2
l

∥∥IlP il Plξl
∥∥2
A
≤ Ca(Tlξl, ξl).

Combining the above estimates completes the proof of the lemma. �

5.4. Local Gauss-Seidel smoother

In this subsection, we will verify assumptions A1-A3 for the multilevel methods with a local

Gauss-Seidel smoother Rl which is defined by

Rl = (I − El)A
−1
l , El = (I − P ñl

l ) · · · (I − P 1
l ), l ≥ 1.

Let R0 = A−1
0 . We have

T0 = µ0I0P0 , Tl = µlIlRlAlPl = µlIl(I − El)Pl , l = 1, · · · , L. (5.15)
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Note that I − El =
∑ñl

i=1 P
i
l E

i−1
l , where E0

l = I, Eil = (I − P il ) · · · (I − P 1
l ). As Lemma 4.5

in [37], there holds

al(Plv, Plu)− al(ElPlv, ElPlu) =

ñl∑

i=1

al(P
i
l E

i−1
l Plv, E

i−1
l Plu), v, u ∈ VL. (5.16)

Lemma 5.6. Let {Tl}Ll=0 be defined by (5.15). Then there exists ωl < 2 such that

a(Tlv, Tlv) ≤ ωl a(Tlv, v), v ∈ VL.

Proof. When l = 0, the estimate has been obtained in Lemma 5.4. If l ≥ 1, due to the

definition of Tl we have

a(Tlv, Tlv) = µ2
l a(Il(I − El)Plv, Il(I − El)Plv)

= µ2
l

ñl∑

i,j=1

a(IlP
i
l E

i−1
l Plv, IlP

j
l E

j−1
l Plv).

Using (5.16), the similar techniques as in (5.13) and the stability of Il, we obtain

a(Tlv, Tlv) ≤ µ2
lCl

ñl∑

i=1

a(IlP
i
lE

i−1
l Plv, IlP

i
lE

i−1
l Plv)

≤µ2
lCICl

ñl∑

i=1

al(P
i
l E

i−1
l Plv, P

i
l E

i−1
l Plv)

=µ2
lCICl

(
al(Plv, Plv)− al(ElPlv, ElPlv)

)

=µ2
lCICl

(
al(Plv, Plv)− al((I − (I − El))Plv, (I − (I − El))Plv)

)

=µ2
lCICl

(
2al((I − El)Plv, Plv)− al((I − El)Plv, (I − El)Plv)

)

≤µ2
lCICl

(
2al((I − El)Plv, Plv)−

1

CI
a(Il(I − El)Plv, Il(I − El)Plv)

)

=2µlCICla(Tlv, v)− Cla(Tlv, Tlv), (5.17)

whence

a(Tlv, Tlv) ≤
2µlCICl
1 + Cl

a(Tlv, v).

Setting ωl =
2µlCICl

1+Cl
, and choosing µl <

1+Cl

2CICl
such that ωl < 2, the lemma is proved. We

remark that we can choose µL = 1, since IL is the identity. �

Lemma 5.7. Let {Tl}Ll=0 be defined by (5.15). Then the assumption A1 is satisfied.

Proof. In view of Lemma 5.3, for any v ∈ VL, there holds

a(v, v) ≤ C
(
a(I0P0v, v) +

L∑

l=1

ñl∑

i=1

al(P
i
l Plv, P

i
l Plv)

)
. (5.18)
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By the identity I − Ei−1
l =

∑i−1
j=1 P

j
l E

j−1
l , we deduce

ñl∑

i=1

al(P
i
l Plv, P

i
l Plv) =

ñl∑

i=1

al(P
i
l Plv, P

i
l E

i−1
l Plv) +

ñl∑

i=1

i−1∑

j=1

al(P
i
l Plv, P

i
l P

j
l E

j−1
l Plv)

≤
( ñl∑

i=1

al(P
i
l Plv, P

i
l Plv)

) 1
2
( ñl∑

i=1

al(P
i
l E

i−1
l Plv, E

i−1
l Plv)

) 1
2

+

ñl∑

i,j=1

∣∣al(P il Plv, P jl E
j−1
l Plv)

∣∣.

Similar to (5.13), the local overlapping of subdomains {Ω̃b
l : b ∈ M̃l} implies

ñl∑

i,j=1

∣∣al(P il Plv, P jl E
j−1
l Plv)

∣∣

≤ C
( ñl∑

i=1

al(P
i
l Plv, P

i
l Plv)

) 1
2
( ñl∑

i=1

al(P
i
l E

i−1
l Plv, E

i−1
l Plv)

) 1
2

.

Furthermore, using the estimate in (5.17), we have

ñl∑

i=1

al(P
i
l Plv, P

i
l Plv) ≤ C

ñl∑

i=1

al(P
i
lE

i−1
l Plv, E

i−1
l Plv) ≤

C

µl
a(Tlv, v). (5.19)

The assertion follows from (5.18) and (5.19) that

a(v, v) ≤ C

L∑

l=0

1

µl
a(Tlv, v) ≤

C

µ
a(Tv, v),

where µ = min0≤l≤L{µl}. �

Lemma 5.8. Let {Tl}Ll=0 be defined by (5.15). Then the assumption A3 is satisfied.

Proof. By the global strengthened Cauchy-Schwarz inequality (5.2) and the definition of Tl,

we have

L∑

l=0

l−1∑

k=0

a(Tlvl, Tkwk)

≤ C
( L∑

l=0

ñl∑

i=1

µ2
l

∥∥IlP ilEi−1
l Plvl

∥∥2
A

) 1
2
( L∑

l=0

ñl∑

i=1

µ2
l

∥∥IlP il Ei−1
l Plwl

∥∥2
A

) 1
2

.

For 0 ≤ l ≤ L, let ξl = vl or wl. Using the estimate in (5.17), the stability of Il and the choice

of µl in Lemma 5.6, we deduce

ñl∑

i=1

µ2
l

∥∥IlP il Ei−1
l Plξl

∥∥2
A
≤ Ca(Tlξl, ξl).

In particular, we have µ2
0 ‖I0P0ξ0‖A ≤ Ca(T0ξ0, ξ0). Combining the above estimates allows to

conclude. �
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6. Numerical Results

In this section, we present two 2D examples to illustrate the optimality of algorithm 4.1 and

algorithm 4.2. The implementation is based on the FFW toolbox [9]. We mention here that

the local multilevel methods and the corresponding convergence estimates can be extended to

the nonhomogeneous Dirichlet boundary condition. The local error estimators and the MARK

strategy for the selection of elements and edges for refinement have been realized as in the

algorithm ANFEM in [13]. In the following examples, both LMPA and LMAA are considered as

preconditioners for the conjugate gradient method, i.e., a symmetric version of LMPA (SLMPA)

has been used in the computations. Likewise, a symmetric version of LMAA (SLMAA) is

employed when the smoother is nonsymmetric, otherwise, LMAA is directly applied. The

algorithms LMPA and LMAA require O(N logN) and O(N) operations respectively, where N

is the number of degrees of freedom (DOFs) (cf. [30]).

The estimate (4.1) in Lemma 4.1 indicates that the prolongation operator Il from Vl to

VL would increase the energy by a constant CI at worst, which is essential in the convergence

analysis of the local multilevel methods. We can weaken the influence by a well chosen scaling

number µL,l in (4.9). As seen from Theorem 5.1 and Theorem 5.2, the uniform convergence

rate of LMPA or the preconditioned conjugate gradient method by LMAA will deteriorate for

decreasing scaling number µ = min0≤l≤L{µL,l}. This property can be observed in the following

Example 6.1. We always choose µL,L = 1 in the computations.

At the lth level, the discrete problem is Alul = Fl, where Al is the stiffness matrix. For

the preconditioned conjugate gradient method, the iteration stops when it satisfies

‖r0l −Alr
n
l ‖0 ≤ ǫ‖r0l ‖0, ǫ = 10−6,

where {rkl : k = 1, 2, · · · } stands for the set of iterative solutions of the residual equation

Alx = r0l .

Let u0
l = ĨlIl−1ul−1, where Il−1 and Ĩl are matrix representation of the prolongation oper-

ators Il−1 : Vl−1 → V cl and Ĩl : V
c
l → Vl respectively, and rnl = Fl −Alu

n
l , n = 0, 1, 2, · · · , be

the residual at nth iteration. Set

ǫ0 = (r0l )
tBlr

0
l , ǫn = (rnl )

tBlr
n
l ,

where Bl is defined by the local multilevel iteration. The number of iteration steps required to
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Fig. 6.1. Example 6.1: Locally refined mesh (left) at the 13th refinement level and CPU time (right)

for SLMPA-GS, SLMPA-Jacobi, SLMAA-GS and LMAA-Jacobi.
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Table 6.1: Example 6.1: Number of iterations and average reduction factor ρ on each level for the respective

algorithms with scaling number µL,l = 0.8 and µL,L = 1, 0 ≤ l ≤ L − 1, L ≥ 1. For the conjugate gradient

method without preconditioning, only the number of iterations is given.

Level DOFs
CG SLMPA-GS SLMPA-Jacobi SLMAA-GS LMAA-Jacobi

iter iter ρ iter ρ iter ρ iter ρ

13 6831 206 9 0.2203 12 0.3184 34 0.6732 46 0.7475

15 18121 310 10 0.2395 12 0.3179 35 0.6807 48 0.7567

17 49825 458 10 0.2430 12 0.3141 36 0.6853 49 0.7614

19 135060 700 10 0.2391 12 0.3079 35 0.6847 49 0.7624

20 219441 858 10 0.2405 12 0.3052 35 0.6838 50 0.7640

22 598091 1331 10 0.2353 12 0.2988 35 0.6845 49 0.7629

23 964580 1491 10 0.2356 12 0.2970 35 0.6848 50 0.7645

24 1592958 1715 10 0.2315 11 0.2873 35 0.6840 49 0.7631

Table 6.2: Example 6.1: Average reduction factors ρ (SLPMA-GS) for different scaling numbers.

Level
µL,0 = · · · = µL,L−1 = α, µL,L = 1

α = 1.8 α = 1.5 α = 1 α = 0.5 α = 0.2 α = 0.1

13 0.2448 0.2340 0.2196 0.2737 0.4100 0.5125

15 0.2479 0.2410 0.2393 0.2738 0.4234 0.5292

17 0.2508 0.2444 0.2426 0.2722 0.4194 0.5274

19 0.2484 0.2408 0.2387 0.2668 0.4148 0.5225

20 0.2482 0.2419 0.2400 0.2567 0.4088 0.5215

22 0.2666 0.2368 0.2347 0.2488 0.4023 0.5182

23 0.2666 0.2371 0.2351 0.2451 0.3979 0.5088

24 0.2678 0.2331 0.2310 0.2423 0.3949 0.5058

achieve the desired accuracy is denoted by iter. We further denote by ρ = (
√
ǫn/

√
ǫ0)

1/iter the

average reduction factor.

Example 6.1. On the L-shaped domain Ω = [−1, 1]× [−1, 1]\(0, 1]× [−1, 0), we consider the

following elliptic boundary value problem

−∆(0.5u) + u = f(x, y) in Ω,

u = g(x, y) on ∂Ω,

where f and g are chosen such that u(r, θ) = r
2
3 sin(23θ) is the exact solution (in polar coordi-

nates).

For ease of notation, we refer to SLMPA-GS, SLMPA-Jacobi, SLMAA-GS and LMAA-

Jacobi as the preconditioned conjugate gradient method by SLMPA, SLMAA LMAA with

local Gauss-Seidel smoother or local Jacobi smoother, respectively. For the Jacobi iteration,

the scaling factor is chosen according to γ = 0.8.

At first, we choose µL,l = 0.8 (0 ≤ l < L) to illustrate the optimality of our algorithms.

The left one of Fig. 6.1 displays the locally refined mesh at the 13th refinement level. As

seen from Table 6.1, the number of iterative steps of the conjugate gradient method without

preconditioning (CG) increases quickly with the mesh levels. However, for the algorithms

SLMPA-GS, SLMPA-Jacobi, SLMAA-GS and LMAA-Jacobi we observe that the number of
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iteration steps and the average reduction factors are all bounded independently of mesh sizes

and mesh levels. These results and the right one of Fig. 6.1, displaying the CPU times (in

seconds) for the respective algorithms, demonstrate the optimality of the algorithms and thus

confirm the theoretical analysis.

Next, we choose different scaling numbers to illustrate how they influence the convergence

behavior of the local multilevel methods. We only list the results for SLMPA-GS. A similar

behavior can be observed for the other algorithms. We choose µL,0 = · · · = µL,L−1 = α and

µL,L = 1, and thus µ = min{α, 1}. Table 6.2 shows that for a fixed α, SLMPA-GS converges

almost uniformly. The last four numbers of each row in Table 6.2 show that for a fixed level

the average reduction factor of SLMPA-GS deteriorates for decreasing µ. We also note that

for µ = 1 the convergence rate of SLMPA-GS deteriorates only with respect to ωl (the spectral

bound of Tl), which increases linearly with µL,l. If α ≥ 1, then µ = min{α, 1} = 1, and the

convergence rate will also deteriorate as α increases. This is also observed for the first numbers

of each row in Table 6.2. From Table 6.2 we can also observe that although µL,l will influence

the convergence of local multilevel methods, the algorithms are not very sensitive with the the

choice of scaling factor.
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Fig. 6.2. Example 6.2: Locally refined mesh (left) at the 24th refinement level and CPU time (right)

for SLMPA-GS, SLMPA-Jacobi, SLMAA-GS and LMAA-Jacobi.

Table 6.3: Example 6.2: Number of iterations and average reduction factors ρ on each level for the

respective algorithms. For the conjugate gradient method without preconditioning, only the number

of iterations is given.

Level DOFs
CG SLMPA-GS SLMPA-Jacobi SLMAA-GS LMAA-Jacobi

iter iter ρ iter ρ iter ρ iter ρ

28 18206 287 11 0.2610 14 0.3756 51 0.7720 65 0.8154

32 46105 417 10 0.2403 14 0.3615 52 0.7745 65 0.8161

34 73571 523 11 0.2628 14 0.3773 55 0.7854 70 0.8271

36 116866 634 10 0.2511 13 0.3309 52 0.7768 63 0.8105

40 292148 942 10 0.2513 14 0.3708 55 0.7880 70 0.8286

42 462599 1168 10 0.2395 12 0.3181 52 0.7765 64 0.8141

44 727564 1404 10 0.2337 13 0.3511 53 0.7808 68 0.8243

46 1150917 1536 10 0.2435 14 0.3615 54 0.7852 70 0.8275
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Example 6.2. We consider Poisson’s equation

−∆u = 1 inΩ,

with Dirichlet boundary conditions on a domain with a crack, namely Ω = {(x, y) : |x| + |y| ≤
1}\{(x, y) : 0 ≤ x ≤ 1, y = 0}. The exact solution is r

1
2 sin(θ/2)− 1

4r
2 (in polar coordinates).

In this example, we choose µL,L = 1, µL,l = 1 and µL,l = 0.8 (0 ≤ l < L, L ≥ 1), respectively,

for the local multilevel methods with local Gauss-Seidel smoother and local Jacobi smoother.

The left one of Fig. 6.2 displays the locally refined mesh at the 24th refinement level. The

numbers in Table 6.3 and the CPU times (in seconds) displayed in the right one of Fig. 6.2 show

a similar behavior as in the previous example and thus also support the theoretical findings.
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