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Abstract

In this paper, we consider the adaptive finite element approximation for the distributed

optimal control associated with the stationary Bénard problem under the pointwise control

constraint. The states and co-states are approximated by polynomial functions of lowest-

order mixed finite element space or piecewise linear functions and control is approximated

by piecewise constant functions. We give the a posteriori error estimates for the control,

the states and co-states.
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1. Introduction

The control of viscous flow for the purpose of achieving some desired objective is crucial to

many technological and scientific applications. The Boussinesq approximation of the Navier-

Stokes system is frequently used as mathematical model for fluid flow in semiconductor melts.

In many crystal growth technics, such as Czochralski growth and zone-melting technics, the

behavior of the flow has considerable impact on the crystal quality. It is therefore quite natural

to establish flow conditions that guarantee desired crystal properties. As control actions, they

include distributed forcing, distributed heating, and others. For example, the control of vorticity

has significant applications in science and engineering such as the control of turbulence and

control of crystal growth process.

Considerable progress has been made in mathematics physics and computation for the op-

timal control problems of the viscous flow; see [1, 2, 9, 11, 12] and reference therein. Optimal

control problems of the thermally coupled incompressible Navier-Stokes equation by Neumann

and Dirichlet boundary heat controls were considered in [11, 12]. Also, the time dependent

problems were considered in the literature. In this article, we consider the Bénard problem

whose state is governed by the Boussinesq equations, which are crucial to many technological

and scientific applications. Without the control constraint, the approximation for the optimal

control of the stationary Bénard problem was considered in [16], and it used the gradient itera-

tive method to solve the discretized equations. For the constrained control case, there seems to
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be little work on this problem. This paper is concerned with the finite element approximation

for the constrained optimal control problem of the stationary Bénard problem:

(P) min
Q∈K

J(Q) = {
1

2
‖u−U‖2

L2 +
α

2
‖Q‖20,Ω},

subject to the Boussinesq system:

(a) − ν∆u+ (u · ∇)u+∇p = Tg+ f in Ω,

(b) ∇ · u = 0 in Ω,

(b) − κ∆T + u · ∇T = Q in Ω,

(c) u = 0 T = 0 on ∂Ω

(1.1)

and subject to the control constraint

K =
{

Q ∈ L2(Ω) : Q(x) ≥ d > 0; a.e. x ∈ Ω
}

, (1.2)

where Ω is the regular bounded and convex open set in R
n (n = 2, or 3), with ∂Ω ∈ C1,1.

u, p, T denote the velocity, pressure and temperature fields, respectively, f is a body force, and

the control Q. The vector g is in the direction of gravitational acceleration and κ > 0 is the

thermal conductivity parameter. In this paper we only consider, for the simplicity, the case

where κ is constant. Assume ν > 0 is the kinematic viscosity.

The optimal control problem (P) is to seek the state variables (u, p, T ) and Q such that the

functional J is minimized subject to (1.1) where U is some desired velocity fields. The physical

target of the minimization problem is to match a desired flow field by adjusting the distributed

control Q.

Adaptive finite element approximation is of very importance in improving accuracy and

efficiency of the finite element discretisation. It ensures a higher density of nodes in certain

area of the given domain, where the solution is more difficult to approximate, using a posteriori

error indicator. In this sense, efficiency and reliability of adaptive finite element approximation

rely very much on the error indicator used. Recently adaptive mesh refinement has been found

quite useful in computing optimal control problem governed by elliptic equations, see [19], for

example. Usually the control variable has only limited regularity. Thus suitable adaptive mesh

can quite efficiently reduce the approximation error. There have been very extensive studies

on the a posteriori error estimates and convergence analysis for the optimal control problems

governed by elliptic or time dependent equations; see, for example, [22,24,25] and [19,23,26] and

the references cited therein. However there seems to exist few known results on the a posteriori

error estimates for the above control problem governed by the coupled nonlinear equations.

The paper is organized as follows. In Section 2, we give some notations and assumptions that

will be used throughout the paper. In Section 3, we will discuss the finite element approximation

for the optimal control problem. Section 4 contains the a posteriori error estimate for the

optimal control problem in this article.

2. Notations and Preliminaries

Using the classical techniques, it can be proved that the optimal control problem has at

least one solution. The reader is referred to [15, 18] for the details.
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Similarly to [17, 19] and using the result of [8], it is well known that if (u, p, T ) is the

solution of (P), then there are the co-state (w, σ, ϕ,Q) such that (u, p, T,w, σ, ϕ,Q) satisfies

the following optimality conditions:

(a) − ν∆u+ (u · ∇)u+∇p = Tg+ f in Ω,

(b) ∇ · u = 0 in Ω,

(b) − κ∆T + u · ∇T = Q in Ω,

(c) u = 0 T = 0 on ∂Ω

(2.1)

coupled with the co-state equations and variational inequality:

(a) − ν∆w− (u · ∇)w+∇utrw−∇σ + ϕ∇T = u−U in Ω,

(b) ∇ ·w = 0 in Ω,

(c) − κ∆ϕ− u · ∇ϕ = w · g in Ω,

(c) w = 0 ϕ = 0 on ∂Ω,

(d)

∫

Ω

(αQ + ϕ)(P −Q) dx ≥ 0 ∀ P ∈ K,

(2.2)

where ∇utr denotes the transpose of ∇u.

To consider the weak formulations of the equations (2.1) and (2.2), we need to introduce

some function spaces and the bilinear and trilinear forms. In this paper we adopt the standard

notation Wm,q(Ω) for Sobolev spaces on Ω with the norm ‖ · ‖m,q,Ω and the seminorm | · |m,q,Ω.

We denote Wm,2(Ω) (Wm,2
0 (Ω)) by Hm(Ω) (Hm

0 (Ω)) with the norm ‖ ·‖m,Ω and the semi-norm

| · |m,Ω. For vector-valued functions and spaces of vector-valued functions, which are indicated

by boldface, we define the Sobolev Space Hm(Ω)

Hm(Ω) =
{

u = (u1, · · · , un)| ui ∈ Hm(Ω), i = 1, · · · , n
}

and its associated norm ‖ · ‖Hm(Ω) is given by

‖u‖2
Hm(Ω) =

n
∑

i=1

‖ui‖
2
Hm(Ω).

We also define the following subspaces

L2
0(Ω) = {f ∈ L2(Ω) :

∫

Ω

f dx = 0}, H1
0(Ω) = {u ∈ H1(Ω); u = 0 on ∂Ω}.

Then introduce the bilinear and trilinear forms, for all u,v,w ∈ H1(Ω), T, S ∈ H1(Ω) and

q ∈ L2
0(Ω),

a0(u,v) =

∫

Ω

ν∇u · ∇v dx, a1(T, S) =

∫

Ω

κ∇T · ∇S dx,

c0(u,v,w) =

∫

Ω

(u · ∇)v ·w dx, c1(u, T, S) =

∫

Ω

u · ∇TS dx,

and

b(v, q) = −

∫

Ω

q∇ · v dx, d(T,v) =

∫

Ω

Tg · v dx.
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Moreover we assume that b(v, q) satisfies the inf-sup condition, i.e.: there exists a constant

β > 0 such that

inf
06=q∈L2

0
(Ω)

sup
0 6=v∈H1

0
(Ω)

b(v, q)

‖v‖H1‖q‖L2

≥ β. (2.3)

Then, we have the weak formulation: seek (u, p, T,w, σ, ϕ,Q) ∈ H1
0(Ω)× L2

0(Ω)×H1
0 (Ω)×

H1
0(Ω)× L2

0(Ω)×H1
0 (Ω)×K such that

(a) a0(u,v) + c0(u,u,v) + b(v, p) = d(T,v) + (f,v) ∀ v ∈ H1
0(Ω),

(b) b(u, q) = 0 ∀ q ∈ L2
0(Ω),

(c) a1(T, S) + c1(u, T, S) = (Q,S) ∀ S ∈ H1
0 (Ω)

(2.4)

and

(a) a0(w,v) + c0(v,u,w) + c0(u,v,w)− b(v, σ)

= (u-U,v)− c1(v, T, ϕ) ∀ v ∈ H1
0(Ω),

(b) b(w, q) = 0 ∀ q ∈ L2
0(Ω),

(c) a1(ϕ, S) + c1(u, S, ϕ) = d(S,w) ∀ S ∈ H1
0 (Ω),

(d)

∫

Ω

(αQ + ϕ)(P −Q) dx ≥ 0 ∀ P ∈ K.

(2.5)

3. Finite Element Approximation

We are now able to introduce a finite element approximation for the optimal control problem

(1.1). The same as the article [3], we first give the following basic knowledge of finite element

method. To this end, we consider a family of triangulations Th, h > 0, of Ω̄. With each element

T ∈ Th, we associate two parameters ρ(T ) and σ(T ), where ρ(T ) denotes the diameter of the

set T and σ(T ) is the diameter of the largest ball contained in T . The mesh size of the grid

is defined by h = max
T ∈Th

ρ(T ). We suppose that triangulations Th satisfy the following regularity

assumptions:

(H1) There exist two positive constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

σ(T )

ρ(T )
≤ ρ

hold for all T ∈ Th and all 0 < h ≤ 1.

(H2) Define Ω̄h =
⋃

T ∈Th
T , and let Ωh and Γh denote its interior and its boundary, respec-

tively. We assume that Ω̄h is convex and that the vertices of Th placed on the boundary of Γh

are points of Γ. We also assume that

|Ω\Ωh| ≤ Ch2.

Next, to every boundary triangle T of Th we associate another triangle T̂ with curved boundary,

in which the edge between boundary nodes of T is substituted by the corresponding curved part

of Γ. We denote by T̂h the union of these curved boundary triangles with interior triangles of

Th, such that Ω̄ =
⋃

T̂ ∈T̂h
T̂ .
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Denote by Pk function space of polynomial of degree less or equal than k. Introduce finite

element spaces as follows:

K ′
h =

{

Qh ∈ L2(Ω) : Qh|T̂ = constant, T̂ ∈ T̂h
}

, Kh = K ′
h ∩K,

Vh =
{

yh ∈ C(Ω̄) : yh|T ∈ P1(T ), T ∈ Th; yh = 0 on Ω̄\Ωh

}

.

Next we introduce the one-order Raviart-Thomas mixed finite element spaces as [20]: V̄h ×

X̄h ⊂ H1
0 × L2

0 such that for a positive constant β0, the following inf-sup condition satisfies:

inf
06=qh∈X̄h

sup
0 6=vh∈Vh

b(vh, qh)

‖vh‖H1‖qh‖L2

≥ β0. (3.1)

Moreover, similarly to Vh, we define

Vh =
{

yh ∈ V̄h on Ωh; yh = 0 on Ω̄\Ωh

}

,

Xh =
{

ph ∈ X̄h : ph|T̂ = constant, T̂ ∈ T̂h
}

.

Now, it is obvious that Vh × Xh is defined on Ω̄, and then the finite dimensional approxi-

mation of the optimal control problem is:

(Ph) min
Qh∈Kh

Jh(Qh) =

{

1

2
‖uh −U‖2

L2 +
α

2
‖Qh‖

2
0,Ω

}

(3.2)

subject to seek (uh, ph, Th) ∈ Vh ×Xh × Vh such that

(a) a0(uh,vh) + c0(uh,uh,vh) + b(vh, ph) = d(Th,vh) + (f,vh) ∀ vh ∈ Vh,

(b) b(uh, qh) = 0 ∀ qh ∈ X h ,

(c) a1(Th, Sh) + c1(uh, Th, Sh) = (Qh, Sh) ∀ Sh ∈ Vh.

(3.3)

The optimal control problem (Ph) associated with state equations (3.3) is equivalent to

optimality conditions as follows: Seek (uh, ph, Th) ∈ Vh ×Xh × Vh such that

(a) a0(uh, vh) + c0(uh,uh, vh) + b(vh, ph) = d(Th, vh) + (f, vh) ∀ vh ∈ Vh,

(b) b(uh, qh) = 0 ∀ qh ∈ Xh ,

(c) a1(Th, Sh) + c1(uh, Th, Sh) = (Qh, Sh) ∀ Sh ∈ Vh

(3.4)

couple with co-state system and inequality: (wh, σh, ϕh, Qh) ∈ Vh ×Xh × Vh ×Kh such that

(a) a0(wh, vh) + c0(vh,uh,wh) + c0(uh, vh,wh)− b(vh, σh)

= (uh −U, vh)− c1(vh, Th, ϕh) ∀ vh ∈ Vh,

(b) b(wh, qh) = 0 ∀ qh ∈ Xh ,

(c) a1(ϕh, Sh) + c1(uh, Sh, ϕh) = d(Sh,wh) ∀ Sh ∈ Vh,

(d)

∫

Ω

(αQh + ϕh)(Ph −Qh)dx ≥ 0 ∀ Ph ∈ Kh.

(3.5)

Based on the results of [15, 16] about the existing of solution, we know that there exists

one solution of (P) and (Ph) respectively at least. On the other hand, we denote constants C

and ǫ be a generic constant and small positive number which are independent of the discrete

parameters and may have different values in different circumstances respectively.
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4. A Posteriori Error Estimates

In this section, we will give the a posteriori error estimates of control and states. Before

that, we need to give some useful assumptions or results.

Firstly, we need assume that the cost function J is strictly convex near the solutions Q, i.e.,

(H3): For each solution Q there is a neighborhood of Q in L2 such that J is convex in the

sense that there is a constant c∗ > 0 satisfying:

c∗‖Q− P‖20,Ω ≤ (J ′(Q)− J ′(P ), Q − P ), (4.1)

for all P in this neighborhood of Q.

The convexity of the cost function J is closely related to the second order sufficient conditions

of the control problem, which are assumed in many studies on numerical methods of the problem,

for example [3, 5, 8, 14]. More discussion of this can be found in, for example, [6] and [7].

Secondly, we introduce the definition of [25] that the solution (Q,u, T ) is regular: which

means that for the solution u of (P), the linear co-state system

(a) − ν∆v− (u · ∇)v +∇vtru−∇ζ + ̺∇T = r in Ω,

(b) ∇ · v = m in Ω,

(c) − κ∆̺− u · ∇̺− v · g = g in Ω,

(d) v = 0, ̺ = 0 on ∂Ω

(4.2)

is well-posed and:

(R1) For each (r,m, g) ∈ [H−1(Ω)]n × L2(Ω) × H−1(Ω), the system (4.2) has a unique

solution and there holds the a priori estimate

‖v‖H1 + ‖̺‖1,Ω + ‖ζ‖0,Ω ≤ C
(

‖r‖H−1 + ‖m‖0,Ω + ‖g‖−1,Ω

)

. (4.3)

As consequence of regularity theory of partial differential equation ( see [4,10,21] ), if (r,m, g) ∈

[L2(Ω)]n × L2(Ω)× L2(Ω) we can also get that

‖v‖H2 + ‖̺‖2,Ω + ‖ζ‖1,Ω ≤ C
(

‖r‖L2 + ‖m‖0,Ω + ‖g‖0,Ω
)

. (4.4)

Furthermore, before obtaining the a posteriori error estimates for the states and co-states,

we firstly give some useful lemmas.

Lemma 4.1. Let Ih be the standard Lagrange interpolation operator. For m = 0 or 1, q > n
2

and v ∈ W 2,q(Ω),

|v − Ihv|Wm,q(Ωh) ≤ Ch2−m|v|W 2,q(Ωh). (4.5)

Lemma 4.2. Let πh be the average interpolation operator defined in [27], then there is a

constant C such that

|v − πhv|m,p,τ ≤ C
∑

τ̄
′∩τ̄ 6=∅

h1−m
τ |v|1,p,τ ′ ,

for v ∈ W 1,p(Ωh), 1 ≤ p ≤ ∞, and m = 0 or 1.
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Lemma 4.3. ([13]) There is a constant C such that for all v ∈ W 1,p(Ωh), 1 ≤ p < ∞, the

following inequality hold

‖v‖W 0,p(∂τ) ≤ C
(

h
− 1

p

τ ‖v‖W 0,p(τ) + h
1− 1

p

τ |v|W 1,p(τ)

)

.

Moreover, let us recall the Raviart-Thomas projection Πh : V → Vh, which satisfies: for

any v ∈ V

(div(v −Πhv), wh) = 0, ∀ wh ∈ Xh.

Then, we also know that divΠh = Phdiv : V → Wh, and the following approximation properties:

‖v−Πhv‖L2 ≤ Ch‖v‖H1 for v ∈ V,

‖div(v −Πhv)‖0,Ω ≤ Ch‖divv‖1,Ω for divv ∈ H1.

Moreover, in order to derive sharp a posteriori error estimates, we divide Ω into some subsets:

Ω−
d = {x ∈ Ω : ϕh ≤ −αd},

Ωd = {x ∈ Ω : ϕh > −αd, Qh = d},

Ω+
d = {x ∈ Ω : ϕh > −αd, Qh > d}.

Then, it is easy to see that above three subsets are not intersected each other, and

Ω̄ = Ω̄−
d ∪ Ω̄d ∪ Ω̄+

d .

Remark 4.1. In the sequential, we fixed a discretized solution which converges to a related

nonsingular solution of our system, and which means that we give the a posteriori error estimates

of the pairs of local solutions under above assumptions.

Now let us have an intuitive analysis on the approximation error for the control. On Ωd,

asymptotically we can assume that

0 < ϕh + αQh → ϕ+ αQ.

Hence it follows from the optimality conditions that Q = Qh = d on Ωd. Thus the error on Ωd

may be negligible. We should only need to estimate the error on

Ω \ Ωd = Ω−
d ∪ Ω+

d

in order to avoid over-estimate.

Hereafter, introduce

e2 =

∫

Ω∗

(

αQ + ϕ−Rh(αQ + ϕ)
)2
,

Rh is the L2-project operator from L2(Ω) to K ′
h, and

Ω∗ =
{

x ∈ Ω+
d : Q(x) = d, Qh(x) > d

}

.

Furthermore, we introduce auxiliary functions (u(Qh), p(Qh), T (Qh),w(Qh), σ(Qh), ϕ(Qh))

satisfying the following problem:

(a) a0(u(Qh),v) + c0(u(Qh),u(Qh),v) + b(v, p(Qh))

= d(T (Qh),v) + (f,v) ∀ v ∈ H1
0(Ω),

(b) b(u(Qh), q) = 0 ∀ q ∈ L2
0(Ω),

(c) a1(T (Qh), S) + c1(u(Qh), T (Qh), S) = (Qh, S) ∀ S ∈ H1
0 (Ω)

(4.6)
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and

(a) a0(w(Qh),v) + c0(v,u(Qh),w(Qh)) + c0(u(Qh),v,w(Qh))− b(v, σ(Qh))

= (u(Qh)−U,v)− c1(v, T (Qh), ϕ(Qh)) ∀ v ∈ H1
0(Ω),

(b) b(w(Qh), q) = 0 ∀ q ∈ L2
0(Ω),

(c) a1(ϕ(Qh), S) + c1(u(Qh), S, ϕ(Qh)) = d(S,w(Qh)) ∀ S ∈ H1
0 (Ω).

(4.7)

Then from the result of [15], we have the regularity:

‖u(Qh)‖H2 + ‖w(Qh)‖H2 + ‖T (Qh)‖H2 + ‖ϕ(Qh)‖H2 + ‖p(Qh)‖H1 + ‖σ(Qh)‖H1

≤ C
(

‖f‖L2 + ‖Qh‖L2

)

.

Lemma 4.4. Let Q and Qh be the solutions of (1.1) and (3.2) respectively. Based on the above

convexity assumption (4.1), then for sufficient small h

e2 + ‖Q−Qh‖
2
0,Ω ≤ C

(

η21 + ‖ϕ(Qh)− ϕh‖
2
0,Ω

)

, (4.8)

where ϕh and ϕ(Qh) are the solutions of the equations (3.5) and (4.7) respectively, and

η21 =

∫

Ω−

d
∪Ω+

d

(αQh + ϕh)
2.

Proof. It follows from the assumption (4.1) that

c∗‖Q−Qh‖
2
L2 ≤ (J ′(Q), Q−Qh)− (J ′(Qh), Q−Qh)

≤ −(J ′(Qh), Q −Qh) = (J ′
h(Qh), Qh −Q) + (J ′

h(Qh)− J ′(Qh), Q −Qh). (4.9)

Note that

(J ′
h(Qh), Qh −Q) =

∫

Ω−

d
∪Ω+

d

(αQh + ϕh)(Qh −Q) +

∫

Ωd

(αd + ϕh)(d−Q), (4.10)

it follows from the Schwarz’s inequality and the inequality 2ab ≤ a2/δ + δb2 that

∫

Ω−

d
∪Ω+

d

(αQh + ϕh)(Qh −Q)

≤
1

2δ

∫

Ω−

d
∪Ω+

d

(αQh + ϕh)
2 +

δ

2
‖Qh −Q‖2L2 =

1

2δ
η21 +

δ

2
‖Qh −Q‖2L2, (4.11)

where δ > 0 is a constant which will be specified later.

It follows from the definition of Ωd that (αd + ϕh) > 0 on Ωd. Because that d−Q ≤ 0, we

have that
∫

Ωd

(αd+ ϕh)(d −Q) ≤ 0. (4.12)

It follows from (4.10)-(4.12) that

(J ′
h(Qh), Qh −Q) ≤ C(δ)η21 + δ‖Qh −Q‖2L2. (4.13)
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By using the formulas of J ′, J ′
h, it follows that

(J ′
h(Qh)− J ′(Qh), Q−Qh)

= (αQh + ϕh, Q−Qh)− (αQh + ϕ(Qh), Q−Qh)

= (ϕh − ϕ(Qh), Q −Qh) ≤
1

2δ
‖ϕh − ϕ(Qh)‖

2
L2 +

δ

2
‖Qh −Q‖2L2

≤ C(δ)‖ϕh − ϕ(Qh)‖
2
L2 +

δ

2
‖Qh −Q‖2L2. (4.14)

Note that Qh > d on Ω∗, then Rh(αQh + ϕh) = 0 on Ω∗, and the proof can be given

similarly as in [14]. Therefore,

e2 =

∫

Ω∗

(

(αQ + ϕ)−Rh(αQ + ϕ)
)2

≤ C

∫

Ω∗

(

(αQ + ϕ)− (αQh + ϕh)
)2

+ C

∫

Ω∗

(αQh + ϕh)
2

+C

∫

Ω∗

(

Rh(αQh + ϕh)
)2

+ C

∫

Ω∗

(

Rh(αQ + ϕ)−Rh(αQh + ϕh)
)2

≤ C(‖ϕ− ϕh‖
2
0,Ω + ‖Q−Qh‖

2
0,Ω) + C

∫

Ω∗

(αQh + ϕh)
2

≤ Cη21 + C‖ϕ(Qh)− ϕh‖
2
0,Ω + ‖ϕ− ϕ(Qh)‖

2
0,Ω. (4.15)

From the related result of [4, 10, 14, 15, 21] for sufficient small h, we can have

‖ϕ− ϕ(Qh)‖0,Ω ≤ C‖Q−Qh‖0,Ω.

Therefore, (4.8) follows from (4.9), (4.13), (4.14) (4.15) by setting δ = c∗
3 . �

In the following parts, we give the main results of this paper. Before that, let us to show

some lemmas. The proof of our main result is completed by the following lemmas.

Lemma 4.5. Let (u(Qh), T (Qh), p(Qh)) and (uh, Th, ph) be the solutions of (3.4) and (4.6)

respectively. Let (w(Qh), ϕ(Qh), σ(Qh)) and (wh, ϕh, σh) be the solutions of the co-state equa-

tions (3.5) and (4.7) respectively. Suppose that above assumptions are fulfilled, then for sufficient

small h, we have the following estimate

‖u(Qh)− uh‖
2
L2(Ω) + ‖T (Qh)− Th‖

2
0,Ω + ‖p(Qh)− ph‖

2
0,Ω ≤ C

5
∑

i=2

η2i , (4.16)

where

η22 =
∑

τ∈T h

∫

τ

h4
τ

∣

∣− ν∆uh + (uh · ∇)uh − Thg+∇ph − f
∣

∣

2
,

η23 =
∑

l∩∂Ω=∅

∫

l

h3
l [ν∇uh · n− phn]

2, η24 =
∑

τ∈T h

∫

τ

h4
τ

∣

∣− κ∆Th + uh · ∇Th −Qh

∣

∣

2
,

η25 =
∑

l∩∂Ω=∅

∫

l

h3
l [κ∇Th · n]2,
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with l is a face of an element τ , [ν∇uh ·n] and [κ∇Th ·n] are the normal derivative jumps over

the interior face l, defined by

[ν∇uh · n]l = (ν∇uh|τ1
l
− ν∇uh|τ2

l
) · n,

[κ∇Th · n]l = (κ∇Th|τ1
l
− κ∇Th|τ2

l
) · n,

where n is the unit normal vector on l = τ̄1l ∩ τ̄2l outwards τ1l , hl is the maximum diameter of

the face l.

Proof. First, we introduce the following system:

(a) − ν∆R − (u(Qh) · ∇)R +∇u(Qh)
tr
R−∇λ+ φ∇T (Qh) = u(Qh)− uh in Ω,

(b) ∇ ·R = p(Qh)− ph in Ω,

(c) − κ∆φ− u(Qh) · ∇φ−R · g = T (Qh)− Th in Ω,

(d) R = 0 φ = 0 on ∂Ω.

(4.17)

Because we assume the solution (u, p, T ) is regular, so the linear system (4.17) is uniquely

solvable and satisfies the a priori estimate

‖R‖H2(Ω) + ‖λ‖1,Ω + ‖φ‖2,Ω

≤ C
(

‖u(Qh)− uh‖L2(Ω) + ‖p(Qh)− ph‖0,Ω + ‖T (Qh)− Th‖0,Ω
)

. (4.18)

Next, let us denote ξ = u(Qh)− uh, η = T (Qh)− Th and ζ = p(Qh)− ph. Note that (3.1)

and b(uh, qh) = 0, then we see ∇·uh = 0. From Lemmas 4.1, 4.2, 4.3 and using the well known

residual techniques we have

‖ξ‖2 + ‖η‖2 + ‖ζ‖2

= a0(u(Qh)− uh,R) + c0(u(Qh),u(Qh),R)− c0(uh,uh,R)− b(u(Qh)− uh, λ)

− d(Th(Q)− Th,R) + b(R, p(Qh)− ph + a1(T (Qh)− Th, φ)

+ c1(u(Qh), T (Qh), φ) − c1(uh, Th, φ)− c0(ξ, ξ,R)− c1(ξ, η, φ)

= (f,R− IhR)− a0(uh,R− IhR)− c0(uh,uh,R− IhR)− b(R− IhR, ph)

+ d(Th,R− IhR)− a1(Th, φ− Ihφ)− c1(uh, Th, φ− Ihφ)

+ (Qh, φ− Ihφ)− c0(ξ, ξ,R)− c1(ξ, η, φ)

=
∑

τ∈T h

∫

τ

(

f + ν∆uh − (uh · ∇)uh + Thg−∇ph
)(

R− IhR
)

+
∑

τ∈T h

∫

∂τ

(

ν∇uh · n− phn
)(

R− IhR
)

ds+
∑

τ∈T h

∫

τ

(

Qh + κ∆Th − uh · ∇Th

)(

φ− Ihφ
)

+
∑

τ∈T h

∫

∂τ

(

∇Th · n
)(

φ− Ihφ
)

ds− c0(ξ, ξ,R)− c1(ξ, η, φ)
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=
∑

τ∈T h

∫

τ

(

f + ν∆uh − (uh · ∇)uh + Thg −∇ph

)(

R− IhR
)

+
∑

l∩∂Ω=∅

∫

l

[ν∇uh · n− phn](R − IhR)ds+
∑

τ∈T h

∫

τ

(

Qh + κ∆Th − uh · ∇Th

)(

φ− Ihφ
)

+
∑

l∩∂Ω=∅

∫

l

[∇Th · n](φ− Ihφ)ds − c0(ξ, ξ,R)− c1(ξ, η, φ).

(4.19)

Consequently, we have

‖ξ‖2 + ‖η‖2 + ‖ζ‖2

≤ C(δ)
∑

τ∈Th

h4
τ

∫

τ

∣

∣f + ν∆uh − (uh · ∇)uh + Thg −∇ph
∣

∣

2

+C(δ)
∑

l∩∂Ω=∅

h3
l

∫

l

[ν∇uh · n− phn]
2

+C(δ)
∑

τ∈Th

h4
τ

∫

τ

∣

∣Qh + κ∆Th − uh · ∇Th

∣

∣

2
+ C(δ)

∑

l∩∂Ω=∅

h3
l

∫

l

[κ∇Th · n]2

+C‖ξ‖
(

‖R‖H2 + ‖φ‖H2

)(

‖ξ‖H1 + ‖η‖H1

)

+ δ
(

‖R‖2
H2 + ‖φ‖2H2 + ‖λ‖2H1

)

≤ C(δ)
5

∑

i=2

η2i + δ
(

‖ξ‖2 + ‖η‖2 + ‖ζ‖2
)

+ C
(

‖ξ‖2 + ‖η‖2 + ‖ζ‖2
)(

‖ξ‖H1 + ‖η‖H1

)

.

By the Remark 4.1, we can have ‖ξ‖H1 + ‖η‖H1 + ‖ζ‖ → 0 when h → 0. So if we choose

sufficient small h and δ, then
(

‖ξ‖2 + ‖η‖2 + ‖ζ‖2
)(

‖ξ‖H1 + ‖η‖H1

)

would be much less than

‖ξ‖2 + ‖η‖2 + ‖ζ‖2. Moreover, we can prove the estimate (4.16). �

Next, we will give the H1-norm estimates.

Lemma 4.6. Let (u(Qh), T (Qh), p(Qh)) and (uh, Th, ph) be the solutions of (3.4) and (4.6)

respectively. Let (w(Qh), ϕ(Qh), σ(Qh)) and (wh, ϕh, σh) be the solutions of the co-state equa-

tions (3.5) and (4.7) respectively. Suppose above assumptions are fulfilled, then for sufficient

small h, we have the following estimate

‖u(Qh)− uh‖
2
H1(Ω) + ‖T (Qh)− Th‖

2
1,Ω ≤ C

9
∑

i=2

η2i , (4.20)

‖w(Qh)−wh‖
2
H1(Ω) + ‖ϕ(Qh)− ϕh‖

2
1,Ω ≤ C

13
∑

i=2

η2i , (4.21)

where

η26 =
∑

τ∈T h

∫

τ

h2
τ

∣

∣f + ν∆uh − (uh · ∇)uh −∇ph + Thg
∣

∣

2
,

η27 =
∑

l∩∂Ω=∅

∫

l

hl[ν∇uh · n− phn]
2, η28 =

∑

τ∈T h

∫

τ

h2
τ

∣

∣κ∆Th − uh · ∇Th +Qh

∣

∣

2
,

η29 =
∑

l∩∂Ω=∅

∫

l

hl[κ∇Th · n]2,

η210 =
∑

τ∈T h

∫

τ

h2
τ

∣

∣uh −U+ ν∆wh + (uh · ∇)wh −wh · ∇uh +∇σh + ϕh∇Th

∣

∣

2
,
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η211 =
∑

l∩∂Ω=∅

∫

l

hl[ν∇wh · n+ σhn]
2, η212 =

∑

τ∈T h

∫

τ

h2
τ

∣

∣κ∆ϕh + uh · ∇ϕh +wh · g
∣

∣

2
,

η213 =
∑

l∩∂Ω=∅

∫

l

hl[κ∇ϕh · n]2,

with l is a face of an element τ , [ν∇uh ·n] and [κ∇Th ·n] are the normal derivative jumps over

the interior face l, defined by

[ν∇wh · n]l = (ν∇wh|τ1
l
− ν∇wh|τ2

l
) · n,

[κ∇ϕh · n]l = (κ∇ϕh|τ1
l
− κ∇ϕh|τ2

l
) · n,

where n is the unit normal vector on l = τ̄1l ∩ τ̄2l outwards τ1l , hl is the maximum diameter of

the face l.

Proof. From equations (3.4) and (4.6) and adopt the same definition of ξ, η as in Lemma

4.5, we can have

a0(u(Qh)− uh,v) + c0(uh,u(Qh)− uh,v)

= d(T (Qh)− Th,v) + (f,v)− c0(u(Qh)− uh,u(Qh),v)− b(v, p(Qh)− ph)

− a0(uh,v)− c0(uh,uh,v)− b(v, ph)− d(Th,v) ∀ v ∈ H1
0(Ω),

b(u(Qh)− uh, q) = −b(uh, q) ∀ q ∈ L2
0(Ω),

a1(T (Qh)− Th, S) + c1(uh, T (Qh)− Th, S)

= (Qh, S)− c1(u(Qh)− uh, T (Qh), S)− a1(Th, S)− c1(uh, Th, S) ∀ S ∈ H1
0 (Ω).

(4.22)

Now, from (3.1) and choosing v = ξ, S = η, we can have that

∇ · uh = 0, ∇ ·wh = 0, c0(uh, ξ, ξ) = 0, c1(uh, η, η) = 0.

Furthermore, let Πh is the Raviart-Thomas Projection defined above. Then it gives that

c
(

‖ξ‖2
H1 + ‖η‖2H1

)

≤ a0(ξ, ξ) + a1(η, η)

= −c0(ξ,u(Qh), ξ)− b(ξ, p(Qh)− ph) + d(η, ξ) + (f, ξ)− a0(uh, ξ)− c0(uh,uh, ξ)

+b(ξ, ph)− d(Th, ξ)− c1(ξ, T (Qh), η) − a1(Th, η)− c1(uh, Th, η) + (Qh, η)

= −c0(ξ,u(Qh), ξ)− b(ξ, p(Qh)− ph)− c1(ξ, T (Qh), η) + d(η, ξ) + (f, ξ −Πhξ)

−a0(uh, ξ −Πhξ)− c0(uh,uh, ξ −Πhξ) + b(ξ −Πhξ, ph)− d(Th, ξ −Πhξ)

−a1(Th, η − πhη)− c1(uh, Th, η − πhη) + (Qh, η − πhη)

=
∑

τ∈T h

∫

τ

(

f + ν∆uh − (uh · ∇)uh −∇ph + Thg
)(

ξ −Πhξ
)

+
∑

τ∈T h

∫

∂τ

(

ν∇uh · n− phn
)(

ξ −Πhξ
)

ds+
∑

τ∈T h

∫

τ

(

Qh + κ∆Th − uh · ∇Th

)(

η − πhη
)

+
∑

τ∈T h

∫

∂τ

(

∇Th · n
)(

η − πhη
)

ds− c0(ξ,u(Qh), ξ)

−b(ξ, p(Qh)− ph)− c1(ξ, T (Qh), η) + d(η, ξ).
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Consequently, we have

c
(

‖ξ‖2
H1 + ‖η‖2H1

)

≤C(δ)
∑

τ∈Th

h2
τ

∫

τ

∣

∣f + ν∆uh − (uh · ∇)uh −∇ph + Thg
∣

∣

2

+ C(δ)
∑

l∩∂Ω=∅

hl

∫

l

[ν∇uh · n− phn]
2 + C(δ)

∑

τ∈Th

h2
τ

∫

τ

∣

∣Qh + κ∆Th − uh · ∇Th

∣

∣

2

+ C(δ)
∑

l∩∂Ω=∅

hl

∫

l

[κ∇Th · n]2 + C
(

‖ξ‖2
L2 + ‖η‖2L2

)

+ δ
(

‖ξ‖2
H1 + ‖η‖2H1

)

≤C(δ)
9

∑

i=2

η2i + δ
(

‖ξ‖2
H1 + ‖η‖2H1

)

.

Now, choosing sufficient small δ, (4.20) follows. We also see that equations (3.5) and (4.7) lead

to

a0(w(Qh)−wh,v) + c0(v,u(Qh),w(Qh)−wh) + c0(v,u(Qh)− uh,wh)

+ c0(u(Qh),v,w(Qh)−wh) + c0(u(Qh)− uh,v,wh)− b(v, σ(Qh)− σh)

= (u(Qh)−U,v) + c1(v, T (Qh), ϕ(Qh)− ϕh) + c1(v, T (Qh)− Th, ϕh)

− a0(wh,v)− c0(v,uh,wh)− c0(uh,v,wh) + b(v, ϕh)

− c0(v, Th, ϕh) + (uh −U,v) ∀ v ∈ H1
0(Ω),

b(w(Qh)−wh, q) = −b(wh, q) ∀ q ∈ L2
0(Ω),

a1(ϕ(Qh)− ϕh, S) + c1(u(Qh)− uh, S, ϕh) + c1(u(Qh), S, ϕ(Qh)− ϕh)

= d(w(Qh)−wh, S)− a1(ϕh, S)− c1(uh, S, ϕh) + d(wh, S)

− c1(u(Qh)− uh, T (Qh), S)− a1(Th, S)− c1(uh, Th, S) ∀ S ∈ H1
0 (Ω).

(4.23)

Similarly, denoting ξ∗ = w(Qh)−wh, η
∗ = ϕ(Qh)− ϕh and ζ∗ = σ(Qh)− σh, gives

c
(

‖ξ∗‖2
H1 + ‖η∗‖2H1

)

≤ a0(ξ
∗, ξ∗) + a1(η

∗, η∗)

=− c0(ξ
∗,u(Qh), ξ

∗)− c0(ξ
∗, ξ,uh)− c0(ξ, ξ

∗,wh) + b(ξ∗, ζ∗)

+ (ξ, ξ∗) + c1(ξ
∗, T (Qh), η

∗) + c1(ξ
∗, η, ϕh)

− a0(wh, ξ
∗)− c0(ξ

∗,uh,wh)− c0(uh, ξ
∗,wh) + b(ξ∗, σh)− c1(ξ

∗, Th, ϕh) + (uh −U, ξ∗)

− c1(ξ, η, ϕh) + d(ξ∗, η∗)− a1(ϕh, η
∗)− c1(uh, η

∗, ϕh) + d(wh, η
∗)

≤C(δ)
∑

τ∈Th

h2
τ

∫

τ

∣

∣

∣
uh −U+ ν∆wh + (uh · ∇)wh −wh · ∇uh +∇σh + ϕh∇Th

∣

∣

∣

2

+ C(δ)
∑

l∩∂Ω=∅

hl

∫

l

[

ν∇wh · n+ σhn
]2

+ C(δ)
∑

l∩∂Ω=∅

hl

∫

l

[

κ∇Th · n
]2

+ C(δ)
∑

τ∈Th

h2
τ

∫

τ

∣

∣

∣
κ∆Th + uh · ∇ϕh +wh · g

∣

∣

∣

2

+ C
(

‖ξ‖2
H1 + ‖η‖2H1

)

+ δ
(

‖ξ∗‖2
H1 + ‖η∗‖2H1

)

≤C(δ)

13
∑

i=2

η2i + δ
(

‖ξ∗‖2
H1 + ‖η∗‖2H1

)

.

Then, (4.21) is obtained. �
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Lemma 4.7. Let (u(Qh), T (Qh), p(Qh)) and (uh, Th, ph) be the solutions of (3.4) and (4.6)

respectively. Let (w(Qh), ϕ(Qh), σ(Qh)) and (wh, ϕh, σh) be the solutions of the co-state equa-

tions (3.5) and (4.7) respectively. Suppose above assumptions are fulfilled, then for sufficient

small h, we have the following estimate

‖w(Qh)−wh‖
2
L2(Ω) + ‖ϕ(Qh)− ϕh‖

2
0,Ω + ‖σ(Qh)− σh‖

2
0,Ω

≤C

9
∑

i=2

η2i + C

17
∑

i=14

η2i ,
(4.24)

where

η214 =
∑

τ∈T h

∫

τ

h4
τ

∣

∣

∣
uh −U+ ν∆wh + (uh · ∇)wh −wh · ∇uh +∇σh + ϕh∇Th

∣

∣

∣

2

,

η215 =
∑

l∩∂Ω=∅

∫

l

h3
l

[

ν∇wh · n+ σhn
]2

, η216 =
∑

τ∈T h

∫

τ

h4
τ

∣

∣

∣
κ∆ϕh + uh · ∇ϕh +wh · g

∣

∣

∣

2

,

η217 =
∑

l∩∂Ω=∅

∫

l

h3
l

[

κ∇ϕh · n
]2

.

Proof. First, we introduce the following system:

(a) − ν∆R∗ + (u(Qh) · ∇)R∗ + (R∗ · ∇)u(Qh) +∇λ∗ − φ∗ · g

= w(Qh)−wh in Ω,

(b) −∇ ·R∗ = σ(Qh)− σh in Ω,

(c) − κ∆φ∗ + u(Qh) · ∇φ∗ +R∗ · ∇T (Qh) = ϕ(Qh)− ϕh in Ω,

(d) R∗ = 0 φ∗ = 0 on ∂Ω.

(4.25)

Because we assume the solution (u, p, T ) is regular, and also the linear system (4.25) is the

adjoint system of (4.17) so that it is uniquely solvable and satisfies the a priori estimate

‖R∗‖H2(Ω) + ‖λ∗‖1,Ω + ‖φ∗‖2,Ω

≤C
(

‖w(Qh)−wh‖L2(Ω) + ‖σ(Qh)− σh‖0,Ω + ‖ϕ(Qh)− ϕh‖0,Ω
)

. (4.26)

Similarly, we can have

‖ξ∗‖2 + ‖η∗‖2 + ‖ζ∗‖2

=a0(w(Qh)−wh,R
∗) + c0(u(Qh),R

∗, ξ∗) + c0(R
∗,uh, ξ

∗) + b(ξ∗, λ∗)− d(φ∗, ξ∗)

+ b(R∗, ζ∗) + a1(η
∗, φ∗) + c1(u(Qh), φ

∗, η∗) + c1(R
∗, T (Qh), η

∗)

=(uh −U,R∗ − IhR
∗)− a0(wh,R

∗ − IhR
∗) + c0(uh,R

∗ − IhR
∗,wh)

+ C0(R
∗ − IhR

∗,uh,wh)− b(R∗ − IhR
∗, σh) + C1(R

∗ − IhR
∗, Th, ϕh)

− a1(ϕh, φ
∗ − Ihφ

∗)− c1(uh, φ
∗ − Ihφ

∗, ϕh)− d(φ∗ − Ihφ
∗,wh)

− c0(ξ,R
∗,wh)− c0(R

∗, ξ,wh)− c1(R
∗, η, φh)− c1(ξ, φ

∗, ϕh)− (ξ,R∗)
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≤C(δ)
∑

τ∈T h

∫

τ

h4
τ

∣

∣

∣
uh −U+ ν∆wh + (uh · ∇)wh −wh · ∇uh +∇σh + ϕh∇Th

∣

∣

∣

2

+
∑

l∩∂Ω=∅

∫

l

h3
l

[

ν∇wh · n+ σhn]
2 +

∑

l∩∂Ω=∅

∫

l

h3
l [κ∇ϕh · n

]2

+ C(δ)
∑

τ∈T h

∫

τ

h4
τ

∣

∣

∣
κ∆Th + uh · ∇ϕh +wh · g

∣

∣

∣

2

+ C
(

‖ξ‖2
H1 + ‖η‖2H1

)

+ δ
(

‖R∗‖2
H2 + ‖φ∗‖2H2 + ‖λ∗‖2H1

)

≤C(δ)

17
∑

i=14

η2i + C
(

‖ξ‖2
H1 + ‖η‖2H1

)

+ δ
(

‖ξ∗‖2 + ‖η∗‖2 + ‖ζ∗‖2
)

. (4.27)

Hence, repeating the same arguments we have completed our proof. �

Next, we give our main result of this paper.

Theorem 4.1. Let (u, T, p) and (uh, Th, ph) be the solutions of (2.4) and (4.6) respectively.

Let (w, ϕ, σ) and (wh, ϕh, σh) be the solutions of the co-state equations (2.5) and (4.7) respec-

tively. Suppose above assumptions are fulfilled, then for sufficient small h, we have the following

estimate

e2 + ‖Q−Qh‖
2
0,Ω + ‖u− uh‖

2
H1(Ω) + ‖T − Th‖

2
H1(Ω) + ‖p− ph‖

2
0,Ω

+ ‖w−wh‖
2
H1(Ω) + ‖ϕ− ϕh‖

2
H1(Ω) + ‖σ − σh‖

2
0,Ω ≤ Cη21 + C

13
∑

i=6

η2i ,
(4.28)

Proof. As (u, T, p) is assumed to be a regular solution, for sufficient small h it gives

‖u− u(Qh)‖H1(Ω) + ‖T − T (Qh)‖H1(Ω) + ‖p− p(Qh)‖0,Ω ≤ C‖Q−Qh‖0,Ω,

‖w−w(Qh)‖H1(Ω) + ‖ϕ− ϕ(Qh)‖H1(Ω) + ‖σ − σ(Qh)‖0,Ω ≤ C‖Q−Qh‖0,Ω.

Note that

‖u− uh‖H1(Ω) ≤ ‖u− u(Qh)‖H1(Ω) + ‖u(Qh)− uh‖H1(Ω).

Using the same technique to handle with other terms, then (4.28) follows from above lemmas.

�

Now we are in the position to prove the a posteriori lower bound. In order to derive the

a posteriori lower bound, we prove the following lemmas using the standard bubble function

technique.

Lemma 4.8. Let (u, T, p) and (uh, Th, ph) be the solutions of (2.4) and (4.6) respectively.

η26 + η27 ≤ C‖u− uh‖
2
H1(Ω) + ‖T − Th‖

2
H1(Ω) + ‖p− ph‖

2
0,Ω + Cǫ22, (4.29)

where ηi is defined in Lemma 4.6,

ǫ22 =
∑

τ∈T h

∫

τ

h2
τ (f − f̄)2,

where

v̄|τ =

∫

τ
v

∫

τ
1
.



The Optimal Control with the Stationary Bénard Problem 83

Proof. Using the the standard bubble function technique (see [25], for example), it can be

proved that there exist polynomials Wτ ∈ H1
0(τ) ∩ P3 and Wl ∈ H1

0(τ
1
l ∪ τ2l ) ∩ P2 such that

∫

τ

h2
τ

∣

∣

∣
f̄ + ν∆uh − (uh · ∇)uh −∇ph + Thg

∣

∣

∣

2

=

∫

τ

(

f̄ + ν∆uh − (uh · ∇)uh −∇ph + Thg
)

Wτ , (4.30)

∫

l

hl

[

ν∇uh · n− phn
]2

=

∫

l

[

ν∇uh · n− phn
]

Wl, (4.31)

‖Wτ‖
2
H1(τ) ≤ C

∫

τ

h2
τ

∣

∣

∣
f̄ + ν∆uh − (uh · ∇)uh −∇ph + Thg

∣

∣

∣

2

, (4.32)

h−2
τ ‖Wτ‖

2
L2(τ) ≤ C

∫

τ

h2
τ

∣

∣

∣
f̄ + ν∆uh − (uh · ∇)uh −∇ph + Thg

∣

∣

∣

2

, (4.33)

‖Wl‖
2
H1(τ1

l
∪τ2

l
) ≤ C

∫

l

hl

[

ν∇uh · n− phn
]2

, (4.34)

h−2
l ‖Wl‖

2
L2(τ1

l
∪τ2

l
) ≤ C

∫

l

hl

[

ν∇uh · n− phn
]2

. (4.35)

Then, it follows from (4.30), (4.32), (4.33) and Schwartz inequality that

∫

τ

h2
τ

∣

∣

∣
f̄ + ν∆uh − (uh · ∇)uh −∇ph + Thg

∣

∣

∣

2

=

∫

τ

(

f̄ + ν∆uh − (uh · ∇)uh −∇ph + Thg
)

Wτ

=

∫

τ

(

f + ν∆uh − (uh · ∇)uh −∇ph + Thg
)

Wτ +

∫

τ

(f̄ − f)Wτ

≤

∫

τ

(

ν∆uh − (uh · ∇)uh −∇ph + Thg− (ν∆u− (u · ∇)u−∇p+ Tg)
)

Wτ

+Cδh−2
τ ‖Wτ‖

2
L2(τ) + C(δ)

∫

τ

h2
τ

∣

∣

∣
f̄ − f

∣

∣

∣

2

= −

∫

τ

ν∇(uh − u)∇Wτ −

∫

τ

(ph − p)∇ ·Wτ +

∫

τ

(Thg − Tg)Wτ

+

∫

τ

(

(u · ∇)u− (uh · ∇)uh

)

Wτ + Cδh−2
τ ‖Wτ‖

2
L2(τ) + C(δ)

∫

τ

h2
τ

∣

∣

∣
f̄ − f

∣

∣

∣

2

≤ C(δ)
(

‖u− uh‖
2
H1(τ) + ‖T − Th‖

2
H1(τ) + ‖p− ph‖

2
0,τ

)

+Cδ
(

h−2
τ ‖Wτ‖

2
L2(τ) + ‖Wτ‖

2
H1(τ)

)

+ C(δ)

∫

τ

h2
τ

∣

∣

∣
f̄ − f

∣

∣

∣

2

≤ C(δ)
(

‖u− uh‖
2
H1(τ) + ‖T − Th‖

2
H1(τ) + ‖p− ph‖

2
0,τ

)

+Cδ

∫

τ

h2
τ

∣

∣

∣
f̄ + ν∆uh − (uh · ∇)uh −∇ph + Thg

∣

∣

∣

2

+ C(δ)

∫

τ

h2
τ

∣

∣

∣
f̄ − f

∣

∣

∣

2

,

where δ is an arbitrary positive number. Therefore, letting δ = 1
2C yields

∑

τ

∫

τ

h2
τ

∣

∣f̄ + ν∆uh − (uh · ∇)uh −∇ph + Thg
∣

∣

2

≤ C(δ)
(

‖u− uh‖
2
H1(Ω) + ‖T − Th‖

2
H1(Ω) + ‖p− ph‖

2
0,Ω + ǫ22

)

.



84 Y.Z. CHANG AND D.P. YANG

Similarly, when l ∩ ∂Ω 6= ∅, where l = τ̄1l ∩ τ̄2l , it follows from (4.31), (4.34) and (4.35) that

∫

l

hl

[

ν∇uh · n− phn
]2

=

∫

l

[

ν∇uh · n− phn
]

Wl

=

∫

l

[

ν∇uh · n− phn− (ν∇u · n− pn)
]

Wl

=

∫

τ1
l
∪τ2

l

ν∇(uh − u)∇Wl +

∫

τ1
l
∪τ2

l

(p− ph)∇ ·Wl +

∫

τ1
l
∪τ2

l

(

ν∆(uh − u) +∇(p− ph)
)

Wl

≤C(δ)
(

‖u− uh‖
2
H1(τ1

l
∪τ2

l
) + ‖ph − p‖2L2(τ1

l
∪τ2

l
)

)

+

∫

τ1
l
∪τ2

l

(

ν∆uh − ph + f − (u · ∇)u+ Tg
)

Wl + Cδ‖Wl‖
2
H1(τ1

l
∪τ2

l
)

≤C(δ)
(

‖u− uh‖
2
H1(τ1

l
∪τ2

l
) + ‖T − Th‖

2
H1(τ1

l
∪τ2

l
) + ‖ph − p‖2L2(τ1

l
∪τ2

l
)

)

+ C

∫

τ1
l
∪τ2

l

h2
τ

∣

∣

∣
f + ν∆uh − (uh · ∇)uh −∇ph + Thg

∣

∣

∣

2

+ Cδ
(

h−2
τ ‖Wl‖

2
L2(τ1

l
∪τ2

l
) + ‖Wl‖

2
H1(τ1

l
∪τ2

l
)

)

.

Hence,

∑

τ

∫

l

hl[ν∇uh · n− phn]
2

≤ C
(

‖u− uh‖
2
H1(Ω) + ‖T − Th‖

2
H1(Ω) + ‖ph − p‖2L2(Ω)

)

+C
∑

τ

∫

τ

h2
τ

∣

∣f + ν∆uh − (uh · ∇)uh −∇ph + Thg
∣

∣

2
. (4.36)

Therefore, this proves (4.29). �

Similarly, we can prove the following lower bound estimate for η8, ...η13.

Lemma 4.9. Let (u, T, p) and (uh, Th, ph) be the solutions of (2.4) and (4.6) respectively. Let

(w, ϕ, σ) and (wh, ϕh, σh) be the solutions of the co-state equations (2.5) and (4.7) respectively.

Then,

13
∑

8

η2i ≤ C
(

‖Q−Qh‖
2
0,Ω + ‖u− uh‖

2
H1(Ω) + ‖T − Th‖

2
H1(Ω) + ‖p− ph‖

2
0,Ω

+‖w−wh‖
2
H1(Ω) + ‖ϕ− ϕh‖

2
H1(Ω) + ‖σ − σh‖

2
0,Ω

)

+ Cǫ22 + Cǫ23, (4.37)

where ηi is defined in Lemma 4.6,

ǫ23 =
∑

τ∈Th

∫

τ

h2
τ (U − Ū)2.

Using Lemmas 4.8 and 4.9, we can have the following a posteriori lower bound.

Theorem 4.2. Let (u, T, p) and (uh, Th, ph) be the solutions of (2.4) and (4.6) respectively. Let

(w, ϕ, σ) and (wh, ϕh, σh) be the solutions of the co-state equations (2.5) and (4.7) respectively.
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Assume that all the conditions of above lemmas are also valid. For sufficient small h, then it

gives

η21 +
13
∑

6

η2i ≤C
(

e2 + ‖Q−Qh‖
2
0,Ω + ‖u− uh‖

2
H1(Ω) + ‖T − Th‖

2
H1(Ω) + ‖p− ph‖

2
0,Ω

+ ‖w−wh‖
2
H1(Ω) + ‖ϕ− ϕh‖

2
H1(Ω) + ‖σ − σh‖

2
0,Ω

)

+ Cǫ22 + Cǫ23, (4.38)

where ηi, ǫi are defined before.

Proof. Now based on the above lemmas, we only need to estimate η1. Note that αQ+ϕ = 0

when Q > d and αd + ϕ ≥ 0 when Q = d. Let

Ωd
d = {x ∈ Ω−

d : Q(x) = d}.

We have that
∫

Ω−

d

(αQh + ϕh)
2 =

∫

Ωd
d

(

αQh + ϕh − αQ + αd)
)2

+

∫

Ω−

d
\Ωd

d

(

αQh + ϕh − αQ− ϕ
)2

≤C
(

‖Q−Qh‖
2
L2(Ω) + ‖ϕ− ϕh‖

2
L2(Ω) +

∫

Ωd
d

(ϕh + αd)2
)

≤C
(

‖Q−Qh‖
2
L2(Ω) + ‖ϕ− ϕh‖

2
L2(Ω) +

∫

Ωd
d

(ϕh + αd− ϕ− αd)2
)

≤C
(

‖Q−Qh‖
2
L2(Ω) + ‖ϕ− ϕh‖

2
L2(Ω)

)

,

where we used the facts that ϕh + αd ≤ 0 ≤ ϕ + αd on Ωd
d. Moreover, note that Q > d and

hence αQ+ ϕ = 0 on Ω+
d \ Ω∗. It can be deduced that

∫

Ω+

d

(αQh + ϕh)
2

=

∫

Ω∗

(αQh + ϕh)
2 +

∫

Ω+

d
\Ω∗

(αQh + ϕh)
2

=

∫

Ω∗

(

αQh + ϕh −Rh(αQh + ϕh)
)2

+

∫

Ω+

d
\Ω∗

(

αQh + ϕh − (αQ + ϕ)
)2

≤ C

∫

Ω∗

(

αQ + ϕ−Rh(αQ + ϕ)
)2

+ C

∫

Ω∗

(

αQh + ϕh − (αQ + ϕ)
)2

+C

∫

Ω∗

(

Rh(αQ + ϕ)−Rh(αQh + ϕh)
)2

+ C
(

‖Q−Qh‖
2
0,Ω + ‖ϕ− ϕh‖

2
0,Ω

)

≤ Ce2 + C
(

‖Q−Qh‖
2
0,Ω + ‖ϕ− ϕh‖

2
0,Ω

)

. (4.39)

So, we complete our proof. �

5. Concluding Remarks

In this paper we develop the adaptive finite element approximation for the distributed op-

timal control associated with the stationary Bénard problem under the pointwise control con-

straint. We give the a posteriori error estimates mainly with the H1−norm appearances for the

states and co-states and for the control with the L2−norm appearance. In the further research,
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the a posteriori error estimates for the states and co-states with the L2−norm appearances will

be considered, and especially the a posteriori lower bound for η2, · · · , η5 and η4, · · · , η17 will be

given using the new bubble functions.
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