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Abstract

In this paper, we present an accelerated simulation approach on waveform relaxation

using Krylov subspace for a large time-dependent system composed of some subsystems.

This approach first allows these subsystems to be decoupled by waveform relaxation. Then

the Arnoldi procedure based on Krylov subspace is provided to accelerate the simulation of

the decoupled subsystems independently. For the new approach, the convergent conditions

on waveform relaxation are derived. The robust behavior is also successfully illustrated

via numerical examples.
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1. Introduction

Time-dependent systems are widely used to model and simulate complex physical processes.

With the rapid development of the very large-scale integration technology, the dimension of

time-dependent systems often becomes very large. For simulating such systems, it becomes

extremely important to seek robust numerical simulation methods. Due to this fact, how to

numerically solve large time-dependent systems has attracted extensive attention.

In this paper, we consider a time-dependent system composed of k subsystems. For conve-

nience sake, we assume that each subsystem is a linear time-invariant system described as

Ej

dxj(t)

dt
= Ajxj(t) +Bjuj(t), yj(t) = Cjxj(t), j = 1, 2, · · · , k, (1.1)

with the initial conditions xj(t0), and

{
uj(t) = Fj1y1(t) + Fj2y2(t) + · · ·+ Fjkyk(t) +Gju(t),

y(t) = H1y1(t) +H2y2(t) + · · ·+Hkyk(t),
(1.2)

where Ej , Aj ∈ Rnj×nj (j = 1, 2, · · · , k), Bj ∈ Rnj×mj , Cj ∈ Rpj×nj , Fji ∈ Rmj×pi(i =

1, 2, · · · , k), Gj ∈ Rmj×m, Hj ∈ Rp×pj , xj(t) ∈ Rnj are internal state variables, uj(t) ∈ Rmj

are internal inputs, yj(t) ∈ Rpj are internal outputs, u(t) ∈ Rm is an external input, and

y(t) ∈ Rp is an external output. To our knowledge, this kind of system frequently arises in
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numerous research areas such as circuit simulation, control models, and discretizations of partial

differential equations.

In the literature, waveform relaxation (WR), also known as dynamic iteration, is an effective

technique to solve coupled systems described by ordinary differential equations and partial

differential equations, for details see [4–6, 9, 10]. The WR technique allows coupled systems to

be independently solved with its own time step length. Two typical WR schemes are the Jacobi

and Gauss-Seidel relaxation processes. For simulating the system (1.1), the WR technique is

an effective decoupling method. For example, for the j-th (j = 1, 2, · · · , k) subsystem of (1.1),

an iterative form of WR can be constructed as

E1j

dx
(l+1)
j (t)

dt
−
(
A1j +B1jF1,jjC1j

)
x
(l+1)
j (t)

=E2j

dx
(l)
j (t)

dt
−
(
A2j +B2jF2,jjC2j

)
x
(l)
j (t) +Bj

( k∑

i=1,i6=j

FjiCix
(l)
i (t) +Gju(t)

)
,

(1.3)

where E1j − E2j = Ej , (A1j + B1jF1,jjC1j) − (A2j + B2jF2,jjC2j) = Aj + BjFjjCj , l is a

nonnegative integer, x
(l+1)
j (t0)(j = 1, 2, · · · , k) are initial conditions, and the functions x

(0)
j (·)

are initial guesses. Numerical algorithms with WR suit well for parallel processing. In addition,

model order reduction is another effective technique which seeks to replace a very large-scale

integration system by a system of substantially lower order. There are two main kinds of model

order reduction methods. The first one is the Krylov subspace method, for details see [7, 12].

The other one is the balanced truncation reduction method, e.g., see [7, 13, 16]. For nonlinear

systems, some model order reduction methods are discussed in [1, 2, 15]. Some work on model

order reduction can also be referred to [11, 14].

Instead of direct numerical simulation of the system (1.1), we use the Krylov subspace model

order reduction technique to construct a reduced system as follows

Ẽj

dx̃j(t)

dt
= Ãj x̃j(t) + B̃j ũj(t), ỹj(t) = C̃j x̃j(t), j = 1, 2, · · · , k, (1.4)

where x̃j(t) ∈ Rqj , ũj(t) ∈ Rmj , ỹj(t) ∈ Rpj , Ẽj , Ãj ∈ Rqj×qj , B̃j ∈ Rqj×mj , C̃j ∈ Rpj×qj ,

qj ≪ nj , and

ũj(t) =

k∑

i=1,i6=j

Fjiỹi(t) +Gju(t), ỹ(t) =

k∑

i=1

Hiỹi(t).

Our method combining WR with Krylov subspace seeks to remedy the shortcomings of WR,

such as the poor convergence property and expensive computational costs. The WR technique

not only gives a decoupling method for the system (1.1) but also offers a new model order

reduction strategy based on Krylov subspace. Some concrete Krylov subspaces which can bring

the original system (1.1) to the reduced system (1.4) may be constructed based on the iterative

process (1.3).

The outline of this paper is organized as follows. In Section 2, we present some basic

properties of solving the system (1.1), and discuss the decoupling of this system by the WR

technique. Moreover, for the system of index one, the convergence condition of the WR solutions

is derived. In Section 3, we reduce each independent subsystem to a system with lower order

and analyze the convergence of the WR solutions for the reduced system of index one. The

moment matching property is also analyzed in Section 3. In Section 4, we present a structure-

preserving algorithm which preserves the differential-algebraic structure of the original system.
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In Section 5, we provide some numerical experiments to show the usefulness of the new method.

Finally, some conclusions are given in Section 6.

2. Decoupling by Waveform Relaxation

In this section, we first show some elementary results on solving time-dependent systems,

and then consider decoupling of the system (1.1) by WR technique.

2.1. Solving time-dependent systems

We now look for the solution of the system (1.1). Let n = n1+ · · ·+nk, m0 = m1+ · · ·+mk,

p0 = p1 + · · · + pk, E = diag(E1, · · · , Ek) ∈ Rn×n, A = diag(A1, · · · , Ak) ∈ Rn×n, B =

diag(B1, · · · , Bk) ∈ Rn×m0 , C = diag(C1, · · · , Ck) ∈ Rp0×n, H =
[
H1 · · · Hk

]
∈ Rp×p0 ,

and

x =




x1

...

xk


 ∈ R

n, F =




F11 · · · F1k

... · · ·
...

Fk1 · · · Fkk


 ∈ R

m0×p0 , G =




G1

...

Gk


 ∈ R

m0×m.

Then, we can rewrite (1.1) as a block form

E
dx(t)

dt
= Ax(t) + Bu(t), y(t) = Cx(t), (2.1)

where E = E ∈ R
n×n, A = A + BFC ∈ R

n×n, B = BG ∈ R
n×m, and C = HC ∈ R

p×n.

It should be mentioned that, one can conveniently compute the concrete form of A by block

matrix multiplication as follows

A=




A1 +B1F11C1 B1F12C2 B1F13C3 · · · B1F1kCk

B2F21C1 A2 +B2F22C2 B2F23C3 · · · B2F2kCk

...
. . .

. . .
. . .

...

Bk−1Fk−1,1C1 · · · Bk−1Fk−1,k−2Ck−2
. . . Bk−1Fk−1,kCk

BkFk1C1 · · · BkFk,k−2Ck−2 BkFk,k−1Ck−1 Ak +BkFkkCk




.

In order to obtain the solutions of the first equation in (2.1), we need to define a matrix

pencil {E ,A} as the one-parameter family {λE − A : λ ∈ C} [3]. The spectrum σ(E ,A) of the

pencil is the set {λ ∈ C : det(λE − A) = 0}. If det(λE − A) 6= 0 for some λ ∈ C, then the

matrix pencil {E ,A} is called regular. For the general case, if λE − A is singular for all values

λ, then the system (2.1) has either no solution or infinitely many solutions for a given initial

condition. Let the matrix pencil {E ,A} in (2.1) be regular. Then, there exist nonsingular

matrices P ∈ Rn×n and Q ∈ Rn×n such that

PEQ =

[
I1 0

0 N

]
, PAQ =

[
M 0

0 I2

]
, (2.2)

where M ∈ Rτ1×τ1 is in Jordan canonical form, N ∈ Rτ2×τ2 is nilpotent, and τ1 + τ2 = n.

The matrix M contains the finite eigenvalues of the matrix pencil {E ,A} on its diagonal and

the zeros on the diagonal of the matrix N represent the eigenvalues at infinity of {E ,A}. The

decomposition (2.2) is the known Weierstrass canonical form.
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In the following, we discuss the existence of the solutions of the first equation in (2.1).

First we define the index of the system (2.1) as the index of nilpotency of N , denoted by ν.

Then we premultiply the first equation in (2.1) by P and make the coordinate transformations

x̂(t) = Q−1x(t), û(t) = PBu(t). After that, we partition x̂(t), û(t) as

x̂(t) =

[
x̂1(t)

x̂2(t)

]
and û(t) =

[
û1(t)

û2(t)

]

respectively, where û1(t), x̂1(t) ∈ Rτ1 and û2(t), x̂2(t) ∈ Rτ2 . Finally, by substituting these

expressions into the first equation in (2.1), we get

dx̂1(t)

dt
= Mx̂1(t) + û1(t), N

dx̂2(t)

dt
= x̂2(t) + û2(t), (2.3)

with the initial condition
[
x̂T
1 (t0) x̂T

2 (t0)
]T

= Q−1x(t0). It is clear that, if the initial condition

x̂2(t0) satisfies the relation

x̂2(t0) = −Nν−1 d
ν−1û2(t0)

dtν−1
−Nν−2 d

ν−2û2(t0)

dtν−2
− · · · −N

dû2(t0)

dt
− û2(t0),

the system (2.3) has a unique continuously differentiable solution.

2.2. Decoupled systems and convergence analysis

We now study the WR solutions of the system (1.1) and consider the convergence of the

WR solutions for the system of index one. To decouple the system (1.1), an iterative process

for the j-th subsystem (j = 1, 2, · · · , k) by WR can be constructed as follows

Ej

dx
(l+1)
j (t)

dt
= Ajx

(l+1)
j (t) +Bj

( k∑

i=1,i6=j

Fjiy
(l)
i (t) + Fjjy

(l+1)
j (t) +Gju(t)

)
, (2.4)

with the initial conditions x
(l+1)
j (t0) = xj(t0) satisfying certain consistent conditions such that

the solutions of these systems exist. The functions x
(0)
j (·) are initial guesses.

To go on our analysis, we rewrite (1.2) and (2.4) as





Ej

dx
(l+1)
j (t)

dt
= (Aj +BjFjjCj)x

(l+1)
j (t) +Bj

( k∑

i=1,i6=j

FjiCix
(l)
i (t) +Gju(t)

)
,

y
(l+1)
j (t) = Cjx

(l+1)
j (t), y(l+1)(t) =

k∑

i=1

Hiy
(l+1)
i (t).

(2.5)

The above iterative form for each j is now independent. For the purpose at hand, we can also

rewrite all the k subsystems above as a block form

E
dx(l+1)(t)

dt
= A1x

(l+1)(t) +B(A2x
(l)(t) +Gu(t)), y(l+1)(t) = Cx(l+1)(t), (2.6)

where x(l)(t) =
[
(x

(l)
1 )T (t) · · · (x

(l)
k )T (t)

]T
, A1 = diag(A1+B1F11C1, · · · , Ak+BkFkkCk),
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the matrices E , B, G and C are defined in Section 2.1, and A2 is defined as

A2 =




0 F12C2 F13C3 · · · F1kCk

F21C1 0 F23C3 · · · F2kCk

...
. . .

. . .
. . .

...

Fk−1,1C1 · · · Fk−1,k−2Ck−2 0 Fk−1,kCk

Fk1C1 · · · Fk,k−2Ck−2 Fk,k−1Ck−1 0



.

Now we analyze the convergence of the WR iteration (2.6). For simplicity, we suppose that

the system (1.1) is of index one and restrict our considerations to the case when Ej =

[
Ij 0

0 0

]

in (1.1), where Ij ∈ Rnj1×nj1 is the identity matrix. For j = 1, 2, · · · , k, let nj2 = nj − nj1 and

x
(l)
j (t) =

[
(x

(l)
j1 )

T (t) (x
(l)
j2 )

T (t)
]T

where x
(l)
j1 (t) ∈ Rnj1 and x

(l)
j2 (t) ∈ Rnj2 . In order to obtain

the convergence conditions of the WR sequence {x(l)(t)}(l = 0, 1, · · · ), we now introduce some

notations by z
(l)
1 (t) =

[
(x

(l)
11 )

T (t) · · · (x
(l)
k1)

T (t)
]T

, z
(l)
2 (t) =

[
(x

(l)
12 )

T (t) · · · (x
(l)
k2)

T (t)
]T

,

and

J =




In11 0 0 0 · · · · · · 0 0

0 0 In21 0 · · · · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 0 Ink1
0

0 In12 0 0 · · · · · · 0 0

0 0 0 In22 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · · · · 0 Ink2




∈ R
n×n.

Let z(l)(t) =

[
z
(l)
1 (t)

z
(l)
2 (t)

]
. It is easy to prove that z(l)(t) = Jx(l)(t) and J−1 = JT . Thus, the

first equation in (2.6) can be transformed into

D
dz(l+1)(t)

dt
= JA1J

−1z(l+1)(t) + JBA2J
−1z(l)(t) + JBGu(t), (2.7)

where D = diag(I1, · · · , Ik, 0, · · · , 0). For rewriting the equation above as a semi-explicit form,

we partition JA1J
−1, JBA2J

−1 and JBGu(t) as follows

JA1J
−1 =

[
P11 P12

P21 P22

]
, JBA2J

−1 =

[
Q11 Q12

Q21 Q22

]
, JBGu(t) =

[
f1(t)

f2(t)

]
,

where P11, Q11 ∈ Rκ1×κ1 , P12, Q12 ∈ Rκ1×κ2 , P21, Q21 ∈ Rκ2×κ1 , P22, Q22 ∈ Rκ2×κ2 , f1(t) ∈

Rκ1 , f2(t) ∈ Rκ2 . Here κ1 = n11 + · · ·+ nk1, κ2 = n12 + · · ·+ nk2. Therefore, the WR iteration

(2.7) can be rewritten as follows




dz
(l+1)
1 (t)

dt
= P11z

(l+1)
1 (t) + P12z

(l+1)
2 (t) +Q11z

(l)
1 (t) +Q12z

(l)
2 (t) + f1(t),

0 = P21z
(l+1)
1 (t) + P22z

(l+1)
2 (t) +Q21z

(l)
1 (t) +Q22z

(l)
2 (t) + f2(t).

(2.8)

Suppose that the matrix pencils {Ej, Aj + BjFjjCj}(j = 1, 2, · · · , k) are of index one, which

implies that the matrix pencil {E ,A1} is of index one, then the matrix P22 is nonsingular. Thus,

the algebraic equation appearing in (2.8) yields

z
(l+1)
2 (t) = −P−1

22 P21z
(l+1)
1 (t)− P−1

22 Q21z
(l)
1 (t)− P−1

22 Q22z
(l)
2 (t)− P−1

22 f2(t). (2.9)
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Substituting (2.9) into the differential part in (2.8) yields

dz
(l+1)
1 (t)

dt
=(P11 − P12P

−1
22 P21)z

(l+1)
1 (t) + (Q11 − P12P

−1
22 Q21)z

(l)
1 (t)

+ (Q12 − P12P
−1
22 Q22)z

(l)
2 (t) + f1(t)− P12P

−1
22 f2(t).

From the equation above, we have

z
(l+1)
1 (t) =eR(t−t0)z

(l+1)
1 (t0) +

∫ t

t0

eR(t−s)(Q11 − P12P
−1
22 Q21)z

(l)
1 (s)ds (2.10)

+

∫ t

t0

eR(t−s)(Q12 − P12P
−1
22 Q22)z

(l)
2 (s)ds+

∫ t

t0

eR(t−s)(f1(s)− P12P
−1
22 f2(s))ds,

where R = P11 − P12P
−1
22 P21.

For the purpose at hand, we define operators R1 and R2 for u ∈ L2([t0, t0 + T ],Rκ1) and

v ∈ L2([t0, t0 + T ],Rκ2) as

(R1u)(t) =

∫ t

t0

eR(t−s)(Q11 − P12P
−1
22 Q21)u(s)ds,

(R2v)(t) =

∫ t

t0

eR(t−s)(Q12 − P12P
−1
22 Q22)v(s)ds.

For simplicity, we denote

ϕ1(t) = eR(t−t0)z
(l+1)
1 (t0) +

∫ t

t0

eR(t−s)(f1(s)− P12P
−1
22 f2(s))ds,

ϕ2(t) = −P−1
22 P21(e

R(t−t0)z
(l+1)
1 (t0) +

∫ t

t0

eR(t−s)(f1(s)− P12P
−1
22 f2(s))ds) − P−1

22 f2(t).

For any fixed l, by substituting (2.10) into (2.9), we may write (2.8) compactly as

[
z
(l+1)
1 (t)

z
(l+1)
2 (t)

]
= R

[
z
(l)
1 (t)

z
(l)
2 (t)

]
+

[
ϕ1(t)

ϕ2(t)

]
,

where

R =

[
R1 R2

−P−1
22 P21R1 −P−1

22 P21R2

]
+

[
0 0

−P−1
22 Q21 −P−1

22 Q22

]
.

For convenience sake, we denote ρ(R) as the spectral radius of the matrix R and σ(R) as the

spectrum of the operator R respectively. For the sequence {z(l)(t)}(l = 0, 1, · · · ), we have a

conclusion on its convergence.

Theorem 2.1. For the system (1.1), let the matrix pencils {Ej , Aj} and {Ej, Aj+BjFjjCj}(j =

1, 2, · · · , k) be of index one. Then, for the WR iteration (2.7) the sequence {z(l)(t)}(l = 0, 1, · · · )

on [t0, t0 + T ] is convergent if ρ(P−1
22 Q22) < 1.

Proof. Following the idea in [6], we show the theorem above. Let λ 6= 0. For any fixed[
vT1 vT2

]T
∈ L2([t0, t0 + T ],Rκ1+κ2)

⋂
C1([t0, t0 + T ],Rκ1+κ2), suppose that

(
λI −

[
R1 R2

−P−1
22 P21R1 −P−1

22 P21R2

])[
ξ1(t)

ξ2(t)

]
=

[
v1(t)

v2(t)

]
,
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where I is the identity operator. It yields

{
λξ1(t)−R1ξ1(t)−R2ξ2(t) = v1(t),

λξ2(t) + P−1
22 P21R1ξ1(t) + P−1

22 P21R2ξ2(t) = v2(t).
(2.11)

Let F1 = Q11 − P12P
−1
22 Q21 and F2 = Q12 − P12P

−1
22 Q22. From (2.11), we have





λ
dξ1(t)

dt
− F1ξ1(t)− F2ξ2(t)−R(R1ξ1(t) +R2ξ2(t)) =

dv1(t)

dt
,

λ
dξ2(t)

dt
+ P−1

22 P21F1ξ1(t) + P−1
22 P21F2ξ2(t) + P−1

22 P21R(R1ξ1(t) +R2ξ2(t)) =
dv2(t)

dt
.

(2.12)

It is clear that the first equation in (2.11) yields R1ξ1(t)+R2ξ2(t) = λξ1(t)−v1(t). Substituting

this expression into (2.12), we have

[
λ 0

0 λ

][ dξ1(t)
dt

dξ2(t)
dt

]
+ S

[
ξ1(t)

ξ2(t)

]
=

[
dv1(t)

dt
−Rv1(t)

dv2(t)
dt

+ P−1
22 P21Rv1(t)

]
, (2.13)

where

S =

[
−(λR+ F1) −F2

P−1
22 P21(λR + F1) P−1

22 P21F2

]
.

The solution of (2.13) can be written as

[
ξ1(t)

ξ2(t)

]
=

1

λ

[
v1(t)

v2(t)

]
+

1

λ

∫ t

t0

e
s−t
λ

S

[
−Rv1(s)

P−1
22 P21Rv1(s)

]
ds−

S

λ2

∫ t

t0

e
s−t
λ

S

[
v1(s)

v2(s)

]
ds.

It implies that the operator

λI −

[
R1 R2

−P−1
22 P21R1 −P−1

22 P21R2

]

has a bounded inverse in L2([t0, t0 + T ],Rκ1+κ2) for any fixed λ 6= 0, i.e.,

σ

([
R1 R2

−P−1
22 P21R1 −P−1

22 P21R2

])
= {0}.

Furthermore, for the operator R we have

σ(R) = σ

([
0 0

−P−1
22 Q21 −P−1

22 Q22

])
.

This completes the proof. �

For WR solutions of dynamic systems, some discussions on convergence conditions can be

found in [6] and the references therein.

3. Krylov Subspace Acceleration

In this section, we first present the Krylov subspace model order reduction method for

time-dependent systems. Then the convergence conditions on the accelerated WR iteration are

derived for the system of index one. Finally, we analyze the moment matching property.



An Accelerated Waveform Relaxation Approach 197

3.1. Krylov subspace model order reduction

We consider the use of the Krylov subspace technique for the reduction of the system (1.1).

A Krylov subspace is a linear space spanned by a sequence of vectors generated by a given matrix

and a vector. Given a matrix A and a starting vector b, the r-th Krylov subspace Kr(A, b) is

spanned by a sequence of r column vectors, denoted by Kr(A, b) = span{b, Ab, · · · , Ar−1b}. If B

is also a matrix, we define the r-th block Krylov subspace Kr(A,B) as Kr(A,B) = colspan{B,

AB, · · · , Ar−1B}. By the Arnoldi procedure based on Krylov subspace, a column-orthonormal

matrix can be constructed.

Now we present a model order reduction method based on Krylov subspace to reduce the

decoupled system (2.5). For fixed λ ∈ C and each j ∈ {1, 2, · · · , k}, let the matrix Aj +

BjFjjCj − λEj be nonsingular. We first construct a column-orthonomal matrix Wj ∈ Rnj×qj

based on the Krylov subspace

Krj

(
(Aj +BjFjjCj − λEj)

−1Ej , (Aj +BjFjjCj − λEj)
−1Bj

)
, (3.1)

where rj is a nonnegative integer and qj is the dimension of this Krylov subspace. Then, by

taking the following approximations

x
(l)
j (t) ≈ Wj x̃

(l)
j (t), j = 1, 2, · · · , k, (3.2)

and substituting (3.2) into (2.5), we get





Ẽj

dx̃
(l+1)
j (t)

dt
= (Ãj + B̃jFjjC̃j)x̃

(l+1)
j (t) + B̃j

( k∑

i=1,i6=j

FjiC̃ix̃
(l)
i (t) +Gju(t)

)
,

ỹ
(l+1)
j (t) = C̃j x̃

(l+1)
j (t), ỹ(l+1)(t) =

k∑

i=1

Hiỹ
(l+1)
i (t),

(3.3)

where Ẽj = WT
j EjWj , Ãj = WT

j AjWj , B̃j = WT
j Bj , C̃j = CjWj , and the initial conditions

x̃
(l+1)
j (t0) = WT

j x
(l+1)
j (t0). The functions x̃

(0)
j (·) are initial guesses.

Let

u
(l)
j (t) =

k∑

i=1,i6=j

FjiCix
(l)
i (t) +Gju(t), ũ

(l)
j (t) =

k∑

i=1,i6=j

FjiC̃ix̃
(l)
i (t) +Gju(t).

If we regard the variables u
(l)
j (t) and ũ

(l)
j (t) as internal inputs of the j-th subsystems in (2.5)

and in (3.3) respectively, the corresponding transfer functions can be defined by

Hj(s) = Cj(sEj − (Aj +BjFjjCj))
−1Bj , H̃j(s) = C̃j(sẼj − (Ãj + B̃jFjj C̃j))

−1B̃j .

We expand Hj(s) into a Taylor series as Hj(s) =
∑+∞

i=0 Mi,j(s− λ)i where Mi,j = −Cj((Aj +

BjFjjCj − λEj)
−1Ej)

i(Aj +BjFjjCj − λEj)
−1Bj . The coefficient matrices Mi,j (i = 0, 1, · · · )

are the moments of the j-th subsystem in (2.5) at the point λ.

For the reduced system (3.3), let the matrices Ãj + B̃jFjjC̃j − λẼj(j = 1, 2, · · · , k) be

nonsingular.Then, we expand H̃j(s) into a Taylor series as H̃j(s) =
∑+∞

i=0 M̃i,j(s− λ)i where

M̃i,j = −C̃j

(
(Ãj + B̃jFjjC̃j − λẼj)

−1Ẽj

)i

(Ãj + B̃jFjjC̃j − λẼj)
−1B̃j
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are the moments of the j-th subsystem in (3.3) at the point λ. Since Krj ((Aj + BjFjjCj −

λEj)
−1Ej , (Aj +BjFjjCj − λEj)

−1Bj) ⊆ colspan{Wj}, according to [7] we can prove Mi,j =

M̃i,j(i = 0, 1, · · · , rj −1). For every step of the WR iteration, we use the same Krylov subspace

(3.1) to accomplish the reduction process. The matrices Ẽj , Ãj , B̃j , and C̃j are unchanged.

Therefore, for every iteration of the j-th subsystem, H̃j(s) interpolates Hj(s) at the point λ up

to the first rj moments.

It should be noted that, from the perspective of numerical simulation, the reduced system

simulated by the WR technique in this paper is decomposed. The WR technique suits well

for parallel computation, especially when the original problem consists of some subprocesses

with many internal and few external variables, such as the system (1.1). Decoupling and

parallelization of systems embedded in the WR technique are two ways to significantly reduce

overall computation time. Furthermore, to reduce the block system (2.1), the Krylov subspace

method requires O(qn2) flops, where q is the order of the reduced system. However, since

O(qjn
2
j) flops are required to construct a reduced system of order qj for the j-th subsystem in

(2.5), the total cost of our method is O(
∑k

j=1 qjn
2
j). Since n =

∑k

j=1 nj , our method is superior

in numerical efficiency with cheaper calculations.

3.2. Convergence analysis

We now analyze convergence conditions of the sequences {x
(l)
j (t)}(j = 1, 2, · · · , k) in (3.3).

First, we need to partition Wj as Wj =

[
Wj1

Wj2

]
where Wj1 ∈ R

nj1×qj and Wj2 ∈ R
nj2×qj . In

view of Ej =

[
Ij 0

0 0

]
, we can rewrite the system (3.3) as follows

Ẽ
dx̃(l+1)(t)

dt
= Ã1x̃

(l+1)(t) + B̃(Ã2x̃
(l)(t) +Gu(t)), ỹ(l+1)(t) = C̃x̃(l+1)(t), (3.4)

where x̃(l)(t) =
[
(x̃

(l)
1 )T (t) · · · (x̃

(l)
k )T (t)

]T
, Ã1 = diag(Ã1+B̃1F11C̃1, · · · , Ãk+B̃kFkkC̃k),

Ẽ = diag(WT
11W11, · · · ,W

T
k1Wk1), B̃ = diag(B̃1, · · · , B̃k), C̃ = Hdiag(C̃1, · · · , C̃k), and

Ã2 =




0 F12C̃2 F13C̃3 · · · F1kC̃k

F21C̃1 0 F23C̃3 · · · F2kC̃k

...
. . .

. . .
. . .

...

Fk−1,1C̃1 · · · Fk−1,k−2C̃k−2 0 Fk−1,kC̃k

Fk1C̃1 · · · Fk,k−2C̃k−2 Fk,k−1C̃k−1 0



.

Let the matricesWj1(j = 1, 2, · · · , k) be of full column rank, which implies that the matrices

WT
j1Wj1 are nonsingular. Then the matrix Ẽ is nonsingular. Therefore, we can rewrite (3.4) as

an operator equation

x̃(l+1)(t) = R3x̃
(l)(t) +

∫ t

t0

eẼ
−1Ã1(t−s)Ẽ−1B̃Gu(s)ds+ eẼ

−1Ã1(t−t0)x̃(l+1)(t0),

where the operatorR3 is defined as (R3u)(t) =
∫ t

t0
eẼ

−1Ã1(t−s)Ẽ−1B̃Ã2u(s)ds for u ∈ L2([t0, t0+

T ],Rq). Here q = q1 + q2 + · · ·+ qk. Thus, for the accelerated WR iteration (3.4) we have the

following conclusion.
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Theorem 3.1. Let the matrices Wj1(j = 1, 2, · · · , k) be of full column rank. Then, for the

WR iteration (3.4), the sequence {x̃(l)(t)} on [t0, t0 + T ] is convergent.

Proof. We only need to prove σ(R3) = {0}. Note that R3 : L2([t0, t0+T ],Rq) → L2([t0, t0+

T ],Rq) is a bounded linear operator. Referring to Theorem 7.5-4 of [8], we know that σ(R3) is

not empty.

In the following, for any fixed λ 6= 0 we prove λ /∈ σ(R3). Suppose that the operator

equation λu(t)−R3u(t) = g(t) holds for g ∈ L2([t0, t0+T ],Rq)
⋂
C1([t0, t0+T ],Rq). From this

operator equation, we have

λ
du(t)

dt
− Ẽ−1Ã1

∫ t

t0

eẼ
−1Ã1(t−s)Ẽ−1B̃Ã2u(s)ds− Ẽ−1B̃Ã2u(t) =

dg(t)

dt
.

Substituting R3u(t) = λu(t)− g(t) into the above equation, it follows

du(t)

dt
− (Ẽ−1Ã1 +

1

λ
Ẽ−1B̃Ã2)u(t) =

1

λ
(
dg(t)

dt
− Ẽ−1Ã1g(t)).

It is clear that the solution of the above equation is

u(t) =
1

λ
g(t) +

1

λ2

∫ t

t0

e(Ẽ
−1Ã1+

1
λ
Ẽ−1B̃Ã2)(t−s)Ẽ−1B̃Ã2g(s)ds.

Therefore, λI −R3 has a bounded inverse in L2([t0, t0 + T ],Rq), i.e., λ /∈ σ(R3). Thus, for the

operator R3 we have σ(R3) = {0}. This completes the proof. �

Under the condition of Theorem 3.1, let the sequences x̃(l)(t) and ỹ(l)(t) (l = 0, 1, · · · ) in

(3.4) converge to limit functions x̃(t) and ỹ(t) respectively. Then we get

Ẽ
dx̃(t)

dt
= Ãx̃(t) + B̃u(t), ỹ(t) = C̃x̃(t), (3.5)

where Ã = Ã1 + B̃Ã2 and B̃ = B̃G. From the point of view of numerical simulation, the WR

iteration (3.3) gives a strategy to solve x̃(t) in (3.5).

It should be pointed out that, if we apply the approximation x(t) ≈ Wx̃(t) where W =

diag(W1,W2, · · · ,Wk) to the block system (2.1), the reduced system (3.5) can be also con-

structed. Let r∗ = min{r1, r2, · · · , rk}. Then it has

Kr∗

(
(A+BF̂C − λE)−1E, (A+BF̂C − λE)−1B

)
⊆ colspan{W}, (3.6)

where F̂ = diag(F11, F22, · · · , Fkk). By the Laplace transformations, the transfer functions of

the systems (2.1) and (3.5) can be given by H(s) = C(sE − A)−1B and H̃(s) = C̃(sẼ − Ã)−1B̃

respectively. We will demonstrate the relation between H(s) and H̃(s) later in Section 3.3.

3.3. Moment matching

In Sections 3.1, we have considered two major objects of our method: (I) we decoupled

the system (1.1) by the WR technique; (II) every independent subsystem has been reduced by

the Krylov subspace technique. In other words, an accelerated WR process based on Krylov

subspace for the system (1.1) has been constructed.
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In order to approximate the global mapping from U(s) and Y (s) where U(s) and Y (s) are

the Laplace transformations of the external input u(t) and the external output y(t) in (1.1)

respectively, the objective of our work is to reduce

Hj(s) = Cj

(
sEj − (Aj +BjFjjCj)

)−1

Bj ,

which are obtained from the WR iteration (2.5). Let the matrices A+BFC−λE, A+BF̂C−λE,

and A − λE be nonsingular for fixed λ ∈ C. Obviously, to reduce the block system (2.1), a

direct model order reduction method can be based on the Krylov subspace Kr((A + BFC −

λE)−1E, (A+BFC−λE)−1BG). However, in our work the Krylov subspace can be constructed

as Kr((A+BF̂C − λE)−1E, (A+BF̂C − λE)−1B). For these Krylov subspaces, we have the

following theorem to state their inclusion relation. For convenience sake, we define the Krylov

matrix Mr(A,B) =
[
B AB · · · Ar−1B

]
corresponding to the Krylov subspace Kr(A,B).

Theorem 3.2. Let the matrices A+BFC −λE, A+BF̂C−λE, and A−λE be nonsingular.

Then

Kr

(
(A+BFC − λE)−1E, (A+BFC − λE)−1BG

)

⊆Kr

(
(A+BF̂C − λE)−1E, (A+BF̂C − λE)−1B

)

⊆Kr

(
(A− λE)−1E, (A− λE)−1B

)
.

Proof. We only prove

Kr

(
(A+BFC − λE)−1E, (A+BFC − λE)−1BG

)

⊆Kr

(
(A+BF̂C − λE)−1E, (A+BF̂C − λE)−1B

)
.

An analog proof can be given for Kr((A+BF̂C − λE)−1E, (A+BF̂C − λE)−1B) ⊆ Kr((A−

λE)−1E, (A− λE)−1B).

First, we prove colspan{(A+BFC−λE)−1BG} ⊆ colspan{(A+BF̂C−λE)−1B}. Since

(A+BFC − λE)−1BG

=((A+BF̂C − λE)−B(F̂ − F )C)−1BG

=(I − (A+BF̂C − λE)−1B(F̂ − F )C)−1(A+BF̂C − λE)−1BG

=(A+BF̂C − λE)−1B(I − (F̂ − F )C(A +BF̂C − λE)−1B)−1G,

the column space of (A + BFC − λE)−1BG is included in the column space of (A + BF̂C −

λE)−1B. Assuming that Kk((A+BFC−λE)−1E, (A+BFC−λE)−1BG) ⊆ Kk((A+BF̂C−

λE)−1E, (A+BF̂C − λE)−1B) for any k ∈ {1, 2, · · · , r − 1}, we need to prove

Kk+1

(
(A+BFC − λE)−1E, (A+BFC − λE)−1BG

)

⊆Kk+1

(
(A+BF̂C − λE)−1E, (A+BF̂C − λE)−1B

)
. (3.7)

According to this assumption, it is clear that there exists a matrix Ψ such that ((A+BFC−

λE)−1E)k−1(A+BFC − λE)−1BG = Mk((A+BF̂C − λE)−1E, (A+BF̂C − λE)−1B)Ψ. It
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follows that
(
(A+BFC − λE)−1E

)k

(A+BFC − λE)−1BG

=(A+BFC − λE)−1EMk

(
(A+BF̂C − λE)−1E, (A+BF̂C − λE)−1B

)
Ψ

=
(
(A+BF̂C − λE)−B(F̂ − F )C

)−1

EMk

(
(A+BF̂C − λE)−1E, (A+BF̂C − λE)−1B

)
Ψ

=
(
I − (A+BF̂C − λE)−1B(F̂ − F )C)−1(A+BF̂C − λE)−1E

×Mk((A +BF̂C − λE)−1E, (A+BF̂C − λE)−1B
)
Ψ

=

+∞∑

i=0

(
(A+BF̂C − λE)−1B(F̂ − F )C

)i

×Mk+1

(
(A+BF̂C − λE)−1E, (A+BF̂C − λE)−1B

)
[0 ΨT ]T .

For any i ≥ 1, it is clear that

colspan{((A+BF̂C − λE)−1B(F̂ − F )C)i} ⊆ colspan{(A+BF̂C − λE)−1B}.

This implies that (3.7) is satisfied. �

According to Theorem 3.2, our method can guarantee the moment matching approximation.

From (3.6), we know that H̃(s) interpolates H(s) at the point λ up to the first r∗ moments at

least.

4. Structure-Preserving Process

The structure-preserving process has been previously studied in [11]. In this section, we

discuss a structure-preserving algorithm by the WR technique, which preserves the differential-

algebraic structure of the system (2.5).

For the system (2.5), we first construct a column-orthonormal matrix Ŵj ∈ Rnj×qj based

on the Krylov subspace (3.1) for each 1 ≤ j ≤ k. Then, we partition Ŵj as Ŵj =

[
Ŵj1

Ŵj2

]

where Ŵj1 ∈ Rnj1×qj , Ŵj2 ∈ Rnj2×qj , and formally set

W̃j =

[
Ŵj1 0

0 Ŵj2

]
∈ R

n×2qj .

Thus, we can replace Wj by W̃j in (3.2) and still obtain a reduced-order system (3.3). Because

of the differential-algebraic structure of the system (2.5) and the block structure of the matrix

W̃j , the reduced system (3.3) has the same structure as (2.5). For this structure-preserving

algorithm, the matrix Ẽj in (3.3) can be replaced by

Êj =

[
ŴT

j1 0

0 ŴT
j2

] [
Inj

0

0 0

][
Ŵj1 0

0 Ŵj2

]
=

[
ŴT

j1Ŵj1 0

0 0

]
.

For convenience, we denote Ãj = W̃T
j AjW̃j , B̃j = W̃T

j Bj , C̃j = CjW̃j ,Λj = Aj + BjFjjCj −

λEj , Λ̃j = Ãj+B̃jFjjC̃j−λÊj ,Mi,j = −Cj(Λ
−1
j Ej)

iΛ−1
j Bj , M̃i,j = −C̃j(Λ̃

−1
j Êj)

iΛ̃−1
j B̃j . Since

colspan{W̃j} ⊆ colspan{Ŵj}, we have a conclusion on moment matching approximation.
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Theorem 4.1. For the system (2.5) and its reduced system (3.3) obtained by the structure-

preserving algorithm, if Krj (Λ
−1
j Ej ,Λ

−1
j Bj) ⊆ colspan{W̃j}, then we have M̃i,j = Mi,j(i =

0, 1, · · · , rj − 1).

The proof of the above theorem can be found in [7]. For the reduced system (3.4) obtained

by the structure-preserving algorithm, the matrix Ẽ is replaced by

Ê = diag

([
ŴT

11Ŵ11 0

0 0

]
,

[
ŴT

21Ŵ21 0

0 0

]
, · · · ,

[
ŴT

k1Ŵk1 0

0 0

])
∈ R

2q×2q.

To analyze the convergence behavior, we denote x̃
(l)
j (t) =

[
(x̃

(l)
j1 )

T (t) (x̃
(l)
j2 )

T (t)
]T

, where

x̃
(l)
j1 (t), x̃

(l)
j2 (t) ∈ Rqj . Moreover, we need to introduce some notations by

z̃
(l)
1 (t) =

[
(x̃

(l)
11 )

T (t) · · · (x̃
(l)
k1)

T (t)
]T

, z̃
(l)
2 (t) =

[
(x̃

(l)
12 )

T (t) · · · (x̃
(l)
k2)

T (t)
]T

,

and

J̃ =




Iq1 0 0 0 · · · · · · 0 0

0 0 Iq2 0 · · · · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 0 Iqk 0

0 Iq1 0 0 · · · · · · 0 0

0 0 0 Iq2 0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · · · · 0 Iqk




∈ R
2q×2q.

Let z̃(l)(t) =

[
z̃
(l)
1 (t)

z̃
(l)
2 (t)

]
. It yields z̃(l)(t) = J̃ x̃(l)(t) and J̃−1 = J̃T . To rewrite the

first equation of the reduced system (3.4) as a semi-explicit form, we partition the matrices

J̃Ã1J̃
−1, J̃B̃Ã2J̃

−1, and J̃B̃G̃u(t) as follows

J̃Ã1J̃
−1 =

[
P̃11 P̃12

P̃21 P̃22

]
, J̃B̃Ã2J̃

−1 =

[
Q̃11 Q̃12

Q̃21 Q̃22

]
, J̃B̃G̃u(t) =

[
f̃1(t)

f̃2(t)

]
,

where P̃11, Q̃11, P̃12, Q̃12, P̃21, Q̃21, P̃22, Q̃22 ∈ R
q×q, f̃1(t), f̃2(t) ∈ R

q. From (3.4), we have





D̃
dz̃

(l+1)
1 (t)

dt
= P̃11z̃

(l+1)
1 (t) + P̃12z̃

(l+1)
2 (t) + Q̃11z̃

(l)
1 (t) + Q̃12z̃

(l)
2 (t) + f̃1(t),

0 = P̃21z̃
(l+1)
1 (t) + P̃22z̃

(l+1)
2 (t) + Q̃21z̃

(l)
1 (t) + Q̃22z̃

(l)
2 (t) + f̃2(t),

(4.1)

where D̃ = diag(ŴT
11Ŵ11, · · · , Ŵ

T
k1Ŵk1). Let the matrices Ŵj1(j = 1, 2, · · · , k) be of full

column rank, which implies that the matrix D̃ is nonsingular. Suppose that the matrix pencil

{Ê , Ã1} is of index one, then the matrix P̃22 is nonsingular. Similar to the discussion in Section

3, for the accelerated WR iteration (4.1) we have a conclusion on its convergence.

Theorem 4.2. Let the matrices Ŵj1(j = 1, 2, · · · , k) be of full column rank and the matrix

pencil {Ê , Ã1} be of index one. Then, for the WR iteration (4.1) on [t0, t0 + T ], the sequence

{z̃(l)(t)} is convergent if ρ(P̃−1
22 Q̃22) < 1.

The proof of the theorem above is completely similar to that of Theorem 2.1.
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Fig. 5.1. Transient responses of Example 5.1 on WR using the Krylov subspace technique.

5. Numerical Experiments

In this section, we present three examples for illustration. All numerical tests are performed

in Matlab environment.

Example 5.1. First, we consider a heated beam problem. The PI-controller is described by





[
1 0

0 0

]
dx1(t)

dt
=

[
0 0

0 1

]
x1(t) +

[
kI

−kP

]
u1(t),

y1(t) =
[
1 1

]
x1(t),

(5.1)

where kI and kP are constants associated with the PI-controller. By a spatial discretization of

the heat transfer equation along the 1D beam of length 1, it has

E2
dx2(t)

dt
= A2x2(t) +B2u2(t), y2(t) = C2x2(t), (5.2)

where E2 = In2 , B2 =
[
κ(n2 + 1) 0 · · · 0

]T
, C2 =

[
0 · · · 0 1

]
, and

A2 = κ(n2 + 1)2




−1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −1



.

Here, κ is a constant and n2 is a positive integer, and u1(t) = u(t)− y2(t), u2(t) = y1(t), y(t) =

y1(t) + y2(t).

It is not necessary to reduce the first subsystem because of its low order. To simulate the
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first subsystem, we adopt an iterative process by WR as follows





[
1 0

0 0

]
dx

(l+1)
1 (t)
dt

=

[
0 0

0 1

]
x
(l+1)
1 (t) +

[
kI

−kP

]
(u(t)− C2x

(l)
2 (t)),

y
(l+1)
1 (t) =

[
1 1

]
x
(l+1)
1 (t).

(5.3)

Meanwhile, an iterative process on the second subsystem is given as





E2
dx

(l+1)
2 (t)

dt
= A2x

(l+1)
2 (t) +B2

[
1 1

]
x
(l)
1 (t),

y
(l+1)
2 (t) = C2x

(l+1)
2 (t).

(5.4)

Before solving the equation above, we reduce its order by the Krylov subspace technique. First, a

Krylov subspace is constructed by the matrix (A2−50E2)
−1E2 and the vector (A2−50E2)

−1B2.

Then, a column-orthonomal matrix W2 ∈ Rn2×q2 (q2 ≪ n2) can be obtained by the Arnoldi

procedure. Finally, by taking an approximation x
(l+1)
2 (t) ≈ W2x̃

(l+1)
2 (t) and substituting it into

(5.4), we can get an accelerated iterative process as follows





Ẽ2
dx̃

(l+1)
2 (t)

dt
= Ã2x̃

(l+1)
2 (t) + B̃2

[
1 1

]
x
(l)
1 (t),

ỹ
(l+1)
2 (t) = C̃2x̃

(l+1)
2 (t),

(5.5)

where Ẽ2 = WT
2 E2W2, Ã2 = WT

2 A2W2, B̃2 = WT
2 B2, C̃2 = C2W2. For the reduced system of

order 6 obtained by the Krylov subspace method, the coefficient matrices in (5.5) are calculated

as Ẽ2 = I6, B̃2 =
[

−118.5511 117.6218 115.3784 113.0146 123.4676 −137.9548
]T

, C̃2 =[
−2.0354e-04 −0.0027 0.0144 −0.0366 0.0468 0.0435

]
, and

Ã2 =




−49.6311 98.8353 96.9502 94.9640 103.7474 −115.9207

98.8353 −246.2408 −290.5806 −284.6275 −310.9534 347.4396

96.9502 −290.5806 −426.9215 −467.1405 −510.3474 570.2298

94.9640 −284.6275 −467.1405 −585.9514 −694.7603 776.2810

103.7474 −310.9534 −510.3474 −694.7603 −940.0964 1106.2624

−115.9207 347.4396 570.2298 776.2810 1106.2624 −1562.6472



.

In our experiments, we use the same ODEs solver such as the Euler method to compute the

WR solutions of the original system and its reduced systems. The external input is sin(−40t).

Computed results are shown in Fig. 5.1. It shows that the original system is approximated very

well if the order of the reduced system of the second subsystem is set to be 6. Compared with

408.32s spent on the simulation of the original system, it is about 3.16s to solve the reduced

system of order 6.

For the original system and its reduced system of order 6, we now check their convergence

conditions on WR. Simply, the spectral radius of the matrix P−1
22 Q22 is zero. By Theorem 2.1,

we know that the WR process for the original system is convergent theoretically. By simple

calculation, we obtain P̃22 = 1 and Q̃22 = 0. Therefore, it has ρ(P̃−1
22 Q̃22) = 0, which implies

the WR processes (5.3) and (5.5) are convergent.

Example 5.2. Next, we consider a delay-differential system

dx(t)

dt
= −x(t− 1) + u(t), y(t) = x(t).
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It can be described by an interconnection of




dx1(t)
dt

=
[
1 −1

]
u1(t), y1(t) = x1(t),

E2
dx2(t)

dt
= A2x2(t) +B2u2(t), y2(t) = C2x2(t),

with the coupling relation given by

u1(t) = [0 1]T y2(t) + [1 0]T u(t), u2(t) = y1(t), y(t) = y1(t),

where E2 = In2 , B2 =
[
0 · · · 0 n2

]T
, C2 =

[
1 0 · · · 0

]
, and

A2 = n2




−1 1

−1 1
. . .

. . .

−1 1

−1



.

Here, n2 is a large positive integer.
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Fig. 5.2. Transient responses of Example 5.2 on WR using the Krylov subspace technique.

To simulate the first subsystem, we adopt a direct iterative process by WR as

dx
(l+1)
1 (t)

dt
= −C2x

(l)
2 (t) + u(t), y

(l)
1 (t) = x

(l)
1 (t). (5.6)

For the second subsystem, a direct iterative process can be constructed as

E2
dx

(l+1)
2 (t)

dt
= A2x

(l+1)
2 (t) +B2x

(l)
1 (t), y

(l)
2 (t) = C2x

(l)
2 (t). (5.7)

In order to reduce the order of the second subsystem, we first construct the Krylov subspace

Kr2(A
−1
2 E2, A

−1
2 B2). Then, a column-orthonomal matrix W2 ∈ Rn2×q2 (q2 ≪ n2) is con-

structed by the Arnoldi procedure. Finally, by taking an approximation x
(l+1)
2 (t) ≈ W2x̃

(l+1)
2 (t)
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and substituting it into (5.7), we get

Ẽ2
dx̃

(l+1)
2 (t)

dt
= Ã2x̃

(l+1)
2 (t) + B̃2x

(l)
1 (t), ỹ

(l)
2 (t) = C̃2x̃

(l)
2 (t), (5.8)

where Ẽ2 = WT
2 E2W2, Ã2 = WT

2 A2W2, B̃2 = WT
2 B2, and C̃2 = C2W2.

We use the Euler method to compute the WR solutions of the original system and its

reduced system. The external input is exp(−10t) cos(−15t) + sinh(0.005t). Computed results

are shown in Fig. 5.2. We also check the convergence conditions of the original WR process

and the accelerated WR process. First, we can simply calculate that the spectral radius of the

matrix P−1
22 Q22 is zero. By Theorem 2.1, we know that the WR process of the original system

is convergent. Then, for the reduced system of order 6 obtained by our method, the coefficient

matrices in (5.8) are calculated as Ẽ2 = I6, and

B̃2 =
[
−33.9564 −76.5564 99.8034 −117.9870 133.8747 150.1854

]T
,

C̃2 =
[
−0.0279 0.0384 0.0499 0.0590 0.0665 −0.0721

]
,

Ã2 =




−1.0667 2.1658 2.7844 3.2902 3.7123 −4.0252

−1.3220 −2.9429 −3.8387 −4.5335 −5.1150 5.5461

1.6940 3.8254 −4.9942 −5.9023 −6.6586 7.2198

−2.0027 −4.5198 5.9046 −6.9976 −7.8928 8.5570

2.2723 5.1284 −6.6990 7.9443 −8.9944 9.6982

2.5492 5.7532 −7.5152 8.9110 −10.1568 −11.0042




.

By calculation, the spectral radius of the matrix P̃−1
22 Q̃22 is zero. According to Theorem 4.2,

the WR processes (5.6) and (5.8) are convergent.

Example 5.3. Finally, an input-output system composed of two subsystems is considered.

This system has the same form as the system (1.1). Here, A1 = −1, B1 = C1 = E1 = 1,

F11 = 0, F12 = G1 = F21 = F22 = H1 = H2 = 1, G2 = 0, B2 = CT
2 = [0 · · · 0︸ ︷︷ ︸

999

1], and

E2 =

[
I2 0

0 0

]
, A2 =




−100 5

5 −100
. . .

. . .
. . . 5

5 −100



∈ R

1000×1000,

where I2 ∈ R500×500 is the identity matrix. To simulate the first subsystem, an iterative process

by WR can be given as

dx
(l+1)
1 (t)

dt
= −x

(l+1)
1 (t) + C2x

(l)
2 (t) + u(t), y

(l+1)
1 (t) = x

(l+1)
1 (t). (5.9)

For the second subsystem, we construct the following iterative process

{
E2

dx
(l+1)
2 (t)
dt

= (A2 +B2F22C2)x
(l+1)
2 (t) +B2F21C1x

(l)
1 (t),

y
(l+1)
2 (t) = C2x

(l+1)
2 (t).

(5.10)

Before solving the above system, the algorithm presented in Section 4 is used to reduce the

original large system to a smaller one. For this purpose, the Arnoldi procedure is used to
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Fig. 5.3. Transient responses of Example 5.3 on WR using the Krylov subspace technique.

construct a column-orthonomal matrix W2 ∈ R1000×q2 based on the Krylov subspace Kr2((A2+

B2F22C2)
−1E2, (A2 +B2F22C2)

−1B2). We partition Ŵ2 as Ŵ2 =

[
Ŵ21

Ŵ22

]
where Ŵ21, Ŵ22 ∈

R500×q2 . Thus, the objective of structure-preserving model order reduction can be realized by

constructing the matrix W̃2 = diag(Ŵ21, Ŵ22). Then the system (5.10) can be reduced to the

following smaller system

{
Ẽ2

dx̃
(l+1)
2 (t)
dt

= (Ã2 + B̃2F22C̃2)x̃
(l)
2 (t) + B̃2F21C̃1x

(l)
1 (t),

ỹ
(l+1)
2 (t) = C̃2x̃

(l+1)
2 (t),

(5.11)

where

Ẽ2 = W̃T
2 E2W̃2 =

[
ŴT

21Ŵ21 0

0 0

]
, Ã2 = W̃T

2 A2W̃2, B̃2 = W̃T
2 B2, C̃2 = C2W̃2.

In our numerical simulation, we use the Euler method to compute the WR solutions of

the original system and its reduced systems. The external input is the unit step function

(u(t) = 0, t ≤ 0;u(t) = 1, t > 0). Computed results are shown in Fig. 5.3. For the original

system, we can compute that the spectral radius of the matrix P−1
22 Q22 is zero. By Theorem

2.1 it is clear that the original WR process is convergent. For the reduced system of order 8

of the second subsystem, the spectral radius of the matrix P̃−1
22 Q̃22 is also zero. According to

Theorem 4.2, the WR processes (5.9) and (5.11) are also convergent in theory.

6. Conclusions

In this paper, we derived an accelerated WR method based on Krylov subspace for time-

dependent systems. Moreover, the convergence conditions on WR and the moment matching

property have been also analyzed. As an accelerated simulation method, it is very efficient to

simulate large time-dependent systems whose output behavior can be approximated very well
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by means of matching some moments. The method of treating such systems reported here is

also useful for more complicated systems in engineering applications.
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