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Abstract

In this paper, we consider the adaptive finite element approximation for the distributed
optimal control associated with the stationary Bénard problem under the pointwise control
constraint. The states and co-states are approximated by polynomial functions of lowest-
order mixed finite element space or piecewise linear functions and control is approximated
by piecewise constant functions. We give the a posteriori error estimates for the control,
the states and co-states.
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1. Introduction

The control of viscous flow for the purpose of achieving some desired objective is crucial to
many technological and scientific applications. The Boussinesq approximation of the Navier-
Stokes system is frequently used as mathematical model for fluid flow in semiconductor melts.
In many crystal growth technics, such as Czochralski growth and zone-melting technics, the
behavior of the flow has considerable impact on the crystal quality. It is therefore quite natural
to establish flow conditions that guarantee desired crystal properties. As control actions, they
include distributed forcing, distributed heating, and others. For example, the control of vorticity
has significant applications in science and engineering such as the control of turbulence and
control of crystal growth process.

Considerable progress has been made in mathematics physics and computation for the op-
timal control problems of the viscous flow; see [1,2,9,11,12] and reference therein. Optimal
control problems of the thermally coupled incompressible Navier-Stokes equation by Neumann
and Dirichlet boundary heat controls were considered in [11,12]. Also, the time dependent
problems were considered in the literature. In this article, we consider the Bénard problem
whose state is governed by the Boussinesq equations, which are crucial to many technological
and scientific applications. Without the control constraint, the approximation for the optimal
control of the stationary Bénard problem was considered in [16], and it used the gradient itera-
tive method to solve the discretized equations. For the constrained control case, there seems to
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be little work on this problem. This paper is concerned with the finite element approximation
for the constrained optimal control problem of the stationary Bénard problem:

1
(P) min J(@Q) = {5lu-UlE +FIQla},

subject to the Boussinesq system:

(@) —vAu+(u-Viu+Vp=Tg+ f inQ,

)
() V-u=0 1inQ, (1)
(b) —KAT+u-VT =Q inQ, '
(¢) u=0 T=0 ondQ

and subject to the control constraint
K= {QGLQ(Q) :Q(z) >d>0; ae. xEQ}, (1.2)

where (2 is the regular bounded and convex open set in R™ (n = 2, or 3), with 9Q € C1L.
u, p, T denote the velocity, pressure and temperature fields, respectively, f is a body force, and
the control @. The vector g is in the direction of gravitational acceleration and x > 0 is the
thermal conductivity parameter. In this paper we only consider, for the simplicity, the case
where k is constant. Assume v > 0 is the kinematic viscosity.

The optimal control problem (P) is to seek the state variables (u,p,T) and @ such that the
functional J is minimized subject to (1.1) where U is some desired velocity fields. The physical
target of the minimization problem is to match a desired flow field by adjusting the distributed
control Q.

Adaptive finite element approximation is of very importance in improving accuracy and
efficiency of the finite element discretisation. It ensures a higher density of nodes in certain
area of the given domain, where the solution is more difficult to approximate, using a posteriori
error indicator. In this sense, efficiency and reliability of adaptive finite element approximation
rely very much on the error indicator used. Recently adaptive mesh refinement has been found
quite useful in computing optimal control problem governed by elliptic equations, see [19], for
example. Usually the control variable has only limited regularity. Thus suitable adaptive mesh
can quite efficiently reduce the approximation error. There have been very extensive studies
on the a posteriori error estimates and convergence analysis for the optimal control problems
governed by elliptic or time dependent equations; see, for example, [22,24,25] and [19,23,26] and
the references cited therein. However there seems to exist few known results on the a posteriori
error estimates for the above control problem governed by the coupled nonlinear equations.

The paper is organized as follows. In Section 2, we give some notations and assumptions that
will be used throughout the paper. In Section 3, we will discuss the finite element approximation
for the optimal control problem. Section 4 contains the a posteriori error estimate for the
optimal control problem in this article.

2. Notations and Preliminaries

Using the classical techniques, it can be proved that the optimal control problem has at
least one solution. The reader is referred to [15,18] for the details.
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Similarly to [17,19] and using the result of [8], it is well known that if (u,p,T) is the
solution of (P), then there are the co-state (w, o, p, Q) such that (u,p, T, w,o,p, Q) satisfies
the following optimality conditions:

—vAu+ (u-Vu+Vp=Tg+ f inQ,

)
b) V.-u=0 1in €,
©) (2.1)
() —kAT+u-VT =Q inQ,
(¢) u=0 T=0 on o
coupled with the co-state equations and variational inequality:

(@) —vAwW—(u-V)wW+Vu"w—Vo+ VT =u-U inQ,

() V-w=0 1inQ,

(¢) —kAp—u-Vo=w-g in ), (2.2)

(¢) w=0 ¢=0 ondQ,

(d) /Q<ac2+go><P—Q>dxzo VPeK,

where Vu'" denotes the transpose of Vu.

To consider the weak formulations of the equations (2.1) and (2.2), we need to introduce
some function spaces and the bilinear and trilinear forms. In this paper we adopt the standard
notation W™1(2) for Sobolev spaces on Q with the norm || - ||m,q,0 and the seminorm |- |y, 4.0
We denote W™2(Q) (WT™2()) by H™(Q) (Hy*(Q)) with the norm || - ||, and the semi-norm
| - |m,o. For vector-valued functions and spaces of vector-valued functions, which are indicated
by boldface, we define the Sobolev Space H™ ()

H™(Q) = {u: (g, yun)| wi € H™Q), i=1,-- n}

and its associated norm || - |

H™(Q) is given by

n
[ul %{"‘(Q) = Z H“iH%{m(Q)-
i=1

We also define the following subspaces
LE(Q) = {f € L*(Q) : / fdr=0}, Hy(Q) ={ucH(Q); u=0 on dQ}.
Q

Then introduce the bilinear and trilinear forms, for all u,v,w € HI(Q)7 T,S € HY(Q) and
q € L§(Q),

ao(u,v)z/VVu-Vvdyc7 al(T,S)z/ﬁVT-Vde,

Q Q

co(u,v,w)z/(u-V)v-Wdac7 cl(u,T,S)z/u-VTSdac7
Q Q

and

b(v,q):—/QqV-vdac, d(T,v):/QTg-vdx.
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Moreover we assume that b(v,q) satisfies the inf-sup condition, i.e.: there exists a constant
B > 0 such that
b
inf sup _bvia) > B. (2.3)
0#£¢ELF(Q) 0stveHE(Q) [vlle:llgllze
Then, we have the weak formulation: seek (u,p, T, w, 0, p,Q) € H}(Q) x L3(Q) x H} (Q) x
H(Q) x L3(Q) x H} () x K such that

(a) ao(u,v)+co(u,u,v) +b(v,p) =d(T,v)+ (f,v) Vve Hé(Q),
(b) b(u,q) =0 V g€ L3(), (2.4)
(¢) a1(T,S)+c1(u,T,5)=(Q,S) VSeH})

and

(a) ap(w,v)+co(v,u,w)+ co(u,v,w) — b(v,o)

= (u'Uv V) ! (Va T, 90) Vve H(l)(Q)a
(b) b(w,q) =0 Vg€ LjQ), (2.5)
(¢) ai(p,S)+ci(u,S, ) =d(S,w) VSecH;Q),

(d) /Q(aQJrcp)(P—Q)deO VPeK.

3. Finite Element Approximation

We are now able to introduce a finite element approximation for the optimal control problem
(1.1). The same as the article [3], we first give the following basic knowledge of finite element
method. To this end, we consider a family of triangulations 75, h > 0, of . With each element
T € Tr, we associate two parameters p(7) and o(T), where p(7) denotes the diameter of the
set T and o(7) is the diameter of the largest ball contained in 7. The mesh size of the grid
is defined by h = 7rpea7}_}< p(T). We suppose that triangulations 7y, satisfy the following regularity

assumptions:
(H1) There exist two positive constants p and o such that

(7) o(T)

o) =7 wm) =F
hold for all T € T, and all 0 < h < 1.

(H3) Define QO = UTeTh T, and let Qp and T'y, denote its interior and its boundary, respec-
tively. We assume that Qp, is convex and that the vertices of Tp, placed on the boundary of 'y
are points of T'. We also assume that

>

|Q\Qxn| < CRH2.

Next, to every boundary triangle T of Tn, we associate another triangle T with curved boundary,
in which the edge between boundary nodes of T is substituted by the corresponding curved part
of I'. We denote by Ty the union of these curved boundary triangles with interior triangles of
Tr, such that Q = U7A’E7A’;L T.
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Denote by Py function space of polynomial of degree less or equal than k. Introduce finite
element spaces as follows:

K} = {Qh € L*(Q): Qnl|4 = constant, T e 771}, Kn=K,NK,
Vi={m € C@) plr e AT), TETi »=0 on O\2}.
Next we introduce the one-order Raviart-Thomas mixed finite element spaces as [20]: V}, x

X, C Hé x L% such that for a positive constant 3y, the following inf-sup condition satisfies:

b
inf sup M > Bo- (3.1)

0£an€Xn 02vy, e vy, [[Vallee llanl 2

Moreover, similarly to V;, we define
Vi = {Yh EVy onQ; y,=0 on Q\Qh},
Xn = {ph € Xy, : pn|+ = constant, T € 771}

Now, it is obvious that V}, x X, is defined on €, and then the finite dimensional approxi-
mation of the optimal control problem is:

(i) gy Jh(Qe) = { 3l ~ UL + SlQu

QneEKy

ba 32)
subject to seek (up,pn,Th) € Vi, X X}, X V}, such that

(a) ao(upn,vp)+ co(un,up, vi) + b(vy,pr) = d(Th,vi) + (f,ve) ¥V vi € Vi,

(b) b(up,qn) =0 Vgne X", (3.3)

(¢) ar(Th,Sn) + c1(up, Th, Sp) = (Qn, Sn) ¥ S € Vi

The optimal control problem (Pj) associated with state equations (3.3) is equivalent to
optimality conditions as follows: Seek (up,pn,Th) € Vi X Xp, X Vi, such that

(a) ao(un,vn) + co(un, un, vn) + b(vn, pr) = d(Th, vn) + (f,vn) YV vp € Vi,
(0) b(un,qn) =0 V qn € Xp, (3.4)
(¢) a1(Th,Sh) + c1(un, Th, Sp) = (Qn,Sk) V¥ Sp € Vi
couple with co-state system and inequality: (Wp, opn, ©n, Qn) € Vi x X x Vi x K}, such that
(a) ao(wp,vr) + co(vn, un, wp) + co(wn, vh, wr) — b(vp, o)
= (up — U,vp) —c1(vp, Thyon) Y vp € Vi,
(b) b(wn,qn) =0 VY qn € Xp, (3.5)
(¢) a1(en, Sk) + c1(un, Sh, on) = d(Sh, wn) YV Sh € Vi,
(d) /Q(th +on)(Pr— Qn)dz >0 V¥ Py € K.
Based on the results of [15,16] about the existing of solution, we know that there exists
one solution of (P) and (Py,) respectively at least. On the other hand, we denote constants C

and € be a generic constant and small positive number which are independent of the discrete
parameters and may have different values in different circumstances respectively.
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4. A Posteriori Error Estimates

In this section, we will give the a posteriori error estimates of control and states. Before
that, we need to give some useful assumptions or results.

Firstly, we need assume that the cost function J is strictly convex near the solutions @), i.e.,

(H3): For each solution Q there is a neighborhood of Q in L* such that J is conver in the
sense that there is a constant c. > 0 satisfying:

Q= Pl§ o < (J'(Q) = J'(P),Q — P), (4.1)

for all P in this neighborhood of Q.

The convexity of the cost function J is closely related to the second order sufficient conditions
of the control problem, which are assumed in many studies on numerical methods of the problem,
for example [3,5,8,14]. More discussion of this can be found in, for example, [6] and [7].

Secondly, we introduce the definition of [25] that the solution (Q,u,T) is regular: which
means that for the solution u of (P), the linear co-state system

(@) —vAV—(u-V)v+Vv"u—-V(+oVT =r inQ,
(b) V-v=m inQ,

(¢) —kAp—u-Vo—v-g=g in{,

(d) v=0, p=0 onoQ

is well-posed and:
(Ry) For each (r,m,g) € [H Q)" x L?(Q) x H~1(Q), the system (4.2) has a unique
solution and there holds the a priori estimate

1o+ I¢]

¥l + o 00 < Ot + Imloa + llgl-10). (43)

As consequence of regularity theory of partial differential equation ( see [4,10,21] ), if (r,m, g) €
[L2(Q)]" x L2(2) x L?(Q) we can also get that

IVlise + lellzo + I¢he < C(lrlee + Imllo + lglloa). (4.4)

Furthermore, before obtaining the a posteriori error estimates for the states and co-states,
we firstly give some useful lemmas.

Lemma 4.1. Let Iy, be the standard Lagrange interpolation operator. For m =0 or 1, ¢ > 3
and v € W24(Q),
v — I}lU|Wm,q(Qh) < Ch/Q_ml'U|W2,q(Qh). (4.5)

Lemma 4.2. Let 71, be the average interpolation operator defined in [27], then there is a
constant C' such that

|U - 7Th’U|m,p,7— <C Z h}'_mlvll,p,‘r'?
7' NT#£0

forve WEhP(QM), 1< p<oo,and m =0 or 1.
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Lemma 4.3. ([13]) There is a constant C such that for all v € WHP(Q"), 1 < p < oo, the
following inequality hold
1 1—1
HUHWO,p(gT) < C(hT r ||’UHW0#’(T) +hs * |U|W1,P(7—))-

Moreover, let us recall the Raviart-Thomas projection Il : V. — V., which satisfies: for
any v € V
(div(v —=TIpv),wp) =0, YV w, € Xp.

Then, we also know that divll, = Prdiv : V — W}, and the following approximation properties:
|lv = pv||L2 < Ch||v|m forvev,
|div(v — T1v)|lo.o < Ch||divv|iq for divv € H'.
Moreover, in order to derive sharp a posteriori error estimates, we divide €2 into some subsets:
Q; ={zreQ: ¢, < —ad},
Qi={xe€Q: pp >—ad, Qn=4d},
Qf ={ze€Q: ¢, > —ad, Qy > d}.
Then, it is easy to see that above three subsets are not intersected each other, and
Q=0,uUQuQT.
Remark 4.1. In the sequential, we fixed a discretized solution which converges to a related

nonsingular solution of our system, and which means that we give the a posteriori error estimates
of the pairs of local solutions under above assumptions.

Now let us have an intuitive analysis on the approximation error for the control. On g,
asymptotically we can assume that

O<90h+th_>90+aQ-

Hence it follows from the optimality conditions that Q = Q, = d on ;. Thus the error on Q4
may be negligible. We should only need to estimate the error on

0\ Q=9 U

in order to avoid over-estimate.
Hereafter, introduce

2
e’ = / (@Q + ¢ — Ru(aQ +¢)),
Q.
Ry, is the L2-project operator from L?(€2) to K}, and
0, = {:c e Q(z) =d, Qu(z) > d}.

Furthermore, we introduce auxiliary functions (u(Qn), p(Qr), T(Qn), W(Qr), o (Qn), ©(Qr))
satisfying the following problem:
(a) ao(u(@n),v) + co(u(@n), u(Qn),v) + b(v,p(Qn))
=d(T(Qn),v) + (f,v) VveHQ),

() ar(T(Qn),8) +c1(w(@n), T(Qn), 8) = (Qn,S) VS € Hy(Q)

(4.6)
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and
(@) ao(w(Qn), V) + co(v,u(Qn), w(Qr)) + co(u(@n), v, w(@n)) = b(v,0(Qnr))
= (u(Qh) - va) - Cl(V, T(Qh)7 @(Qh)) Vve Hé(Q)v

(c) a1((Qn),S) + c1(u(@n), S, ¢(Qn)) = d(S,w(Qr)) VS € Hy(Q).

(4.7)

Then from the result of [15], we have the regularity:

(@) ez + Iw(Qu) ez + IT(@n) 22 + 9@ 12 + 1p(@n) 1 + 117(@)
< C(Ifllee + 1@nllz2)-

Lemma 4.4. Let Q and Qp, be the solutions of (1.1) and (3.2) respectively. Based on the above
convezity assumption (4.1), then for sufficient small h

e’ +11Q = Qulld o < C(1F + 0(Qn) — @nl

5.a) (4.8)

where @, and p(Qp) are the solutions of the equations (3.5) and (4.7) respectively, and
= @@,
Q ual

Proof. Tt follows from the assumption (4.1) that

el|Q = Qulli2 < (J(Q),Q — Qn) — (J'(Qn), Q — Qn)
< —(J'(Qn),Q — Qn) = (J1(Qn),Qn — Q) + (J1,(Qn) — J'(Qr),Q — Qr).  (4.9)

Note that

(J1(@n).Qn — Q) = /

-0t
Q7 ue}

(th-i-sOh)(Qh—Q)—i—/ (ad + on)(d - Q), (4.10)

Qq

it follows from the Schwarz’s inequality and the inequality 2ab < a2/ + 0b* that

/ (@Qn + on)(Qn — Q)
Q ual

1

1) 1 1)
< — 2, — Q| = =2+ - — Q2. 4.11
<% Q;UQ;(th + on)” + QHQh QI 55+ 2||Qh Qll7z, (4.11)

where § > 0 is a constant which will be specified later.
It follows from the definition of Qg4 that (ad + ¢p) > 0 on Q4. Because that d — Q < 0, we
have that

/Q (ad +pn)(d — Q) <0. (4.12)

It follows from (4.10)-(4.12) that

(J4(Qn), @ — Q) < C(d)ni +68[Qn — QlI7-. (4.13)
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By using the formulas of J’, J; , it follows that

(Jn(@Qn) = T (Qn),Q — Qn)
= (aQn + ¢n, Q@ — Qn) — (aQn + »(Qnr),Q — Qn)

1 1)
= (on — 0(Qn), Q@ — Qn) < 2—5H<Ph —o(Qu)l7: + §|\Qh - Qll7-
1)
SC(a)HSDh*‘P(Qh)”%2+§HQh*QH%2- (4.14)

Note that Qn > d on Q., then Ry (a@Qn + ¢n) = 0 on Q,, and the proof can be given
similarly as in [14]. Therefore,

eQ:/Q ((aQ +¢) = Ru(aQ + 9))”

gC/Q ((aQ+<p)f(th+<ph))2+C/Q (aQr + ¢n)?

*

+C/ (Ru(aQn + @h))Q + C/ (Ri(aQ + ¢) — Ri(aQp + 90}1))2
Q. Q.

b0 +11Q - Qul

< C(llp— gl 2 )+ C / (aQn + on)?

< Onf + Cllo(@n) = enll§ o + o — ¢(@Qu)l3 o (4.15)
From the related result of [4,10,14,15,21] for sufficient small h, we can have

lle — (@)oo < ClQ — Qul

Therefore, (4.8) follows from (4.9), (4.13), (4.14) (4.15) by setting § = %-. O

0,0+

In the following parts, we give the main results of this paper. Before that, let us to show
some lemmas. The proof of our main result is completed by the following lemmas.

Lemma 4.5. Let (w(Qr),T(Qn),p(Qr)) and (up, Th,ppn) be the solutions of (3.4) and (4.6)
respectively. Let (w(Qp), (Qn),o(Qr)) and (wp, vn,op) be the solutions of the co-state equa-
tions (3.5) and (4.7) respectively. Suppose that above assumptions are fulfilled, then for sufficient
small h, we have the following estimate

5
lw(Qn) — UhH%%Q) +IT(Qn) — Tullg.a + IP(Qn) — pallg o < szza (4.16)

=2

where

n%: Z hf_}fz/Athr(uh-V)uh*Ttherh*ﬂQ,

TeTh T
; 2
773: Z h?[]/Vllh~nfphn]27 nz: E hi‘f’ﬁATh*Fuh'VTh*Qh‘ :
1noQ=0"! o

m= Y [BEVT, 0]
1non=0"!
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with 1 is a face of an element 7, [vVuy, -n] and [kVT}, -n] are the normal derivative jumps over
the interior face l, defined by

vV, - n|i = (vVus| —vVup|2) - n,
[kVTh - n)i = (KVTh|a — £V 2) -0,

where n is the unit normal vector on | = 7! N 7# outwards 7', hy is the mazimum diameter of
the face .

Proof. First, we introduce the following system:

— VAR — (u(Q4) - V)R + Vu(Qy) "R — VA + ¢VT(Qn) = u(Qp) —up in Q,

V-R=p(@Qn) —pn inf,

(a)
)
(4.17)
)
)

(b
(c
(d

—kAp—u(Qn) Vo —R-g=T(Qn) —Th inQ,

R=0 ¢=0 ondQ.

Because we assume the solution (u,p,T) is regular, so the linear system (4.17) is uniquely
solvable and satisfies the a priori estimate

IRlleszy + [Al10 + [ 6]l20
< C(J[u(@n) = wnllwzy + Ip(Qn) =

(@n) — Th||0,9>- (4.18)

Next, let us denote £ = u(Qn) — up, n = T(Qn) — Th and ¢ = p(Qp) — pr. Note that (3.1)
and b(up, qn) = 0, then we see V-uy, = 0. From Lemmas 4.1, 4.2, 4.3 and using the well known
residual techniques we have

€I+ NIl + lI¢]1?
= ap(u(Qn) — un, R) + co(u(Qn), u(Qn), R) — co(un, up, R) — b(u(Qn) — un, A)
—d(Th(Q) — Th, R) + b(R, p(Qr) — pr + a1 (T(Qn) — Th, ¢)
+c1(u(@n), T(Qn), ) — cr(an, T, ) — co(§, &, R) — c1(€,m, )
= (f,R—I1R) —ap(up,R— IzR) — co(up,up, R — I,R) — b(R — IR, pp)
+d(Th, R — InR) — a1(Th, ¢ — In9) — c1(up, Th, ¢ — In9)
+(@Qn, ¢ — Ing) — co(§, &, R) — c1(&,m, 9)

-y / [+ vAw, — (w, - V)u, + Thg — Vi) (R — I,R)

TETh
+ Z / (vWup, -n—ppn) (R — I,R)ds + Z / Qn + kAT, —uy, - VT) (¢ — Ino)
TETH TETH

T Z/ VT ) (6 — Ind)ds — co(&, &, R) — 1 (€., 0)

TETH
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= Z /<f+1/Auh—(uh-V)thrThg*Vph) (R*IhR)

TETH
+ > /[Z/Vuh n—pp](R = LR)ds+ > [ (Qn+ kAT, =y, - VT3) (6 — Ing)
1noQ=0 " reTh VT

+ Z [VTh ”I?,]((f)*]}ﬁf))dS*Co(f,f,R)*Cl(g,’f], d))
1non=0""
(4.19)

Consequently, we have
IENZ + lil* + lI¢II?
<Cl) > hi/ \f +vAw, — (- V)u, + Thg — Vpu|”

TeTh

+C(9) Z 3 /l[z/Vuh -n — ppn)?

INoQ=0

+C(6) Y hi / |Qn + KAT), — wy, - VT3 |* + C(5) > w / [V}, - n)?
TETh T 1NON=0 !

+CElI (IR + 19l z22) (€ llEr + nlla) + (IR IIFez + ¢l F= + [IAI32)

5
< C0) S 0 + 86 + Il + 1C12) + COIEI + Il + 1C12) (I€llas + ).
i=2
By the Remark 4.1, we can have |[¢||g + ||9]|g: + [|¢]] = 0 when A — 0. So if we choose
sufficient small & and &, then (||¢]1% + [|n]|* + I<[1%) (I€]le: + [|7]| ) would be much less than
I€112 + |Im]]? + [I¢]|?. Moreover, we can prove the estimate (4.16). O

Next, we will give the H!'-norm estimates.
Lemma 4.6. Let (w(Qr),T(Qn),p(Qr)) and (upn,Th,pn) be the solutions of (3.4) and (4.6)
respectively. Let (w(Qr), (Qn),o(Qr)) and (wp, on,on) be the solutions of the co-state equa-

tions (3.5) and (4.7) respectively. Suppose above assumptions are fulfilled, then for sufficient
small h, we have the following estimate

9

1(Qn) = wnll 3 o) + I T(Qn) = Tuli@ < C Y _ni, (4.20)
=2
13

lw(@n) = whllFn (o) + 9(Qn) — ¢nllf o < CY (4.21)
i=2

where

= [ W|f+vAu, — (- V), — Vps + Thgl’,

TeTh "7
2
n? = Z h[vVuy, -n —ppn]?, ni = Z R2|KAT, —up, - VTh + Q|
1noa=0"! rern T
ne = Z h[kV Ty, - n)?,
1non=0""

)

2
Mo = Z h2|up — U+ vAwy, + (up - V)Wy — wy, - Vuy, + Vo, + ©p VT |
TeTh T
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7711 = Z /hl vVwy, - n—i—ahn] 7712 = Z /h2 kApp +up - Vop, + wy, - g|
1NON=0 TETH

Ma= Y /hz KV - n|”,

1NON=0

with 1 is a face of an element 7, [vVuy, -n] and [kVT}, -n| are the normal derivative jumps over
the interior face l, defined by

VW -n]p = VWil —vVw|2) - n,

(kVen - nli = (Ven|p — £V en|;2) - n,

where n is the unit normal vector on | = 7} N 77 outwards 7', hy is the mazimum diameter of
the face .

Proof. From equations (3.4) and (4.6) and adopt the same definition of £, 7 as in Lemma
4.5, we can have

ao(u(Qn) — up, v) + co(up, u(Qr) — up,v)
=d(T(Qn) = Th,v) + (f,v) = co(u(Qn) — up, u(Qn),v) — b(v,p(Qn) — pn)
— ao(up,v) — co(up,up,v) = b(v,pn) — d(Th,v) VveHQ),
b(u(Qn) —up, q) = =b(un,q) Vg€ Lj(Q),
a1(T(Qn) = Th, S) + c1(an, T(Qn) — Th, 5)
= (Qn, S) — c1(u(Qn) —un, T(Qn),S) — a1(Th, S) — c1(up, T, S) ¥V S € H}(Q).

(4.22)

Now, from (3.1) and choosing v =&, S =1, we can have that
V'tho, V'Wh:o7 CO(U}“€7§):O7 Cl(uhanﬂ?):O-
Furthermore, let II; is the Raviart-Thomas Projection defined above. Then it gives that

(€l + InllF) < ao(€,€) + ai(n,n)
= —co(§,u(@n), &) — b(&, p(Qn) — pr) + d(n,€) + (f,€) — ao(un, &) — co(un, up, §)
+b(&,pn) — d(Th, &) — c1(& T (Qn)sm) — ar(Th,m) — c1(an, Tn,n) + (Qn,n)
= —co(§,u(Qn), &) — b(&,p(Qr) — pr) — c1(§,T(Qnr),m) +d(n, &) + (f, € — 1)
—ap(up, & — Mp&) — co(un, up, & — &) + b(§ — Up&, pr) — d(Th, & — n8)
—a1(Th,n — 7n) — c1(ap, Tn,n — 71n) + (Qn,n — Th1)

= % [ (¢4 vhun ~ an V- Vo + Thg) € - 10

TETH
+ Z/ (vVuyp, - n — ppn) (€ — Hx€)ds + Z/ (Qn + kAT, —uy - VT},) (n — 1)
TETH or TETH
EY [ (T n) (0 s — ol 0(@0),0
TETH 9

—0(&:p(@n) = pn) — (& T(Qn),n) + d(n, €)-



80 Y.Z. CHANG AND D.P. YANG

Consequently, we have
c(ll€llz + lInlizm)
<c) ¥ 02 / |f + vAw, — (uy - V)uy, — Vpy + The|’

TeTh
5 > hl/VVuh M — ppn

Z h2/|Qh+/€ATh—uh-VTh‘2

1NON=0 reTh
5 > hz/WTh ]2+ O (Il + Inllz2) + o (1€l + lInllFn)
1NoQ=0
5)277? +O(N1€ N + llnll7)-
1=2

Now, choosing sufficient small d, (4.20) follows. We also see that equations (3.5) and (4.7) lead
to

ao(w(Qn) — W, v) + co(v, u(@n), W(Qr) — Wn) + co(v,u(Qr) — un, W)
+ co(u(Qp), v, w(Qnr) — wr) + co(u(Qr) — up, v, wp) — b(v,o(Qn) — on)
= (u(@n) = U,v) + c1(v, T(Qn), p(Qn) — n) + a1 (v, T(Qn) — Th, ¢n)
—ag(Wn,Vv) — co(v,up, wp) — co(up, v,wp) + b(v, o)
—co(v, T, on) + (u, = U,v) VveHQ), (4.23)
b(W(Qn) — Wh,q) = —b(wn,q) V q € L3(Q),
a1(p(Qn) — ¢n, S) + c1(u(@n) — un, S, pn) + c1(u(Qn), S, 9(Qn) — ¥n)
d(w(Qn) — W, S) — a1(pn, S) — c1(un, S, on) + d(wp, S)
—c1(u(Qn) —un, T(Qn), S) — a1(Th, S) — c1(up, Ty, S) VS € Hy(R).
Similarly, denoting &* = w(Qpr) — wp, n* = ©(Qr) — pn and ¢* = o(Qp) — op, gives
(€ F + "l ) < ao(€™,67) +ar(n™,n")
=—co(§"u(@n),§") —co(€", & un) — o€, 6", wi) +b(§7, ()
+ (&€ + (€ T(Qn),n™) + (€, on)
—ao(wn, &) = co(§", un, wi) — co(an, £, wn) + (", on) — c1 (£, Th, n) + (un — U, £7)
—c1(§mon) +d(E, ) — ar(pn,n”) — cr(uan, 0™, on) + d(Wn, ")

2
Z h2 u, — U+ vAwy, + (u;l -V)wp — wy - Vuy + Vo, + SD}LVTh’

TeTh
Z hl/[VVW;l -n—i—ahn} Z hl/[/@VTh . nr

1NON=0 1NoN=0

h2

IiATh +uy - Vo, +wyp, - g‘

TET’

- C(||§||H1 + Hnnip) + 0 (116" s + 113
13
6) Y n2 + 8 (1€ s + In 32 )
=2

Then, (4.21) is obtained. U
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Lemma 4.7. Let (w(Qr),T(Qn),p(Qr)) and (up, Th,ppn) be the solutions of (3.4) and (4.6)
respectively. Let (w(Qp), (Qn),o(Qr)) and (wp, on,op) be the solutions of the co-state equa-
tions (3.5) and (4.7) respectively. Suppose above assumptions are fulfilled, then for sufficient
small h, we have the following estimate

IIw(Qh) - whllim +1e(@n) = enllf o + lo(@n) = onllg o

4.24
<CZ771 +CZ7715 ( :

1=14

where

up — U+ vAwy + (up, - V)wy — wy - Vuy + Voy, + @hVTh

)

77%4: Z/

TETH
s = Z /h3 vVwy, - n—i—ahn} . e = Z/
NoN=0 TETN
e = Z /hf KV - Tl
1NON=0

Proof. First, we introduce the following system:

(@) —vAR"+ (u(Qn) V)R"+ (R -V)u(Qr) + VA" —¢" - g
=w(Qn) —wp inQ,
(b)) —V-R"=0(Qn) —0on inQ, (4.25)
() —RAG" +u(Qn) - V6" + R - VT(Qn) = ¢(Qn) — on i O,
(d R*"=0 ¢*=0 on Q.

Because we assume the solution (u,p,T) is regular, and also the linear system (4.25) is the
adjoint system of (4.17) so that it is uniquely solvable and satisfies the a priori estimate

IR ||z () + [IA
<C([[w(Qn) — Whllr2q) + lo(Qn) — on

(@n) — Q)- (4.26)

Similarly, we can have

€512 =+ [l |1 + 1<)
=ag(Ww(Qn) — Wi, R") + co(u(Qn), R, §") + co(R", up, §°) +b(€7, \*) — d(¢7,£7)
+ bR, (") +a1(n*, ¢") + c1(u(@n), ¢, 7*) + c1(R*, T(Qn),n")
=(u, —U,R" — ,R") — ap(wp, R* — IL,R") + co(up, R* — IL,R", wy,)
+ Co(R* = ILR*,up, wy) — b(R* — LR*, o) + C1(R* — I, R*, T}, 1)
—a1(pn, ¢* = Ind*) — c1(un, ¢" — In¢™, on) — d(¢" — In¢*, wh)
—co(§, RY, wy) — co(R*, €, wp) — a1t (R, m, 0n) — c1(§, 0", 90m) — (§,RY)
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0y |

up, — U+ vAwy, + (up - V)W — wy - Vuy, + Vo, + (,OhVTh

TETH

+ Z /h3 vVwy, - n—i—ahn Z /hl &V op, - n
INoN=0 1NoN=0

+C(5 Z /h4 kAT, +up, - Vo + wy, - g‘

TETh

+ C (Il + Ul ) + 3 (IR Nae + N1z + 12" 1)

17
6) 3 w2+ C (Il + InliFn ) + S (1E" 12 + 12 + 1S 12)- (4.27)

i=14
Hence, repeating the same arguments we have completed our proof. O

Next, we give our main result of this paper.

Theorem 4.1. Let (w,T,p) and (wp, Th,pr) be the solutions of (2.4) and (4.6) respectively.
Let (w, p,0) and (wp, pn,on) be the solutions of the co-state equations (2.5) and (4.7) respec-

tively. Suppose above assumptions are fulfilled, then for sufficient small h, we have the following
estimate

e +1Q - Qnllg o+ llu— Uh”%rl(n) + 1T = Thll o

2 2 2 2 S 2 (4'28)
+ 1w — whl 00y + 10 = enllEo) + lo —onllfo < Cu +C Y 7,
i=6

Proof. As (u,T,p) is assumed to be a regular solution, for sufficient small h it gives

lu —w(@n)llar ) + 1T — T(Qn)llz1 (@) + lp — p(Qn) o,
lw —w(Qn)lla () + e — e(@u)llar () + o — (@)oo < ClQ — Qullo,

Note that
[u—unllar (o) < [lu—u(@n)lla (o + [w(@n) — urlla o)

Using the same technique to handle with other terms, then (4.28) follows from above lemmas.
O

Now we are in the position to prove the a posteriori lower bound. In order to derive the
a posteriori lower bound, we prove the following lemmas using the standard bubble function
technique.

Lemma 4.8. Let (u,T,p) and (up, T, pp) be the solutions of (2.4) and (4.6) respectively.

15 + 17 < Cllu—wnl 3 ) + 1T = Thll 7 o) + Ip = pallg .0 + Ce3, (4.29)

where 1; is defined in Lemma 4.6,

where
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Proof. Using the the standard bubble function technique (see [25], for example), it can be
proved that there exist polynomials W, € H}(7) N P; and W, € H} (! U7?) N P such that

K

B 2
f+vAu, — (u;l . V)Uh — Vpn +Thg

:/ (f+ VAuh - (uh : V)uh - Vph + Tng)WT, (430)
; 2
/hl [VVuh N — phn} = /[VVuh “n — phn} W, (4.31)
1 1
_ 2
||W7—||%{1(7.) < C/ h72_ f + Z/AU}L — (Uh . V)Uh - vph + Thg 5 (432)
_ 2
B2 W20, < C / 32| 7+ vAw, — (un - V)uy, — Vi + Thg| (4.33)
2 f 2
Wil (a0my < € / [y, n ) (1.34)
2
hl_2HWlH%2('rl1U7'12) < C/lhl [VVuh n —phﬂ} : (4.35)
Then, it follows from (4.30), (4.32), (4.33) and Schwartz inequality that
_ 2
/h?_ f +vAuy, — (uh . V)uh - Vph + Thg‘
= / (f+ I/Auh — (uh . V)uh — Vph + Thg)W-,—
= / (f +vAu, — (- V)up — Vpp + Thg)wr + /(f?* fIW-
< / (I/Auh —(ap-Vup = Vpp, + Thg— (vAu— (u-Vi)u—Vp+ Tg))WT
_ 2
OO Wiy +CO) [ 127 - o
=- / vV(up —u)VW, — /(ph -p)V-W, + /(Thg —Tg)W,
_ 2
+/ ((u.V)uf (uy, - V)uh)WT + COh 2| Wo[Z2(y +C(5)/hi f—f‘

< C(6) (Il = wnllgs () + 1T = Tulls ) + o — il

2
0,7

_ 2
OO (02 IW By + (Wil ) +C) [ 127~ 1]

< CO) (Il = Wl + 1T = Tallss iy + o = 2l )

+C6 / h?

where J is an arbitrary positive number. Therefore, letting § = % yields

2
’

F=1

_ 2
f+vAu, — (u;l . V)uh — Vpn + Thg‘ + 0(5) / h72_

Z/h72_|f+ vAuy, — (uh . V)uh — Vpn + Thg}Q

< CO) (Il = unliip ) + 1T = Tullf ) + I — palls o + €3).
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Similarly, when [ N 9 # 0, where | = 7! N 77, it follows from (4.31), (4.34) and (4.35) that

/lhl [VVuh N — phn} ’ = /l[VVUh “n — phn} W,

= / {VVuh ‘n—ppn— (YVu-n— pn)} W,
1

:/ vV(up, —u)VW, +/ (p—pn)V-W, +/
7'llu7'l2 711U7'2

102
i T, UT]

(VA(uh ll) v (p ph)) W,
<C(5)(Hl] — |1h||2}11 1.2y T ||ph 7}7”2[ 1,2 )
- (rf o) 2 ur?)

+ / , (I/Auh —pnt+f—(u-Viu+ Tg)Wl + C(S”Wl“%{l(,rllqu)
TrUT

<O0) (Il = willsgnty 17 = Tl oty + 1= Pl

+C/ h?
'rll Ule

+ 05(h;2|\wl||2L2(T;uT;) + ||Wl|\%rl(7l1uff)>'

2
f+vAu, — (up - V)uy — Vpy, + Thg‘

Hence,
Z /lhl[z/Vuh ‘n— phn]2
< C(Jlu = wnli o) + IT = Tllday + Ion = pll3zcey )
+CZ/ h2|f +vAu, — (ay - V)u, — Vp, + Thg|2- (4.36)
Therefore, this proves (4.29). O

Similarly, we can prove the following lower bound estimate for ns,...n13.
Lemma 4.9. Let (u,T,p) and (up, Th,pp) be the solutions of (2.4) and (4.6) respectively. Let

(w, p,0) and (wp, pn,op) be the solutions of the co-state equations (2.5) and (4.7) respectively.
Then,

13
S < C(IIQ = Qnllg.0 + 1w = w3 o) + 11T = Tl o) + o = pull§
8
Hlw — wnllFp o) + e = enllin) + o —onllga) + Ces + O, (4.37)
W— Wh|Frq) T 1Y — Prllar) T 119 = Orllo,Q €2 €3, (%

where n; is defined in Lemma 4.6,

Using Lemmas 4.8 and 4.9, we can have the following a posteriori lower bound.

Theorem 4.2. Let (u,T,p) and (up, Tk, pn) be the solutions of (2.4) and (4.6) respectively. Let
(w, p,0) and (wp, pn,op) be the solutions of the co-state equations (2.5) and (4.7) respectively.
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Assume that all the conditions of above lemmas are also valid. For sufficient small h, then it
gives
13

mt+ > n? <O(e +11Q - Q)

6

o0+ llu—wnlin o) + 1T = Tullf ) + 2 = pull3 o

+ 1w = wnll3p ) + o = enllin + llo = onllia) + CS + 0, (4.39)
where 1;,€; are defined before.

Proof. Now based on the above lemmas, we only need to estimate 7;. Note that aQ +¢ =0
when @ > d and ad 4+ ¢ > 0 when @ = d. Let

Qi ={zecQ;: Q) =d}.

We have that

/7(04Qh+§0h)2:/9d (th+<Ph_aQ+Oéd))2+/Q\Qd (OéQh-l-th—OéQ—(P)

Q

2

<C(1Q = Qulisqoy + o — ol + [ (on-+adP’)

d
d

<0 (10~ Quliaey + llo = onllay + [ (on+ad o= ad?)
d

<C(1Q = Qulliae + e = enllE) ).

where we used the facts that ¢, + ad < 0 < ¢ 4+ ad on Qg. Moreover, note that ) > d and
hence a@ + ¢ =0 on le' \ Q.. It can be deduced that

/ (aQn + ¢n)?
Q+

= / (aQn + ¢n)? +/ (aQn + ¢n)?
Q. aQh\Q.
2

— /Q (th + on — Ru(aQp + @h))Q + /m\n (th +on — (@@ + @))

SC/Q (aQ—F@—Rh(aQ—F@))Q-i-C/Q (th-l-th—(aQ-i-‘P))Q

2
+C [ (Ru0Q@+9) = RalaQu +¢1)) +C(1Q = Qullha + o = onl )
<Ce+C(1Q - Qullg o+ lle —enld o) (4.39)
So, we complete our proof. O

5. Concluding Remarks

In this paper we develop the adaptive finite element approximation for the distributed op-
timal control associated with the stationary Bénard problem under the pointwise control con-
straint. We give the a posteriori error estimates mainly with the H'!—norm appearances for the
states and co-states and for the control with the L?—norm appearance. In the further research,
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the a posteriori error estimates for the states and co-states with the L?2—norm appearances will

be considered, and especially the a posteriori lower bound for 7, - -+ , 75 and 14, - - , 717 will be
given using the new bubble functions.

Acknowledgments. This paper is supported in part by China NSF under the grant 11101025,
the Fundamental Research Funds for the Central Universities and the Science and Technology
Development Planning Project of Shandong Province under the grant 2011GGH20118.

(1]

References

F. Abergel and F. Casas, Some optimal control problems of multistate equations appearing in
fluid mechanics, Math. Model. Numer. Anal., 27 (1993), 223-247.

G. Alekseev, Solvability of stationary boundary control problems for heat convection equations,
Sib. Math. J., 39 (1998), 844-858.

N. Arada, E. Casas and F. Troltzsch, Error estimates for the Numerical Approximation of a
semilinear elliptic optimal control problem, Comput. Optim. Appl., 23 (2002), 201-229.

F. Brezzi, J. Rappaz and P. Raviart, Finite-dimensional approximation of nonlinear problem. Part
I: branches of nonsingular solutions, Numer. Math., 36 (1980), 1-25.

E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems
with finitely many state constraints, ESAIM Control, Optim. Cal. Var., 8 (2002), 345-374.

E. Casas and F. Troltzsch, Second order necessary and sufficient optimality conditions for opti-
mization problems and applications to control theory, SIAM J. Optim., 13 (2002), 406-431.

E. Casas, F. Troltzsch and A. Unger, Second order sufficient optimality conditions for some state
constrained control problems of semilinear elliptic equations, STAM J. Control Optim., 38 (2000),
1369-1391.

Y. Chang and D. Yang, Superconvergence analysis of finite element methods for optimal control
problems of the stationary Bénard type, J. Comp. Math., 26 (2008), 660-676.

C. Cuvelier, Optimal Control of a System Governed by the Navier-Stokes Equations Coupled with
the Heat equations, New Developments in Differential Equations (W. Eckhaus, ed.), Amsterdam:
North-Holland, 1976.

V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and
Algorithms, Springer-Verlag, Berlin, 1986.

M. Gunzburger, L. Hou and T. Svobodny, Heating and cooling control of temperature distributions
along boundaries of flow domains, J. Math. Syst. Estim. Control., 13 (1993), 147-172.

M. Gunzburger and H. Lee, Analysis, approximation, and computation of a coupled solid/fluid
temprature control problem, Comput. Methods Appl. Mech. Eng., 118 (1994), 133-152.

A. Kufner, O. John and S. Fucik, Function spaces, Nordhoff, Leyden, The Netherlands, 1977.

K. Kunusich, W. Liu, Y. Chang and N. Yan, R. Li, Adaptive finite element approximation for a
class of parameter estimation problems. J. Comp. Math., 28 (2010), 645-675.

H. Lee, Analysis of optimal control problems for the 2-D stationary Boussinesq equations, J. Math.
Anal. Appl., 242 (2000), 191-211.

H. Lee, Optimal control problems for the two dimensional Rayleigh-Bénard type convection by a
gradient method, Japan. J. Indust. Appl. Math., 26 (2009), 93-121.

H. Lee, Analysis and computations of Neumann boundary optimal control problems for the sta-
tionary Boussinesq equations, Proceedings of the 40th IEEE Conference on Decision and Control,
Orlando, Florida USA, Dec., 2001.

J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag,
Berlin, 1971.

W. Liu and N. Yan, A posteriori error estimates for control problems governed by nonlinear elliptic
equations, Appl. Numer. Math., 47 (2003), 173-187.



The Optimal Control with the Stationary Bénard Problem 87

20]

P. Raviart and J. Thomas, A mixed finite element method for 2nd order elliptic problems, Math-
ematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, Springer-Verlag,
New York, 606 (1977), 292-315.

D. Yang and L. Wang, Two finite element schemes for steady convective heat transfer with system
rotation and variable thermal properties, Numer. Heat Trans. B, 47 (2005), 343-360.

K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: a linear
model problem, SIAM J. Numer. Anal., 28 (1991), 43-77.

R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of
partial differential equations: basic concept, SIAM J. Control Optim., 39 (2000), 113-132.

R. Verfiirth, A posteriori error estimates for nonlinear problems, Math. Comp., 62 (1994), 445-475.
R. Verfiirth, A Review of Posteriori Error Estimation and Adaptive Mesh Refinement Techniques,
Wiley-Teubner, New York, 1996.

R. Li, W. Liu, H. Ma and T. Tang, Adaptive finite elememt approximation of elliptic optimal
control, SIAM J. Control Optim., 41 (2002), 1321-1349.

L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions stisfying boundary
conditions, Math. Comp., 54 (1990), 483-493.



