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Abstract

Optimization problems with partial differential equations as constraints arise widely in

many areas of science and engineering, in particular in problems of the design. The solution

of such class of PDE-constrained optimization problems is usually a major computational

task. Because of the complexion for directly seeking the solution of PDE-constrained op-

timization problem, we transform it into a system of linear equations of the saddle-point

form by using the Galerkin finite-element discretization. For the discretized linear system,

in this paper we construct a block-symmetric and a block-lower-triangular preconditioner,

for solving the PDE-constrained optimization problem. Both preconditioners exploit the

structure of the coefficient matrix. The explicit expressions for the eigenvalues and eigen-

vectors of the corresponding preconditioned matrices are derived. Numerical implementa-

tions show that these block preconditioners can lead to satisfactory experimental results

for the preconditioned GMRES methods when the regularization parameter is suitably

small.

Mathematics subject classification: 65F10, 65F50, 65F08, 65F22, 65F35, 65N22.

Key words: Saddle-point matrix, Preconditioning, PDE-constrained optimization, Eigen-

value and eigenvector, Regularization parameter.

1. Introduction

We consider the distributed control problem which consists of a cost functional (1.1) to be

minimized subject to a partial differential equation problem posed on a domain Ω ⊂ R2 or R3:

min
u,f

1

2
‖u− u∗‖22 + β‖f‖22, (1.1)

subject to −∇2u = f in Ω, (1.2)

with u∗ = g on ∂Ω1 and
∂u∗

∂n
= g on ∂Ω2, (1.3)

where ∂Ω is the boundary of Ω, ∂Ω1∪∂Ω2 = ∂Ω and ∂Ω1∩∂Ω2 = ∅, β ∈ R+ is a regularization

parameter, and the function u∗ is a given function that represents the desired state. We want

to find u which satisfies the PDE problem and is as close to u∗ as possible in some norm sense

(e.g., the L2 norm). In order to achieve this aim, the right-hand side f of the PDE can be

varied. The second term in the cost functional (1.1) is added because the problem would be

generally ill-posed and then needs this Tikhonov regularization term. Such class of problems
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were introduced by J.L. Lions in [15].

There are two approaches to obtain the solution of the PDE-constrained optimization prob-

lem (1.1)-(1.3). The first is optimize-then-discretize and the second is discretize-then-optimize.

Following the discretize-then-optimize approach (see [1,16]), we transform (1.1)-(1.3) into a

linear system of the saddle-point form. That is to say, firstly, by employing the Galerkin finite-

element method to the weak formulation of (1.2) and (1.3), we obtain the finite-dimensional

discrete analogue of the minimization problem as follows (see [1,11,13,15,16]):

min
u,f

1

2
uTMu− uT b+ α+ βfTMf, (1.4)

subject to Ku = Mf + d, (1.5)

where M ∈ Rn×n is the mass matrix, K ∈ Rn×n is the stiffness matrix (the discrete Laplacian),

d ∈ Rn represents the boundary data, α = ||u∗||22, and b ∈ Rn is the Galerkin projection of

the discrete state u∗. Then by applying the Lagrangian multiplier method to this minimization

problem (1.4)-(1.5) we find that f, u and λ are defined by the linear system

Ax ≡





2βM 0 −M

0 M KT

−M K 0









f

u

λ



 =





0

b

d



 ≡ g, (1.6)

where λ is a vector of Lagrange multiplier, see [1,16-17]. Evidently, if we let

A =

(

2βM 0

0 M

)

, B =
(

−M K
)

and c =
(

0 bT
)T

,

then the system of linear equations (1.6) can be transformed into the standard saddle-point

system:
(

A BT

B 0

)(

y

z

)

=

(

c

d

)

. (1.7)

Frequently, iterative methods are more attractive than direct methods for solving the saddle

point problem (1.7), because the coefficient matrix of the saddle point problem (1.7) is large

and sparse. Many efficient iterative methods have been studied in the literatures. For example,

Uzawa-like methods ([8,10,12]), SOR-like methods ([7,14]), RPCG methods ([6, 9]), HSS-like

methods ([2-5]) and so on. We refer to [2] for algebraic properties for saddle point problem

(1.7). In this paper, we will focus on the systems that arise in the context of PDE-constrained

optimization. Systems of the type given in (1.6) are typically very poorly conditioned and large

sparse. Therefore preconditioning is usually necessary in practice in order to achieve rapid

convergence of Krylov subspace methods.

In this paper, by exploiting the structure of the coefficient matrix, we construct a block-

symmetric preconditioner and a block–lower-triangular preconditioner. The explicit expressions

for the eigenvalues and eigenvectors of the corresponding preconditioned matrices are derived.

Both theoretical analysis and numerical results show that the preconditioned GMRES(20) meth-

ods with these block preconditioners are effective and robust linear solvers for the saddle-point

problems such as (1.6) from PDE-constrained optimization.

The organization of the paper is as follows. In Sections 2 and 3, we use the structure

of the linear system (1.6) to give two block preconditioners. The explicit expressions for the

eigenvalues of the two preconditioned matrices are derived. Numerical examples are given

in Section 4 to show the effectiveness of these new preconditioners. Finally, we draw some

conclusions in Section 5.
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2. Block-Symmetric Preconditioning

For the linear system (1.6), Rees et al.[16, 17] presented the following block-diagonal pre-

conditioner PD and the constraint preconditioner PC for MINRES and PPCG, respectively:

PD =





2βM 0 0

0 M 0

0 0 KM−1KT



 , (2.1)

and

PC =





0 0 −M

0 2βKTM−1KM KT

−M K 0



 . (2.2)

As pointed out by Bai [1], the main costs in using the block-diagonal preconditioner PD and

the constraint preconditioner PC come from solving linear sub-systems with the coefficient ma-

trices M,K and KT . The mass matrix M is often well-conditioned and the linear sub-systems

associated with it is easily solvable. Thus the difficulty comes from the stiffness matrices K and

KT , which are the only parts that contain the partial differential equation, especially when such

an equation is more general and complicated. To avoid the difficulty from inverting the stiffness

matrices K and KT in PD and PC , some authors ([1,16-17]) proposed to further approximate

M and K, with certain strategies and by some matrices, say, M̃ and K̃, respectively, resulting

in the approximations:

P̃D :=





2βM̃ 0 0

0 M̃ 0

0 0 K̃M−1K̃T



 , (2.3)

and

P̃C :=





0 0 −M̃

0 2βK̃TM−1K̃M KT

−M̃ K 0



 . (2.4)

Recently, Bai [1] proposed the following block-counter-diagonal preconditioner PBCD and

block-counter-triangular preconditioner PBCT :

PBCD :=





0 0 −M

0 M 0

−M 0 0



 , PBCT :=





0 0 −M

0 M KT

−M K 0



 . (2.5)

Bai [1] showed that the block-counter-diagonal and the block-counter-triangular precondi-

tioners are less costly and complicated than the block-diagonal and the constraint precondition-

ers in actual applications. In [3], Bai et al. developed a PMHSS iteration method and applied

it to a class of KKT linear systems arising from the finite element discretization of a class of

distributed control problems.

In this paper, by exploiting the structure of the coefficient matrix and using the idea of

the preconditioner PBCD, we construct a block-symmetric preconditioner and a block–lower-

triangular preconditioner. We first consider the following block-symmetric preconditioner PBS

for the linear system (1.6):

PBS :=





2βM 0 −M

0 M 0

−M 0 0



 . (2.6)
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Note that the preconditioner PBS is symmetric. In addition, the action of PBS only re-

quires to solve three linear sub-systems with the coefficient matrix M , but does not need to

solve any linear sub-system with the coefficient matrix K or KT , neither need the exact nor

the approximate computation of KM−1KT . Hence, we can expect that the block-symmetric

preconditioner is less costly and complicated than the block-diagonal and the constraint precon-

ditioners in actual applications. The following theorem gives the clustering of the eigenvalues

of the preconditioned matrix with respect to PBS .

Theorem 2.1. Let A ∈ R
3n×3n be the coefficient matrix of the linear system (1.6) and

PBS ∈ R3n×3n be the block-symmetric preconditioner of A defined in (2.6). Denote (σk, x
(k))

an eigenpair of the matrix M−1KM−1KT ∈ Rn×n, where x
(k) ∈ Cn, σk ≥ 0, k = 1, · · · , n.

Then we have the following facts:

(i) The eigenvalues of the preconditioned matrix P−1
BSA are 1 (with algebraic multiplicity n)

and 1± ι
√
2βσk, k = 1, · · · , n, where ι =

√
−1 denotes the imaginary unit.

(ii) The corresponding eigenvectors of the preconditioned matrix P−1
BSA are





v1
v2
v3



 ,

















ι
√
2βσk

2βσk

M−1Kx
(k)

x
(k)

ι
√
2βσk

2βσk

M−1Kx
(k)

















and





















− ι
√
2βσk

2βσk

M−1Kx
(k)

x
(k)

− ι
√
2βσk

2βσk

M−1Kx
(k)





















, k = 1, · · · , n,

where v1 ∈ Cn, v2 ∈ null(K) and v3 ∈ null(KT )\{0}.
Proof. We define the matrix RBS as follows:

RBS :=





0 0 0

0 0 −KT

0 −K 0



 .

Then we have A = PBS −RBS . By concrete operations we have

P−1
BS =





0 0 −M−1

0 M−1 0

−M−1 0 −2βM−1



 .

Then it follows that

P−1
BSA = P−1

BS(PBS −RBS) = I − P−1
BSRBS

= I −





0 M−1K 0

0 0 −M−1KT

0 2βM−1K 0





=





I −M−1K 0

0 I M−1KT

0 −2βM−1K I



 .

Let (µ,v) be an eigenpair of the matrix P−1
BSA, where v = (v∗1 , v

∗

2 , v
∗

3)
∗ ∈ C

3n. Then

P−1
BSAv = µv,
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or equivalently,




I −M−1K 0

0 I M−1KT

0 −2βM−1K I









v1
v2
v3



 = µ





v1
v2
v3



 . (2.7)

We can rewrite (2.7) as














v1 −M−1Kv2 = µv1,

v2 +M−1KT v3 = µv2,

v3 − 2βM−1Kv2 = µv3.

(2.8)

By inspection (2.8), one solution of this problem is µ = 1 with the algebraic multiplicity n.

Next we consider the case that µ 6= 1. From (2.8), through simple computations we get

− 2β

µ− 1
M−1KM−1KT v3 = (µ− 1)v3. (2.9)

By multiplying
v∗3
v∗3v3

from left on both sides of the third equation in (2.9) and considering the

definition of σk in Theorem 2.1, we obtain

(µ− 1)2 = −2βσk, k = 1, · · · , n,

which leads to

µ = 1± ι
√

2βσk, k = 1, · · · , n.
Thus we know that the remaining eigenvalues of the preconditioned matrix P−1

S A are 1 ±
ι
√
2βσk, k = 1, · · · , n.
Now we turn to prove (ii). We consider the following three cases separately: (a) µ = 1, (b)

µ = 1 + ι
√
2βσk, and (c) µ = 1− ι

√
2βσk.

(a) When µ = 1, through direct computations, from (2.8) we have

M−1Kv2 = 0, M−1KT v3 = 0.

Since the matrix M is nonsingular, it is easily known that v2 ∈ null(K) and v3 ∈ null(KT ).

Therefore, the corresponding eigenvector in this case is




v1
v2
v3



 , where v1 ∈ C
n, v2 ∈ null(K) and v3 ∈ null(KT )\{0}.

(b) When µ = 1+ι
√
2βσk, from the third equation in (2.8) we obtain (1−µ)v3 = 2βM−1Kv2.

As µ 6= 1, by substituting this expression with respect to v3 into the second equation in (2.8)

and considering the definition of x(k) in Theorem 2.1, we obtain v2 = x
(k). Substituting v2 into

the first and the third equations in (2.8), respectively, after some simple algebra computations

we obtain that the corresponding eigenvectors are




















ι
√
2βσk

2βσk

M−1Kx
(k)

x
(k)

ι
√
2βσk

2βσk

M−1Kx
(k)





















, k = 1, · · · , n.
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(c) When µ = 1− ι
√
2βσk, based on the definition of σk and x

(k), from (2.8) we obtain that

the corresponding eigenvectors are





















− ι
√
2βσk

2βσk

M−1Kx
(k)

x
(k)

− ι
√
2βσk

2βσk

M−1Kx
(k)





















, k = 1, · · · , n.

It is easily seen that the observations (a)-(c) readily imply the validity of the conclusion (ii).�

3. Block-Lower-Triangular Preconditioning

In this section, we consider the block-lower-triangular preconditioner

PBLT :=









2βM 0 0

0 M 0

−M K − 1

2β
M









. (3.1)

Evidently, when we solve the generalized residual equation PBLTZ = r, where r is a prescribed

right-hand-side vector, we only need to solve three linear sub-systems with respect to the mass

matrix M , which is often well-conditioned. Thus the linear sub-systems associated with PBLT

can be easily solved when PBLT is employed to precondition certain Krylov subspace method.

For the block-lower-triangular preconditioner PBLT , we can demonstrate that the precon-

ditioned matrix P−1
BLTA has eigenvalue 1 of algebraic multiplicity 2n, and when β ≪ 1 it holds

that λ ≈ 1. This property is precisely stated in the following theorem.

Theorem 3.1. Let A ∈ R
3n×3n be the coefficient matrix of the linear system (1.6) and PBLT ∈

R3n×3n be the block-lower-triangular preconditioner of A defined in (3.1). Assume that σk is

an eigenvalue and x
(k) ∈ Cn is the corresponding eigenvector of the matrix M−1KM−1KT ∈

Rn×n, k = 1, · · · , n, where σk ≥ 0 (k = 1, · · · , n). Then we have the following facts:

(i) The eigenvalues of the preconditioned matrix P−1
BLTA are 1 (with algebraic multiplicity

2n) and 1 + 2βσk, k = 1, · · · , n.
(ii) The eigenvectors of the preconditioned matrix P−1

BLTA are





x
(k)

y
(k)

0



 and





















− 1

4β2σk

x
(k)

1

2βσk

M−1KT
x
(k)

x
(k)





















, k = 1, · · · , n,

where x
(k), y(k) ∈ Cn\{0}.
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Proof. The proof is similar to that of Theorem 2.1. Note that

A = PBLT −RBLT , with RBLT =









0 0 M

0 0 −KT

0 0 − 1

2β
M









.

By straightforward computations we have

P−1
BLT =









1

2β
M−1 0 0

0 M−1 0

−M−1 2βM−1KM−1 −2βM−1









,

and

P−1
BLTA = P−1

BLT (PBLT −RBLT ) = I − P−1
BLTRBLT

= I −









0 0
1

2β
I

0 0 −M−1KT

0 0 −2βM−1KM−1KT









=









I 0 − 1

2β
I

0 I M−1KT

0 0 I + 2βM−1KM−1KT









.

Let µ be an eigenvalue of the preconditioned matrix P−1
BLTA and v = (x∗, y∗, z∗)∗ be the

corresponding eigenvector. Then we have

P−1
BLTAv = µv,

or equivalently


















x− 1

2β
z = µx,

y +M−1KT z = µy,

z + 2βM−1KM−1KT z = µz.

(3.2)

Obviously, µ = 1 is an eigenvalue of P−1
BLTA with algebraic multiplicity 2n.

When µ 6= 1, by multiplying
z∗

z∗z
from left on both sides of the third equation in (3.2), we

obtain µ− 1 = 2βσk, namely, µ = 1 + 2βσk (k = 1, 2, · · · , n) are the remaining eigenvalues of

the matrix P−1
BLTA. This demonstrates the validity of (i).

Next we consider the eigenvectors of the preconditioned matrix P−1
BLTA.

(a) When µ = 1, since β 6= 0, it is easily known that the corresponding eigenvectors are

(x∗, y∗, z∗)∗ with z = 0, x ∈ Cn\{0} and y ∈ Cn\{0}.
(b) When µ = 1 + 2βσk, from (3.2) we have z = x(k) and

x = − 1

4β2σk

z, y =
1

2βσk

M−1KT z.

In other words, when µ = 1 + ι
√
2βσk the corresponding eigenvectors are





















− 1

4β2σk

x
(k)

1

2βσk

M−1KT
x
(k)

x
(k)





















, k = 1, · · · , n.
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Combining (a)-(b), we have demonstrated the validity of (ii). �

Similarly to the discussion in [1] we can obtain the following remarks.

Remark 3.1. If the eigenvalues of the matrix M−1KM−1KT are clustered or β is small, then

the eigenvalues of the preconditioned matrices P−1
BSA and P−1

BLTA are clustered.

Remark 3.2. The splitting A = PBS − RBS of the saddle-point matrix A ∈ R3n×3n induced

by the block-symmetric preconditioning matrix PBS is convergent if and only if the matrix

2βM−1KM−1KT is convergent. Moreover, it holds that

ρ(P−1
BSRBS) ≤

√

2βρ(M−1KM−1KT ) → 0, as β → 0.

Remark 3.3. Analogously, the splitting A = PBLT − RBLT of the saddle-point matrix A ∈
R3n×3n induced by the block-lower-triangular preconditioning matrix PBLT is convergent if and

only if the matrix 2βM−1KM−1KT is convergent. Moreover, it holds that

ρ(P−1
BLTRBLT ) ≤ 2βρ(M−1KM−1KT ) → 0, as β → 0.

Remark 3.4. To reduce the computational complexity from inverting the matrix M , we

propose to further approximate M with M̃ in PBS and PBLT , resulting in the preconditioners,

P̃BS =





2βM̃ 0 −M̃

0 M̃ 0

−M̃ 0 0



 and P̃BLT =









2βM̃ 0 0

0 M̃ 0

−M̃ K̃ − 1

2β
M̃









.

The approximation M̃ can be produced by a few steps of the Chebyshev semi-iteration,

see[1, 16-17]. In this way, if M̃ is a good approximation to M , then P̃BLT should be a good

approximation to PBLT . It then follows that using P̃BS and P̃BLT as preconditioners will take

only slightly more numbers of the Krylov subspace iteration steps than using PBS and PBLT .

4. Numerical Results

We examine our block preconditioners by using the following distributed control problem,

which is Example 5.1 in [16-17] or Example 4.1 in [1]. Let Ω = [0, 1]2 be a unit square and

consider

min
u,f

1

2
‖u− u∗‖22 + β‖f‖22,

s.t.−∇2u = f in Ω,

u = u∗ on ∂Ω,

where

u∗ =

{

(2x− 1)2(2y − 1)2, if (x, y) ∈ [0, 12 ]
2,

0, otherwise.

We solve the correspondingly discretized linear system by the preconditioned MINRES with the

block-diagonal preconditioning matrix PD and its approximation P̃D, as well as by GMRES(20)
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Table 4.1: Values of h and the correspondingly dimensions of M , K and A.

h sizes of M sizes of K sizes of A

2−3 49× 49 49× 49 147× 147

2−4 225× 225 225× 225 675× 675

2−5 961× 961 961× 961 2883 × 2883

2−6 3969 × 3969 3969 × 3969 11007 × 11007

preconditioned with the block-symmetric preconditioner PBS , the block-counter-diagonal pre-

conditioner PBCD, the block-counter-triangular preconditioner PBCT , the block-lower-triangular

preconditioner PBLT and their approximations P̃BS , P̃BCD P̃BCT , P̃BLT , respectively. Here,

the approximation K̃ to the matrix block K is set to be a two-geometric-AMG V-cycles gen-

erated by the amg operator in the software COMSOL Multiphysics, while the approximation

M̃ denotes 20 steps of the Chebyshev semi-iteration method. For this example we compare the

CPU time and the number of iteration steps.

We discretize the optimality system using Q1 finite elements. The tolerance for all methods

Table 4.2: Iteration numbers and CPU times for different mesh sizes and β for block-diagonal, block-

count-diagonal and block-symmetric preconditioners.

β h PD PBCD PBS P̃D P̃BCD P̃BS

2−3 8 (0.0204) 203 (4.0968) 116 (2.3330) 9 (0.0278) 282 (4.7263) 97 (2.1039)

10−2 2−4 8 (0.2541) - - - - 9 (0.0445) 9 (0.0815) - -

2−5 8 (4.0586) - - - - 11 (0.7743) - - - -

2−6 8 (11.120) - - - - 17 (4.5437) - - - -

2−3 16 (0.0433) 39 (0.4404) 23 (0.2904) 19 (0.0389) 35 (0.6250) 20 (0.2644)

10−4 2−4 16 (0.3283) 98 (12.926) 91 (11.5415) 23 (0.1307) 98 (14.058) 93 (13.7941)

2−5 16 (6.9378) - - - - 34 (1.2512) - - - -

2−6 16 (203.04) - - - - 40 (24.8632) - - - -

2−3 55 (0.0856) 5 (0.0364) 4 (0.0267) 90 (0.2003) 5 (0.0335) 4 (0.0245)

10−6 2−4 65 (1.1850) 16 (0.9185) 24 (1.0115) 278 (4.3357) 16 (0.9264) 22 (0.7015)

2−5 71 (27.696) - - 757 (737.54) - - - - - -

2−6 78 (312.41) - - - - - - - - - -

2−3 82 (0.1477) 6 (0.0142) 7 (0.0080) 138 (0.6311) 6 (0.0183) 5 (0.0077)

10−8 2−4 275 (4.7718) 9 (0.0728) 13 (0.0972) 599 (26.488) 9 (0.0429) 13 (0.0858)

2−5 464 (173.30) 11 (1.4729) 15 (2.1116) - - 17 (1.5363) 18 (1.5722)

2−6 - - 15 (62.043) 20 (73.307) - - 22 (70.5114) 21 (68.357)

2−3 82 (0.1277) 3 (0.0061) 5 (0.0066) 140 (0.6425) 6 (0.0159) 5 (0.0067)

10−10 2−4 349 (6.1208) 3 (0.0342) 5 (0.0344) - - 6 (0.0729) 5 (0.0224)

2−5 - - 6 (0.3946) 7 (0.3180) - - 9 (0.5784) 5 (0.2954)

2−6 - - 6 (2.1743) 8 (2.1425) - - 10 (3.3918) 8 (2.3775)

2−3 80 (0.1291) 3 (0.0055) 3 (0.0044) 140 (0.6315) 4 (0.0058) 4 (0.0048)

10−12 2−4 352 (6.7259) 3 (0.0351) 3 (0.0331) - - 6 (0.0271) 5 (0.0402)

2−5 - - 3 (0.2491) 3 (0.2110) - - 6 (0.3017) 5 (0.2993)

2−6 - - 5 (1.0199) 5 (0.9948) - - 6 (1.0013) 5 (0.9877)

2−3 82 (0.1308) 3 (0.0045) 3 (0.0040) 140 (0.6332) 4 (0.0057) 4 (0.0041)

10−14 2−4 358 (6.9011) 3 (0.0327) 3 (0.0212) - - 4 (0.0389) 4 (0.0273)

2−5 - - 3 (0.1525) 3 (0.1105) - - 4 (0.2014) 4 (0.1459)

2−6 - - 5 (1.1482) 3 (1.0072) - - 4 (1.0035) 4 (0.9925)
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is set to be 10−6. That is to say, all iteration processes are terminated when the current residuals

satisfy

‖b−Ax(k)‖2
‖b‖2

≤ 10−6

or the numbers of iteration steps are over kmax = 1000. x(0) = 0 is the initial guess and x(k)

is the kth iterates of the corresponding iteration processes, respectively. In addition, the mesh

step-size h is determined by h = 1/(
√
n+ 1), where n is the dimension of the matrix M . We

list the dimensions of the matrices M,K and A in Table 4.1.

In Table 4.2, we report the numbers of iteration steps and the computing times (in braces)

with respect to the block-diagonal preconditioner, the block-counter-triangular preconditioner,

the block-symmetric preconditioner and their approximated variants, which are employed to

precondition MINRES and GMRES(20), respectively.

From Table 4.2 we see that the computing efficiency of these preconditioned iteration meth-

ods are dependent on the regularization parameter β. We observe that when β is large, e.g.,

β = 10−2 and 10−4, the block-diagonal preconditioner PD is efficient. However, when β is

Table 4.3: Iteration counts and CPU timings for block-counter-triangular and block-lower-triangular

preconditioners.

β h PBCT PBLT P̃BCT P̃BLT

2−3 130 (3.2747) 112 (2.9458) 131 (3.3901) 97 (2.5516)

10−2 2−4 - - - - - - - -

2−5 - - - - - - - -

2−6 - - - - - - - -

2−3 20 (0.1610) 31 (0.4317) 22 (0.1904) 28 (0.2475)

10−4 2−4 70 (11.317) - - 42 (5.5694) - -

2−5 - - - - - - - -

2−6 - - - - - - - -

2−3 13 (0.0439) 17 (0.0376) 13 (0.0582) 16 (0.0225)

10−6 2−4 16 (0.7136) 115 (2.2915) 16 (0.8031) 110 (1.9357)

2−5 33 (21.073) - - 32 (19.883) - -

2−6 - - - - - - - -

2−3 7 (0.0179) 4 (0.0163) 6 (0.0154) 4 (0.0090)

10−8 2−4 12 (0.1280) 8 (0.1221) 12 (0.1617) 6 (0.0945)

2−5 14 (2.9503) 7 (2.8063) 14 (1.9902) 9 (1.0304)

2−6 17 (67.183) 16 (61.332) 17 (70.241) 11 (32.850)

2−3 3 (0.0139) 3 (0.0098) 3 (0.0108) 4 (0.0064)

10−10 2−4 5 (0.0756) 5 (0.0584) 5 (0.0938) 5 (0.0830)

2−5 5 (0.4818) 5 (0.4133) 5 (0.8793) 5 (0.6941)

2−6 11 (6.6868) 7 (5.0334) 11 (7.7745) 7 (6.1131)

2−3 2 (0.0088) 2 (0.0081) 2 (0.0102) 2 (0.0061)

10−12 2−4 3 (0.0512) 2 (0.0386) 3 (0.0887) 2 (0.0400)

2−5 3 (0.2792) 3 (0.2620) 3 (0.3317) 3 (0.2600)

2−6 5 (2.2386) 4 (1.5520) 5 (2.4315) 4 (1.3792)

2−3 2 (0.0076) 2 (0.0077) 2 (0.0080) 2 (0.0059)

10−14 2−4 2 (0.0511) 2 (0.0384) 2 (0.0514) 2 (0.0328)

2−5 2 (0.2320) 2 (0.2049) 2 (0.6717) 2 (0.2141)

2−6 3 (1.6589) 3 (1.0959) 3 (1.7753) 3 (0.9989)
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Table 4.4: Numerical results for optimal regularization parameter β.

h 2−3 2−4 2−5 2−6

β CPU IT β CPU IT β CPU IT β CPU IT

PD 10−2 0.0204 8 10−2 0.2541 8 10−2 4.0586 8 10−2 11.120 8

P̃D 10−2 0.0278 8 10−2 0.0445 9 10−2 0.7743 11 10−2 4.5437 17

PBCD 10−14 0.0045 3 10−14 0.0327 3 10−14 0.1525 3 10−12 1.0199 5

P̃BCD 10−14 0.0057 4 10−12 0.0271 6 10−14 0.2014 4 10−12 1.0013 6

PBS 10−14 0.0040 3 10−14 0.0212 3 10−14 0.1105 3 10−12 0.9948 5

P̃BS 10−14 0.0041 4 10−14 0.0273 4 10−14 0.1459 4 10−14 0.9877 5

PBCT 10−14 0.0076 2 10−14 0.0511 2 10−14 0.2320 2 10−14 1.6589 3

P̃BCT 10−14 0.0080 2 10−14 0.0514 2 10−14 0.6717 2 10−14 1.7753 3

PBLT 10−14 0.0077 2 10−14 0.0384 2 10−14 0.2049 2 10−14 1.0959 3

P̃BLT 10−14 0.0059 2 10−14 0.0328 2 10−14 0.2141 2 10−14 0.9989 3

small, e.g., β = 10−8, 10−10, 10−12 and 10−14, the block-count-diagonal preconditioner PBCD,

the block-symmetric preconditioner PBS and their approximation P̃BCD and P̃BS yield very

good computing results. The corresponding preconditioned iteration methods require very small

iteration steps and computing times to achieve the stopping criterion, and the numbers of it-

eration steps are almost h-independent. That is to say, as preconditioners for MINRES and

GMRES(20), PD and P̃D show nice preconditioning effect when β is large, while PBCD, PBS

and P̃BCD, P̃BS show nice preconditioning effect when β is small.

In Table 4.3, the computing times are given in braces after the numbers of iterations for the

block-counter-diagonal preconditioner PBCD, the block-lower-triangular preconditioner PBLT

and their approximated variants, which are all employed to precondition GMRES(20) methods.

Similarly, from Table 4.3 we see that the computing efficiency of the preconditioned iteration

methods are also dependent on the regularization parameter β. When β is large, e.g., β = 10−2

and 10−4, both preconditioners PBCT and PBLT as well as their approximations P̃BCT and

P̃BLT are almost invalid, and the numbers of failures for these preconditioners are almost the

same. However, when β ≪ 1, for example, β = 10−8, 10−10, 10−12 or 10−14, the block-counter-

diagonal preconditioner PBCT and the block-lower-triangular preconditioner PBLT yield very

nice computing results, and the numbers of iteration steps are almost h-independent. But com-

paring with the numbers of iteration steps and the computing times, the block-lower-triangular

preconditioner PBLT has an advantage over PBCT in totally, though, there are some oppose sit-

uation in locally and the same results appear in the approximation preconditioner. In addition,

when β = 10−12 and 10−14, the numbers of iteration steps of PBLT are almost equal to 2 and

are h-independent. Therefore, as preconditioners of GMRES(20), when β is large, PD and P̃D

yield nice preconditioning effect, while PBLT and PBCT show very good preconditioning effect

when β is small, PBLT is more effective than PBCT at most situations.

In Table 4.4, we list numerical results for optimal regularization parameter β. This numerical

phenomenon coincides with our theoretical analysis about the eigenvalues and eigenvectors of

the preconditioned matrices.

5. Concluding Remarks

PDE-constrained optimization problems arise widely in many fields, and efficient solution

of the problem heavily depends on preconditioning techniques. In this paper we have presented
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two efficient preconditioning strategies for solving linear systems from PDE-constrained opti-

mization problems. The preconditioners are employed to appropriate Krylov subspace methods.

Both preconditioners avoid the solution of an ill-conditioned matrix K. We have demonstrated

that our preconditioners work effectively with regularization parameter β ≤ 10−6. In addi-

tion, when β ≥ 10−8, the block-symmetric preconditioner is good, and when β ≤ 10−10 the

block-lower-triangular preconditioner is effective.
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