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Abstract

In this paper, a relaxed Hermitian and skew-Hermitian splitting (RHSS) preconditioner

is proposed for saddle point problems from the element-free Galerkin (EFG) discretization

method. The EFG method is one of the most widely used meshfree methods for solving

partial differential equations. The RHSS preconditioner is constructed much closer to the

coefficient matrix than the well-known HSS preconditioner, resulting in a RHSS fixed-point

iteration. Convergence of the RHSS iteration is analyzed and an optimal parameter, which

minimizes the spectral radius of the iteration matrix is described. Using the RHSS pre-

conditioner to accelerate the convergence of some Krylov subspace methods (like GMRES)

is also studied. Theoretical analyses show that the eigenvalues of the RHSS precondi-

tioned matrix are real and located in a positive interval. Eigenvector distribution and an

upper bound of the degree of the minimal polynomial of the preconditioned matrix are

obtained. A practical parameter is suggested in implementing the RHSS preconditioner.

Finally, some numerical experiments are illustrated to show the effectiveness of the new

preconditioner.
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1. Introduction

In recent years, meshfree (or meshless) methods have been developed rapidly as a class of

potential computational techniques for solving partial differential equations. In the meshfree

method, it does not require a mesh to discretize the problem domain, and the approximate

solution is constructed entirely on a set of scattered nodes. A lot of meshfree methods have

been proposed; see [27] for a general discussion. In this paper, we mainly consider the element-

free Galerkin method [11], which is one of the most widely used meshfree methods.
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The EFG method is almost identical to the conventional finite element method (FEM), as

both of them are based on the Galerkin formulation, and employ local interpolation/approximation

to approximate the trial function. The EFG method requires only a set of distributed nodes on

the problem domain, while elements are used in the finite element method. Other key differences

between the EFG method and the FEM method lie in the interpolation methods, integration

schemes and in the enforcement of essential boundary conditions. The EFG method employs

the moving least squares (MLS) approximation method to approximate the trial functions. One

disadvantage of MLS approximation is that the shape functions obtained are lack of Kronecker

delta function property, unless the weight functions used in the MLS approximation are singular

at nodal points. Therefore, the essential boundary conditions in the EFG method can not be

easily and directly enforced. Several approaches have been proposed for imposing the essential

boundary conditions in the EFG method, such as Lagrange multiplier (LM) method [11, 28],

penalty method [33], augmented Lagrangian (AL) method [31], coupled method [22] and so on.

Using independent Lagrange multipliers to enforce essential boundary conditions is common

in structural analysis when boundary conditions can not be directly applied. However, this

method leads to a linear system of saddle point type and increases the number of unknowns.

The penalty method is very simple to be implemented and yields a symmetric positive definite

stiffness matrix, but the penalty parameter must be chosen appropriately. Moreover, the ac-

curacy of the penalty method is less than that of the Lagrange multiplier method in general.

The augmented Lagrangian method uses a generalized total potential energy function to im-

pose essential boundary conditions. The augmented Lagrangian regularization used in the AL

method is composed of the sum of the pure Lagrangian term and the penalty term. In fact, the

AL method combines the LM method and the penalty method, but it leads to a better matrix

structure than the LM method; see discussion in Section 2 and [31]. For other methods stud-

ied for imposing essential boundary conditions in the EFG method; see [22, 27] and references

therein.

In this paper, we study the iterative solutions of large and sparse linear systems of equations

arising from the EFG method with the AL method imposing essential boundary conditions. The

discrete linear system of equations has the following block 2× 2 form

Ax ≡

[

A BT

−B 0

] [

u

λ

]

=

[

f

g

]

≡ b, (1.1)

where A = K + G ∈ R
n×n (K is the stiffness matrix and G is obtained from penalty term),

B ∈ R
m×n is obtained from Lagrangian term, u ∈ R

n is the approximation solution at nodes,

λ ∈ R
m is the Lagrange multiplier, f = f1+f2 ∈ R

n (f1 is the stiffness vector and f2 is obtained

from penalty term), g ∈ R
m and m ≤ n. n and m are related to the number of nodes in global

problem domain and the number of nodes in essential boundary, respectively. In general, A is

symmetric and positive definite and B has full rank. Under those conditions, we know that the

solution of (1.1) exists and is unique.

The linear system (1.1) can be regarded as the saddle point problem. It frequently arises

from computational fluid dynamics, mixed finite element of elliptic PDEs, constrained opti-

mization, constrained least-squares problem and so on. In recent years, saddle point problems

have been received considerable attention. A large amount of work has been devoted to devel-

oping efficient algorithms for solving saddle point problems. When the matrix blocks A and B

are large and sparse, iterative methods become more attractive than direct methods for solv-

ing the saddle point problems (1.1), but direct methods play an important role in the form of
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preconditioners embedded in an iterative frame work. The best known and the oldest methods

are the Uzawa algorithm [14], the inexact Uzawa algorithms [9, 10, 18], the HSS (Hermitian

and skew-Hermitian splitting) algorithms [1–3, 6, 13] and so on. These methods are station-

ary iterative methods. They require much less computer memory than the Krylov subspace

methods in actual implementations. But they are less efficient than the Krylov subspace meth-

ods in general. Unfortunately, Krylov subspace methods also tend to converge slowly when

applied to saddle point problems (1.1), and good preconditioners are needed to achieve rapid

convergence. Preconditioners can be constructed from matrix splitting iterative methods or

matrix factorization. It can also be constructed by special structure of the coefficient matrix.

But the preconditioner should be chosen as close as possible to the coefficient matrix, and the

inverse of preconditioner should be computed easily. In the past few years, much work also

has been devoted to developing efficient preconditioners for saddle point problems. A variety

of preconditioners have been proposed and studied in many papers, such as block diagonal

and block triangular preconditioners [7,19,20,24], constraint preconditioners [8,25], HSS-based

preconditioners [3, 6, 12, 13, 30], dimensional split preconditioners [15, 16], H−matrix precon-

ditioners [17] and so on. In [14], Benzi, Golub and Liesen discussed a selection of numerical

methods and useful preconditioners for saddle point problems. But most existing efficient iter-

ative methods and useful preconditioner are studied for solving saddle point problems arising

from constrained optimization, computational dynamics and so on, there is little discussion on

saddle point problems from meshfree discretization. When n and m are not large, Zheng et al.

proposed a direct method based on Sherman-Morrison formula for solving saddle point problems

from the EFG method [32]. When n and m are large, for solving saddle point problems from

meshfree discretization [32], Leem et al. studied an algebraic multigrid method [26] and Borne

et al. proposed a class of H−matrix preconditioners [17]. For saddle point problems arising

from the EFG method, the class of preconditioners we considered in this paper is a class of HSS

preconditioners, which was proposed by Benzi and Golub in [13]. The HSS preconditioner is

induced by the HSS iterative method, which was first proposed by Bai, Golub and Ng in [4] for

the solution of a broad class of non-Hermitian positive definite linear systems. It was demon-

strated in [4] that the HSS iteration method converges unconditionally to the unique solution

of the non-Hermitian system of linear equations. Then, Benzi and Golub applied the HSS iter-

ation method for solving saddle point problems [13]. They also proved that the HSS iteration

method converges unconditionally to the unique solution of saddle point problems. Due to

its promising performance and elegant mathematical properties, the HSS iteration method has

attracted many researchers’ attention. Algorithmic variants and theoretical analyses of these

HSS iteration methods for saddle point problems have been extensively and deeply discussed

in [1, 3, 6, 12, 13, 21, 23, 30].

In this paper, based on the HSS preconditioner, a relaxed HSS (RHSS) preconditioner is

proposed for saddle point problems (1.1) arising from the EFG discretization method. The

RHSS preconditioner is constructed much closer to the coefficient matrix A than the HSS

preconditioner, resulting in a RHSS fixed-point iteration. Convergence of the RHSS iteration

is analyzed and an optimal parameter, which minimizes the spectral radius of the iteration

matrix is described. Using the RHSS preconditioner to accelerate the convergence of some

Krylov subspace methods (like GMRES) is also studied. Theoretical analyses show that the

eigenvalues of the RHSS preconditioned matrix are real and located in a positive interval.

Eigenvector distribution and an upper bound of the degree of the minimal polynomial of the

preconditioned matrix are obtained. A practical parameter is suggested in implementing the
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RHSS preconditioner. The remainder of the paper is organized as follows. In Section 2, a

model problem and the element free Galerkin method are introduced. Then, in Section 3.1,

the HSS preconditioner is reviewed briefly and a relaxed HSS preconditioner is constructed.

The new preconditioner results in a RHSS fixed-point iteration. In Section 3.2, convergence

of the RHSS iteration is analyzed and an optimal parameter is described. In Section 3.3,

some properties of the RHSS preconditioned matrix are analyzed and a practical parameter

is suggested. Implementation of the preconditioning steps of both HSS preconditioners and

RHSS preconditioners are given in Section 3.4. In Section 4, some numerical experiments are

presented to show the effectiveness of the new preconditioner. Finally, we end this paper with

some conclusions in Section 5.

2. A Model Problem and the Element-free Galerkin Method

The model problem considered is a second-order partial differential equations defined on a

domain Ω ⊂ R
2:

−∆u(x) = −
(∂2u(x)

∂x2
+

∂2u(x)

∂y2

)

= f(x), in Ω, (2.1)

where ∆ is the Laplace operator, u(x) is a unknown function, f(x) is a given function of x and

y, and Ω is a domain enclosed by Γ = ∂Ω = Γu

⋃

Γq with boundary conditions

u = ū, on Γu, (2.2)

q(x) =
∂u(x)

∂n
= q̄(x), on Γq, (2.3)

where n is the unit outward normal to the boundary Γ, ū and q̄ are the prescribed values of

the function u(x) and its normal derivative over the boundary Γ, respectively.

We use the element free Galerkin method to generate discretizations of the model problem

(2.1)-(2.3). As discussed in Section 1, the EFG method is based, as the finite element method,

on an integral formulation. This method, requiring only a set of nodes distributed on the

problem domain, employs the moving least-squares (MLS) approximation for the construction

of the shape functions. In the following, we first give a brief summary of the MLS approximation

scheme, and then present the EFG method for the problem described in (2.1)-(2.3). For details

of the EFG method, see [11, 28].

2.1. The MLS approximation

Consider a sub-domain Ωx, the neighborhood of a point x and denoted as the domain of

definition of the MLS approximation for the trial function at x, which is located in the problem

domain Ω. To approximate the distribution of function u in Ωx, over a number of randomly

located nodes {xi}, i = 1, · · · , n, the moving least-squares (MLS) approximation uh(x) of u,

∀x ∈ Ωx, can be defined by

uh(x) =

l
∑

j=1

pj(x)aj(x) = pT (x)a(x), (2.4)

where pT (x) = [p1(x), · · · , pl(x)] is a complete monomial basis of order l, and aj(x) (j = 1, · · · , l)

are coefficient of the basis functions.
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The coefficient vector a(x) can be obtained at any point x by minimizing a weighted discrete

L2 norm, which can be defined as

J(x) =
n
∑

i=1

wi(x)[p
T (xi)a(x)− ûi]

2 = [Pa(x)− û]TW [Pa(x)− û], (2.5)

where wi(x) = w(x − xi) is the weight function associated with the node i, with wi(x) > 0 for

all x in the support domain of wi(x), xi denotes the value of x at node i, n is the number of

nodes in Ωx.

The matrices P and W in (2.5) are defined as

P =











p1(x1) p1(x2) · · · p1(xn)

p2(x1) p2(x2) · · · p2(xn)
...

...
. . .

...

pl(x1) pl(x2) · · · pl(xn)











, W =











w1(x) 0 · · · 0

0 w2(x) · · · 0
...

...
. . .

...

0 · · · 0 wn(x)











,

and û = [û1, û2, · · · , ûn]. Here it should be noted that ûi(i = 1, 2, · · · , n) are the fictitious

nodal values, not the nodal values in general (see Fig. 1 for a simple one-dimensional case for

the distinction between ui and ûi).

Fig. 2.1. The distinction between the nodal values ui of the trial function uh(x) and the

undetermined fictitious nodal values ûi in the MLS approximated trial function uh(x).

To find a(x), we obtain the extremum of J in (2.5) by

∂J

∂a
= D(x)a(x)− E(x)û = 0, (2.6)

where D(x) = PWPT and E(x) = PW . If D(x) is nonsingular, then from (2.6) we obtain

a(x) = D−1(x)E(x)û.

Substituting a(x) into (2.4), the expression of the local approximation uh(x) is thus

uh(x) = Φ(x)û =
n
∑

i=1

φi(x)ûi, (2.7)

where Φ(x) = {φ1(x) · · ·φn(x)} is the shape function and

φi(x) =

l
∑

j=1

pj(x)[D
−1(x)E(x)]ji.
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The derivative of these shape functions can also be obtained

φi,k(x) =

l
∑

j=1

[pj,k(D
−1E)ji + pj(D

−1
,k E +D−1E,k)ji], i = 1, · · · , n,

where

D−1
,k = −D−1D,kD

−1,

and the index following a comma is a spatial derivative.

2.2. The EFG formulation

It can be found from above discussion that MLS approximation does not pass through the

data used to fit the curve in general, i.e., it does not have the property of nodal interpolants as

in the FEM, i.e. φi(xj) = δij , where φi(xj) is the shape function corresponding to the node at

xi, evaluated at a nodal point xj , and δij is the Kronecker delta. Thus the essential boundary

conditions can not be imposed directly in the EFG method. In this paper, the augmented

Lagrangian method [31] is used to enforce the essential boundary conditions.

In Cartesian coordinate system, the functional corresponding to equation (2.1) associated

to the boundary conditions (2.2) and (2.3) is given by

Π(u) =
1

2

∫

Ω

(

(
∂u

∂x
)2 + (

∂u

∂y
)2 − 2uf

)

dΩ−

∫

Γq

q̄udΓ

+

∫

Γu

λ(u − ū)dΓ +
β

2

∫

Γu

(u− ū)T (u− ū)dΓ, (2.8)

where λ is the Lagrange multiplier and β is the penalty parameter, they are used to impose the

essential boundary conditions. The Lagrange multiplier λ can be expressed by

λ(s) =
∑

i

Ni(s)λi, (2.9)

where Ni(s) is a Lagrange interpolation, s is the arc length along the boundary Γu, λi is the

Lagrange multiplier at the ith node located at the essential boundary.

The necessary condition for (2.8) to reach its minimum yields

δuΠ(u, λ) =

∫

Ω

[(δux)
Tux + (δuy)

Tuy − fT δu]dΩ−

∫

Γq

q̄δudΓ

+
∫

Γu

λT δudΓ + β
∫

Γu

[(δu)Tu− (δu)T ū]dΓ = 0,
(2.10)

δλΠ(u, λ) =

∫

Γu

δλ(u − ū)dΓ = 0, (2.11)

where δu and δλ are the test functions, (δu)x and (δu)y (ux and uy) are the derivatives of δu(u)

in terms of x and y, respectively.

Substituting (2.7) and (2.9) into (2.11) and (2.11), then integrating, we obtain the following

discrete linear system of equations

Ax ≡

[

A BT

−B 0

] [

u

λ

]

=

[

f

g

]

≡ b, (2.12)
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where

A =

∫

Ω

GTGdΩ + β

∫

Ω

ΦTΦdΓ, B =

∫

Γu

NTΦdΓ, (2.13)

f =

∫

Γq

ΦT q̄dΓ + β

∫

Γu

ΦT ūdΓ, g = −

∫

Γu

NT ūdΓ, (2.14)

and

G =

[

∂φ1

∂x
· · · ∂φn

∂x
∂φ1

∂y
· · · ∂φn

∂y

]

, Φ =
[

φ1 · · · φn

]

, N =
[

N1 · · · Nm

]

.

It should be noted that u in (2.12) is û in fact. It is also the fictitious nodal value, not

the nodal value in general. Once (2.12) has been solved, we can use (2.7) to get approximate

values for every point of interest. Using the augmented Lagrangian method to enforce essential

boundary conditions in the EFG method has some advantages [31], such as high precision,

good stability and so on. Moreover, the blocks of discrete linear system (2.12) have some

nice properties, such as A is symmetric and positive definite, B has full row rank. If there is

no penalty used, i.e. using the Lagrange multipliers only, then A is symmetric and positive

semi-definite in general. In the following, we will study the iterative solution of linear system

(2.12). However, the coefficient matrix A is ill-conditioned in general for large n and m. Many

iterative methods (for example splitting iterative methods, Krylov subspace methods) tend to

converge very slowly when applied to saddle point system (2.12). In the next section, a relaxed

HSS preconditioner will be proposed to achieve rapid convergence when some Krylov subspace

methods (such as GMRES) are used. The corresponding iterative method is also studied.

3. The Relaxed HSS (RHSS) Preconditioner

In this section, we first review briefly the HSS iterative method and introduce the HSS

preconditioner, for details; see [4,13,30]. Then a relaxed HSS preconditioner will be constructed.

Some properties of the RHSS preconditioned matrix are studied.

3.1. The HSS preconditioner and the RHSS preconditioner

From the structure of the saddle point system (1.1), we know that the coefficient matrix A

naturally possesses the Hermitian and skew-Hermitian splitting

A = H+ S,

where

H =
1

2
(A+AT ) =

[

A 0

0 0

]

, S =
1

2
(A−AT ) =

[

0 BT

−B 0

]

.

Let α > 0 be a given parameter, I be the (appropriately dimensioned) identity matrix. It is

easy to see that αI +H and αI + S are both nonsingular matrices. Consider two splittings of

A

A = (αI +H)− (αI − S) and A = (αI + S)− (αI −H).

Then we can obtain the following HSS iterative method for solving saddle point problem (2.12).
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Algorithm 3.1. (The HSS iteration method)

Given an initial guess x0, for k = 0, 1, 2, · · · , until {xk} converges, compute

{

(αI +H)xk+ 1

2 = (αI − S)xk + b,

(αI + S)xk+1 = (αI −H)xk+ 1

2 + b,

where α is a given positive constant.

It has been studied in [13] that the HSS iteration method is convergent unconditionally to

the unique solution of the saddle point problem (2.12). In matrix-vector form, the above HSS

iteration can be equivalently rewritten as

xk+1 = Γ̃αx
k +Nαb, (3.1)

where

Γ̃α = (αI + S)−1(αI −H)(αI +H)−1(αI − S),

Nα = 2α(αI + S)−1(αI +H)−1.

Here, Γ̃(α) is the iteration matrix of the HSS iteration. In fact, (3.1) also results from the

splitting

A = P̃HSS −NHSS

of the coefficient matrix A, with

P̃HSS =
1

2α
(αI +H)(αI + S), and NHSS =

1

2α
(αI −H)(αI − S).

We note that Γα = P̃−1
HSSNHSS , N (α) = P̃−1

HSS , and P̃HSS can be served as a preconditioner,

called the HSS preconditioner, to the system of linear equations (1.1). It should be noted that

the pre-factor 1
2α in the HSS preconditioner P̃HSS has no effect on the preconditioned system.

For the purpose of analysis, we can take the HSS preconditioner as

PHSS =
1

α
(αI +H)(αI + S). (3.2)

By performing the matrix multiplication on the right-hand side of (3.2), it follows that PHSS

has the following structure

PHSS =
1

α

[

A+ αI 0

0 αI

] [

αI BT

−B αI

]

=

[

A+ αI BT + 1
α
ABT

−B αI

]

. (3.3)

It follows from (2.12) and (3.3) that the difference between the preconditioner PHSS and the

coefficient matrix A is given by

RHSS = PHSS −A =

[

αI 1
α
ABT

0 αI

]

. (3.4)
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From (3.4), we can see that when α tends to zero, the same as the diagonal blocks. However,

the off-diagonal block becomes unbound. Hence, we should choose an ideal α to balance the

weight of both parts (see [30]).

To obtain an improved invariant of the HSS preconditioner, we hope that the preconditioner

PHSS is as close as possible to the coefficient matrix A. Based on this idea, we propose a relaxed

HSS preconditioner as follows

PRHSS =
1

α

[

A 0

0 αI

] [

αI BT

−B 0

]

=

[

A 1
α
ABT

−B 0

]

. (3.5)

We can easily see that the difference between PRHSS and A is given by

RRHSS = PRHSS −A =

[

0 ( 1
α
A− I)BT

0 0

]

. (3.6)

Compared with the matrix RHSS , diagonal blocks of the matrix RRHSS become zero ma-

trices, while the nonzero off-diagonal becomes ( 1
α
A− I)BT . This means that the relaxed HSS

preconditioner PRHSS should be closer to the coefficient matrix A than the original HSS precon-

ditioner PHSS . This observation suggests that PRHSS will lead to a better preconditioner than

PHSS , since it gives a better approximation of the coefficient matrix A. It should be noted

that the RHSS preconditioner PRHSS no longer relates to an alternating direction iteration

method, but this fact is of no consequence when PRHSS is used as a precodntioner for Krylov

subspace method like GMRES. In fact, the RHSS preconditioner PRHSS can be obtained by

the following splitting of the coefficient matrix A

A =

[

A 1
α
ABT

−B 0

]

−

[

0 ( 1
α
A− I)BT

0 0

]

≡ PRHSS −RRHSS , (3.7)

which results in the following RHSS iteration method.

Algorithm 3.2. (The RHSS iteration method)

Let α be a given positive constant. Let [u0, λ0] be an initial guess vector. For k = 0, 1, 2, · · · ,

until certain stopping criteria satisfied, compute

[

A 1
α
ABT

−B 0

] [

uk+1

λk+1

]

=

[

0 ( 1
α
A− I)BT

0 0

] [

uk

λk

]

+

[

f

g

]

.

From (3.5), the RHSS iteration method can be solved by two steps. We may first solve the

system of linear equations with the first coefficient matrix in (3.5), then solve the system of

linear equations with the second coefficient matrix in (3.5). Details of implementation steps are

studied in Section 3.4.

3.2. Analysis of the RHSS iteration

In this section, we deduce the convergence property of the RHSS iteration method and the

optimal parameter α. Note that the iteration matrix of the RHSS iteration method is

Γ = P−1
RHSSRRHSS =

[

A 1
α
ABT

−B 0

]−1 [
0 ( 1

α
A− I)BT

0 0

]

. (3.8)
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Let ρ(Γ) denote the spectral radius of Γ. Then the RHSS iteration method converges if and

only if ρ(Γ) < 1. Let

P1 =

[

A 0

0 αI

]

, P2 =

[

αI BT

−B 0

]

.

It is easy to check that

P−1
1 =

[

A−1 0

0 1
α
I

]

, P−1
2 =

[

1
α
I − 1

α
BT (BBT )−1B −BT (BBT )−1

(BBT )−1B α(BBT )−1

]

. (3.9)

Then the iteration matrix Γ can be rewritten by

Γ = αP−1
2 P−1

1 RRHSS =

[

0 (BT (BBT )−1B − I)(A−1 − 1
α
I)BT

0 I − α(BBT )−1BA−1BT

]

.

From the above expression, we know that the spectral radius of the RHSS iteration matrix Γ is

ρ(Γ) = max
1≤i≤m

|1− αµi|, (3.10)

where µi (1 ≤ i ≤ m) is the ith eigenvalue of (BBT )−1(BA−1BT ). In fact, the spectral radius

(3.10) is similar to a spectral radius when a stationary Richardson iteration applied to the

following linear system

(BBT )−
1

2 (BA−1BT )(BBT )−
1

2 x = b.

Let µ1 and µm be the largest and smallest eigenvalues of (BBT )−1(BA−1BT ), respec-

tively. If A is symmetric and positive definite, so is (BBT )−
1

2 (BA−1BT )(BBT )−
1

2 . Since

(BBT )−1(BA−1BT ) is similar to (BBT )−
1

2 (BA−1BT )(BBT )−
1

2 , the smallest and largest eigen-

values of (BBT )−
1

2 (BA−1BT )(BBT )−
1

2 are µm and µ1, respectively. It is well known that

Richardson’s iteration converges for all α such that

0 < α <
2

µ1
.

Furthermore, the spectral radius ρ(Γ) is minimized by taking

αopt =
2

µ1 + µm

. (3.11)

Same results are true for the RHSS iteration method. We summarize them in the following

theorem.

Theorem 3.1. Let A ∈ R
n×n be a symmetric and positive definite matrix, B ∈ R

m×n have

full row rank, and let α be a positive constant. Let ρ(Γ) be the spectral radius of the RHSS

iteration matrix. Then

ρ(Γ) = max
1≤i≤m

|1− αµi|,

where µi is the ith eigenvalue of (BBT )−1(BA−1BT ). Let µ1 and µm be the largest and smallest

eigenvalues of (BBT )−1(BA−1BT ), respectively. If α satisfies

0 < α <
2

µ1
,
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then the RHSS iteration method is convergent. The optimal α, which minimizes the spectral

radius ρ(Γ), is given by

αopt =
2

µ1 + µm

.

The corresponding optimal spectral radius is

ρopt(Γ) =
µ1 − µm

µ1 + µm

.

In general, the asymptotic rate of convergence of the stationary iteration is governed by the

spectral radius of the iteration matrix Γ, so it makes sense to try to choose the parameter α so as

to make ρ(Γ) as small as possible. In Theorem 3.1, the optimal parameter and its corresponding

optimal spectral radius are presented. From the expression of the optimal spectral radius, we

can see that if µ1 is very close to µm, then ρopt(Γ) is very close to zero and fast convergence

will be obtained. But if µ1 ≫ µm, then ρopt(Γ) is very close to 1 and the RHSS iteration

will converge very slowly. Fortunately, the rate of convergence can be greatly improved by

Krylov subspace acceleration. In other words, using PRHSS as a preconditioner for some Krylov

subspace methods (such as GMRES) may be a good choice. In fact, we can rewrite the RHSS

iteration in correction form:

xk+1 = xk + P−1
RHSSrk, rk = b−Axk. (3.12)

This will be useful when we consider Krylov subspace acceleration. Moreover, knowing con-

vergent condition of the RHSS iteration method is very important, since it implies that the

spectrum of the preconditioned matrix lies entirely in a circle centered at (1, 0) with unity

radius which is a desirable property for Krylov subspace acceleration. Using the optimal pa-

rameter αopt, eigenvalues of preconditioned matrix may be more cluster than that of other

cases. To obtain the optimal parameter αopt, we need to solve the extreme eigenvalues of

(BBT )−1(BA−1BT ). This is a difficult task. In the next section, some properties of the pre-

conditioned matrix are studied and a practical parameter is suggested in implementing the

RHSS preconditioner.

3.3. Analysis of the preconditioned matrix P−1
RHSSA

The RHSS iteration method is a stationary iteration. It is very simple and very easy to

implement. But if µ1 ≫ µm, the convergence of the RHSS iteration is typically too slow for the

method to be competitive even with the optimal choice of the parameter α. In this section, we

propose using the Krylov subspace method like GMRES to accelerate the convergence of the

iteration.

It follows from (3.12) that the linear system Ax = b is equivalent to the linear system

(I − Γ)x = P−1
RHSSAx = c,

where c = P−1
RHSSb. This equivalent (left-preconditioned) system can be solved with GMRES.

Hence, the matrix PRHSS can be seen as a preconditioner for GMRES. Equivalently, we can

say that GMRES is used to accelerate the convergence of the splitting iteration applied to

Ax = b [29]. In general, a clustered spectrum of the preconditioned matrix P−1
RHSSA often

translates in rapid convergence of GMRES. In the following, we will deduce the eigenvalue

distribution of the preconditioned matrix P−1
RHSSA. Besides, the eigenvector distribution and

an upper bound of the minimal polynomial of the preconditioned matrix are also discussed.
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Theorem 3.2. The eigenvalues of the preconditioned matrix P−1
RHSSA are given by 1 with

multiplicity at least n. The remaining eigenvalues are positive real and located in

[αµm, αµ1],

where µ1 and µm are the maximum and the minimum eigenvalues of matrix (BBT )−1BA−1BT .

Proof. From (3.9), we have

P−1
RHSSA = P−1

RHSS(PRHSS −RRHSS)

= I − P−1
RHSSRRHSS = I − αP−1

2 P−1
1 RRHSS

= I − α

[

1
α
I − 1

α
BT (BBT )−1B −BT (BBT )−1

(BBT )−1B α(BBT )−1

] [

A−1 0

0 1
α
I

] [

0 ( 1
α
A− I)BT

0 0

]

= I −

[

I −BT (BBT )−1B −αBT (BBT )−1

α(BBT )−1B α2(BBT )−1

] [

0 ( 1
α
I −A−1)BT

0 0

]

= I −

[

0 (BT (BBT )−1B − I)(A−1 − 1
α
I)BT

0 I − α(BBT )−1BA−1BT

]

=

[

I (I −BT (BBT )−1B)(A−1 − 1
α
I)BT

0 α(BBT )−1BA−1BT

]

. (3.13)

Eq. (3.13) implies that the eigenvalues of the preconditioned matrix P−1
RHSSA are given by

1 with multiplicity at least n, the remaining nonunit eigenvalues are the nonunit eigenvalues

of α(BBT )−1BA−1BT . Since BBT and BA−1BT are symmetric and positive definite, and α

is a positive parameter, the eigenvalues of α(BBT )−1BA−1BT are positive real. Denote µ1

and µm be the maximum and the minimum eigenvalues of matrix (BBT )−1BA−1BT , then the

remaining nonunit eigenvalues of the preconditioned matrix P−1
RHSSA are located in [αµm, αµ1].

This completes the proof. �

From Theorem 3.1, we know that eigenvalues of the preconditioned matrix are 1 with mul-

tiplicity at least n, and the remaining eigenvalues are real and located in a positive interval,

which is related to the parameter α. Like all parameter based iterative methods, it is very dif-

ficult to obtain the optimal choice of the parameter. The optimal parameter αopt (3.11), which

minimizes the spectral radius of the RHSS iteration matrix Γ, can be used. In this case, all

the eigenvalues of the preconditioned matrix P−1
RHSSA lie entirely in a circle centered at (1, 0)

with unity radius which is a desirable property for Krylov subspace acceleration. To obtain the

optimal parameter αopt, we need to solve the extreme eigenvalues of (BBT )−1(BA−1BT ). This

should be a difficult task. Fortunately, from Theorem 3.2, we know that the parameter has no

effect on the ratio of the interval [αµm, αµ1]. This means that α = 1 may be a good choice

for the RHSS preconditioner. In the next section, some numerical experiments will show this

observation. It should be noted that α = 1 may be not a good choice for the RHSS iteration

method, since the RHSS iteration method may be divergence in this case.

In the following, we turn to study the eigenvector distribution and an upper bound of the

degree of the minimal polynomial of the preconditioned matrix P−1
RHSSA.

Theorem 3.3. Let the RHSS preconditioner be defined in (3.5), then the preconditioned matrix

P−1
RHSSA has n+ i+ j linearly independent eigenvectors. There are
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• n eigenvectors of the form
[

uT 0T
]T

that correspond to the eigenvalue 1.

• i (1 ≤ i ≤ m) eigenvectors of the form
[

uT vT
]T

arising from ( 1
α
A − I)BT v = 0 for

which i vectors v are linearly independent and the eigenvalue is 1.

• j (1 ≤ j ≤ m) eigenvectors of the form
[

uT vT
]T

that correspond to nonunit eigen-

values.

Proof. The form of the eigenvectors of the preconditioned matrix P−1
RHSSA can be derived

by considering the following generalized eigenvalue problem

[

A BT

−B 0

] [

u

v

]

= θ

[

A 1
α
ABT

−B 0

] [

u

v

]

, (3.14)

where θ is an eigenvalue of the preconditioned matrix P−1
RHSSA and

[

uT vT
]T

is the corre-

sponding eigenvector. Expanding (3.14) out, we obtain

Au +BT v = θAu +
θ

α
ABT v, (3.15)

(1 − θ)Bu = 0. (3.16)

Eq. (3.16) implies that either θ = 1 or Bu = 0. If θ = 1, then (3.15) can be rewritten as

( 1

α
A− I

)

BT v = 0. (3.17)

Eq. (3.17) is trivially satisfied by v = 0, and hence there are n linearly independent eigenvectors

of the form
[

uT 0T
]T

associated with the eigenvalue 1. If there exists any v 6= 0 which

satisfies (3.17), then there will be i (1 ≤ i ≤ m) linearly independent eigenvectors of the form
[

uT vT
]T

, where the components v arise from (3.17).

If θ 6= 1, then from (3.15), we have

u =
1

1− θ

( θ

α
I −A−1

)

BT v. (3.18)

Substituting (3.18) into (3.16), we get

αBA−1BT v = θBBT v. (3.19)

For this case, it must be v 6= 0. Otherwise, from (3.18) we get u = 0, a contradiction. If there

exists any v 6= 0 which satisfies (3.19), then there will be j (1 ≤ j ≤ m) linearly independent

eigenvectors of the form
[

uT vT
]T

that correspond to nonunit eigenvalues. Thus, the form

of the eigenvectors are obtained. Let

a(1) =
[

a
(1)
1 · · · a

(1)
n

]T

, a(2)=
[

a
(2)
1 · · · a

(2)
i

]T

, a(3)=
[

a
(3)
1 · · · a

(3)
j

]T

,

be three vectors. To show that the n+ i+ j eigenvectors of the preconditioned matrix P−1
RHSSA
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are linearly independent, we need to show that

[

u
(1)
1 · · · u

(1)
n

0 · · · 0

]









a
(1)
1
...

a
(1)
n









+

[

u
(2)
1 · · · u

(2)
i

v
(2)
1 · · · v

(2)
i

]









a
(2)
1
...

a
(2)
i









+

[

u
(3)
1 · · · u

(3)
j

v
(3)
1 · · · v

(3)
j

]









a
(3)
1
...

a
(3)
j









=







0
...

0






, (3.20)

implies that the vectors a(k) (k = 1, 2, 3) are zero vectors. Recalling that in (3.20) the first

matrix arises from the case θk = 1 (k = 1, · · · , n), the second matrix from the case θk = 1

(k = 1, · · · , i), and the last matrix from the case θk 6= 1 (k = 1, · · · , j). Multiplying (3.20) by

P−1
RHSSA, gives

[

u
(1)
1 · · · u

(1)
n

0 · · · 0

]









a
(1)
1
...

a
(1)
n









+

[

u
(2)
1 · · · u

(2)
i

v
(2)
1 · · · v

(2)
i

]









a
(2)
1
...

a
(2)
i









+

[

u
(3)
1 · · · u

(3)
j

v
(3)
1 · · · v

(3)
j

]









θ1a
(3)
1
...

θja
(3)
j









=







0
...

0






. (3.21)

Subtracting (3.20) from (3.21), we obtain

[

u
(3)
1 · · · u

(3)
j

v
(3)
1 · · · v

(3)
j

]









(θ1 − 1)a
(3)
1

...

(θj − 1)a
(3)
j









=







0
...

0






.

Since the fires matrix above are j linearly independent vectors and the eigenvalues θk 6= 1

(k = 1, · · · , j), we have a
(3)
k = 0 (k = 1, · · · , j). We also have linear independence of v

(2)
k

(k = 1, · · · , i), and thus a
(2)
k = 0 (k = 1, · · · , i). Thus, (3.20) can be simplified to

[

u
(1)
1 · · · u

(1)
n

0 · · · 0

]









a
(1)
1
...

a
(1)
n









=







0
...

0






.

Because of the linear independence of u
(1)
k (k = 1, · · · , n), we have a

(1)
k = 0 (k = 1, · · · , n).

Thus, the proof is complete. �

Theorem 3.4. Let the RHSS preconditioner be defined in (3.5), then the degree of the minimal

polynomial of the preconditioned matrix P−1
RHSSA is at most m+1. Thus, the dimension of the

Krylov subspace K(P−1
RHSSA, b) is at most m+ 1.
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Proof. By (3.13), we know that the preconditioned matrix P−1
RHSSA takes the form

P−1
RHSSA =

[

I Θ2

0 Θ1

]

, (3.22)

where Θ1 = α(BBT )−1BA−1BT ∈ R
m×m and Θ2 = (I − BT (BBT )−1B)(A−1 − 1

α
I)BT ∈

R
n×m.

From the eigenvalue distribution studied in Theorem 3.2, it is evident that the characteristic

polynomial of the preconditioned matrix P−1
RHSSA is

(P−1
RHSSA− I)n

m
∏

i=1

(P−1
RHSSA− µiI).

Expanding the polynomial (P−1
RHSSA− I)

m
∏

i=1

(P−1
RHSSA− µiI) of degree m+ 1, we obtain

(P−1
RHSSA− I)

m
∏

i=1

(P−1
RHSSA− µiI) =









0 Θ2

m
∏

i=1

(Θ1 − µiI)

0 (Θ1 − I)
m
∏

i=1

(Θ1 − µiI)









.

Since µi (i = 1, · · · ,m) are also the eigenvalues of Θ1 ∈ R
m×m, thus we have

m
∏

i=1

(Θ1 − µiI) = 0.

Therefore, we obtain the degree of the minimal polynomial of the preconditioned matrix

P−1
RHSSA is at most m+1. From [29, Proposition 6.1], we know that the degree of the minimal

polynomial is equal to the dimension of the corresponding Krylov subspace K(P−1
RHSSA, b) (for

general b). So, the dimension of the Krylov subspace K(P−1
RHSSA, b) is also at most m + 1.

Thus, we complete the proof. �

It directly follows from Theorem 3.4 that any Krylov subspace iterative method with an

optimality or Galerkin property, for example GMRES [29], will terminate in at most m + 1

iterations with the solution to a linear system of the form (2.12) if the RHSS preconditioner

PRHSS is used. It should be noted that for the linear system of equations (2.12), the dimension

m is related to the number of nodes located at the essential boundary and n is related to the

number of nodes located in global problem domain. In general, m is much less than n. It seems

that the RHSS preconditioner PRHSS should be very effective for the saddle point problems

arising from the element free Galerkin discretization method.

3.4. Implementation

In this section, for saddle point problems (2.12) we use the relaxed HSS preconditioner

PRHSS to derive a preconditioning implementation in a Krylov subspace iterative method,

such as GMRES. To compare with the RHSS preconditioner, the preconditioning steps of the

HSS preconditioner PHSS are also given.

Since the pre-factor 1
α
in the RHSS preconditioner PRHSS has no effect on the preconditioned

system, application of the RHSS preconditioner with GMRES, we need to solve the linear system

of the form
[

A 0

0 αI

] [

αI BT

−B 0

]

z = r,
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for a given r at each iteration. Let r = [rT1 , rT2 ]
T and z = [zT1 , zT2 ]

T , where r1, z1 ∈ R
n and

r2, z2 ∈ R
m, then by (3.9), we have

[

z1
z2

]

=

[

αI BT

−B 0

]−1 [
A 0

0 αI

]−1 [
r1
r2

]

(3.23)

=

[

I − 1
α
BT

0 I

] [

1
α
I 0

0 α(BBT )−1

] [

I 0
1
α
B I

] [

A−1 0

0 1
α
I

] [

r1
r2

]

.

Hence, we can derive the following algorithm for implementing RHSS preconditioner.

Algorithm 3.3. For a given vector r = (rT1 , r
T
2 )

T , we can compute the vector z = (zT1 , z
T
2 )

T

by (3.23) from the following steps:

(1)solve Au1 = r1;

(2) u2 = 1
α
(Bu1 + r2);

(3) solve BBT z2 = αu2;

(4) z1 = 1
α
(u1 −BT z2).

In Algorithm 3.3, it is required to solve two sub-linear systems with coefficient matrices A

and BBT exactly. However, this may be very costly and impractical in actual implementation.

In fact, it is important to stress that these two sub-linear systems need not be solved exactly.

The upshot is that inexact solvers can be used to greatly reduce the cost of each iteration, at

the expense of somewhat slower convergence. Typically, in practical implementations, inexact

solvers result in a much more competitive algorithm. Fortunately, under the assumptions given

in Section 2, we know that both A and BBT are symmetric and positive definite matrices.

Therefore, we can employ the conjugate gradient (CG) or the preconditioned conjugate gradient

(PCG) method to solve two sub-linear systems with the coefficient matrices A and BBT to a

prescribed accuracy at each step of the preconditioning steps.

Similarity, for implementing the HSS preconditioner with GMRES, we need to solve the

linear system of the form

(αI +H)(αI + S)z =

[

A+ αI 0

0 αI

] [

αI BT

−B αI

]

z = r,

for a given r at each iteration. We can also do the matrix factorization of αI + S and derive

the following algorithm.

Algorithm 3.4. For a given vector r = (rT1 , r
T
2 )

T , we can compute the vector z =

(zT1 , zT2 )
T = (αI + S)−1(αI +H)−1r from the following steps:

(1) solve (αI +A)u1 = r1;

(2) u2 = 1
α
(Bu1 + r2);

(3) solve (αI + 1
α
BBT )z2 = u2;

(4) z1 = 1
α
(u1 −BT z2).

Since the matrix αI+A and αI+ 1
α
BBT are symmetric and positive definite matrices, we could

also use a subroutine of the CG method to obtain u1 and z2.
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Fig. 4.1. Example 4.1: 21× 21 regular nodes distribution and 10× 10 background cells.

From Algorithm 3.3 and Algorithm 3.4, we can see that two steps are different. In the first

step and the third step of Algorithm 3.3, we need to solve linear systems with coefficient matrix

A and BBT , respectively, while in the first and the third step of Algorithm 3.4, we need to

solve linear systems with coefficient matrix αI + A and αI + 1
α
(BBT ), respectively. This is a

simple modification, but it may result in good convergence. In the next section, some numerical

experiments are illustrated to show this observation.

4. Numerical Experiments

In this section, two numerical examples are illuatrated to show the effectiveness of the RHSS

iteration method (Algorithm 3.2) and the RHSS preconditioner (3.5) for saddle point problem

(2.12), from the point of view of both number of total iteration steps (denoted by ‘IT ’) and

elapsed CPU time in seconds (denoted by ‘CPU ’). In actual computations, all runs are started

from the initial vector (uT
0 , λ

T
0 ) = [0, · · · , 0]T , and terminated if the current iterations satisfy

ERR= ||rk||2/||r0||2 ≤ 10−8 (where rk = b −Axk is the residual at the kth iteration) or if the

number of prescribed iteration kmax = 1000 is exceeded. All runs are performed in MATLAB

7.0 on an Intel core i5 (2G RAM) Windows 7 system.

Model problems are discretized by the EFG method. Using the augmented Lagrangian

method to impose essential boundary conditions leads to saddle point problems (2.12). The

linear basis pT = [1, x, y] and the cubic spline weight function [28] are used to construct MLS

shape functions. To obtain integrals in (2.13) and (2.14), background cells will be used in this

paper. It should be noted that these background cells are independent of nodes distribution.

For each background cell, 4× 4 Gauss points are used. For each computational point (node or

Gauss point), rectangular influence domain is adopted. The radius of each influence is taken as

γ× dc, where γ is the scale and dc is the average node distance. In this paper, we take γ = 2.5.

Taking the penalty β = 10 in (2.13) and (2.14) to ensure that (1,1) block A of saddle point

matrix is positive definite.

Example 4.1. The first numerical example is the Poisson equation

−∆u = 2π2sinπxcosπy in Ω = [0, 1]× [0, 1]
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Table 4.1: Values of m, n and the order of A for Example 4.1.

Nodes 21×21 41×41 61×61 81×81

n 441 1681 3721 6561

m 42 82 122 162

n+m 483 1763 3843 6723

Table 4.2: Parameters for Example 4.1.

Nodes 21×21 41×41 61×61 81×81

2/µ1 0.67203 0.65661 0.65368 0.65264

αopt 0.54657 0.53623 0.53425 0.53355

[αµm, αµ1] [0.37338, 1.62662] [0.36665,1.63335] [0.36541,1.63457] [0.36494,1.63506]

with boundary conditions

u = 0 on x = 0 and x = 1,

∂u

∂n
= 0 on y = 0 and y = 1.

For this example, we have two essential boundaries, i.e., x = 0 and x = 1. Other two

boundaries, i.e., y = 0 and y = 1, are natural boundaries. To discritize the problem domain

Ω = [0, 1]× [0, 1], we take four regular nodes distribution, i.e., 21× 21, 41× 41, 61× 61, 81× 81.

For each node distribution, 10 × 10, 20 × 20, 30 × 30 and 40 × 40 background cells are used

to obtain integrals, respectively. A typical 21 × 21 nodes distribution and the corresponding

10 × 10 background cells are plotted in Fig. 4.1. The orders of saddle point matrices A are

listed in Table 4.1.

In Table 4.2, we list the upper bound of the convergent interval and the optimal parame-

ters for the RHSS iteration method, and the bound of eigenvalues of the RHSS preconditioned

matrix P−1
RHSSA with optimal αopt. From Table 4.2, we can see that all eigenvalues of the pre-

conditioned matrix P−1
RHSSA are located in (0, 2) if optimal parameters were used. In Table 4.3,

we list the numbers of iteration steps and the computing CPU times (in seconds) with respect to

RHSS iteration method with optimal parameter (Algorithm 3.2), GMRES (no preconditioning,

denote by I), HSS preconditioned GMRES (with α = 1, 0.1, 0.01) and RHSS preconditioned

GMRES (with α = 1, αopt). From Table 4.3, we can see that

• RHSS iteration converges very fast for solving saddle point problems (2.13) when optimal

parameter is used. Without preconditioning, GMRES converges very slowly. If the HSS

preconditioner or the RHSS preconditioner were used, the preconditioned GMRES method

converges very fast.

• For the RHSS preconditioned GMRES, the numbers of iteration steps and the elapsed

CPU times are almost the same when α = 1 and α = αopt are used. But for the HSS

preconditioned GMRES, the numbers of iteration steps and the elapsed CPU times vary

greatly when different α are used.

• The optimal parameter αopt, which minimizes the spectral radius of corresponding itera-

tion matrix, is not the optimal parameter for the RHSS preconditioner. But this optimal

parameter can get very good numerical results.
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Fig. 4.2. Example 4.1: the effect of α: RHSS preconditioning steps vs α (left); HSS precondi-

tioning steps vs α (right).

In order to study the effect of preconditioners with respect to parameters, Fig. 4.2 plots

RHSS preconditioning steps and HSS preconditioning steps (varying α from 0.01 to 2) when

41× 41 nodes are used. From Fig. 4.2, we can see that the parameter α does not influence the

RHSS preconditioning steps greatly, while it influences the HSS preconditioning steps greatly.

It seems that in the RHSS preconditioner α = 1 may be a good choice. But for the HSS

preconditioner, we should compute optimal parameters. If inappropriate parameter were used,

the preconditioned GMRES may converge slowly. In general, finding optimal parameter α in

the HSS preconditioner is a very difficult task.

Fig. 4.3 plots eigenvalue distribution of the saddle point matrixA (without preconditioning),

the HSS preconditioned matrix P−1
HSSA (with α = 0.01), the RHSS preconditioned matrix

P−1
RHSSA (with α = 1) and the RHSS preconditioned matrix P−1

RHSSA (with α = αopt) when

n +m = 1763. From Fig. 4.3, we can see that the eigenvalues of preconditioned matrices are

more cluster than those of original matrix and good convergence may be obtained.

Table 4.3: Numerical results of GMRES and preconditioned GMRES for Example 4.1.

Nodes 21×21 41×41 61×61 81×81

RHSS iteration
IT 28 28 25 24

CPU 0.204 0.332 0.9222 1.891

I
IT 153 304 403 479

CPU 0.496 1.456 6.465 12.770

PHSS(α=1)
IT 106 207 271 316

CPU 0.114 0.953 3.221 7.201

PHSS(α=0.1)
IT 52 92 115 131

CPU 0.064 0.313 0.968 2.057

PHSS(α=0.01)
IT 26 33 44 56

CPU 0.041 0.144 0.375 0.835

PRHSS(αopt)
IT 11 14 14 14

CPU 0.018 0.073 0.204 0.367

PRHSS(α=1)
IT 11 15 15 16

CPU 0.039 0.098 0.199 0.383
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Fig. 4.3. Eigenvalue distribution for Example 4.1.
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Fig. 4.4. Example 4.2: the effect of α: RHSS preconditioning steps vs α (left); HSS precondi-

tioning steps vs α (right).

Example 4.2. The second numerical example is the Stokes problem: find u and p such that















−ν∆u+▽p = f̃ , in Ω,

▽ · u = g̃, in Ω,

u = 0, on ∂Ω,
∫

Ω p(x)dx = 0.

(4.1)

where Ω = [0, 1]× [0, 1] ⊂ R
2, ∂Ω is the boundary of Ω, ν stands for the viscosity scalar, ∆ is
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the componentwise Laplace operator, u = (uT , vT )T is a vector-valued function representing

the velocity, and p is a scalar function representing the pressure.

For this example, we have four essential boundaries, i.e., x = 0, x = 1, y = 0, y = 1.

There is no natural boundary. Nodes distribution and background cells are taken the same as

Example 4.1. The viscosity scalar ν is taken as 1. The pressure p is taken at the center of each

background cell. The orders of saddle point matrices A are listed in Table 4.4.

Table 4.4: Values of m, n and the order of A for Example 4.2.

Nodes 21×21 41×41 61×61 81×81

n 882 3362 7442 13122

m 184 564 1144 1924

n+m 1066 3926 8586 15046

Table 4.5: Parameters for Example 4.2.

Nodes 21×21 41×41 61×61 81×81

2/µ1 0.22975 0.06153 0.02776 0.01571

αopt 0.22828 0.06142 0.02773 0.01569

[αµm, αµ1] [0.01277,1.98723] [0.00344,1.99656] [0.00155,1.99845] [0.00088,1.99912]

Table 4.6: Numerical results of GMRES and preconditioned GMRES for Example 4.2.

Nodes 21×21 41×41 61×61 81×81

I
IT 469 835 985 −

CPU 2.685 27.029 66.226 −

PHSS(α=1)
IT 377 644 743 955

CPU 1.653 15.257 41.833 117.693

PHSS(α=0.1)
IT 191 336 446 479

CPU 0.502 4.877 17.495 36.358

PHSS(α=0.01)
IT 175 243 252 302

CPU 0.442 2.974 7.347 18.084

PRHSS(αopt)
IT 53 70 85 98

CPU 0.124 0.616 1.906 4.479

PRHSS(α=1)
IT 54 68 82 92

CPU 0.144 0.620 1.866 4.228

In Table 4.5, we list the optimal parameters used in the RHSS preconditioner and the

corresponding positive interval for Example 4.2. Table 4.6 lists the numbers of iteration steps

and the computing CPU times (in seconds) with respect to GMRES (no preconditioning), HSS

preconditioned GMRES (with α = 1, 0.1, 0.01) and RHSS preconditioned GMRES (with α =

1, αopt). Fig. 4.4 plots RHSS preconditioning steps, and HSS preconditioning steps (varying α

from 0.01 to 1.1) when n+m = 1066. Fig. 4.5 depicts eigenvalue distribution of the saddle point

matrix A (without preconditioning), the HSS preconditioned matrix P−1
HSSA (with α = 0.01),

the RHSS preconditioned matrix P−1
RHSSA (with α = 1) and the RHSS preconditioned matrix

P−1
RHSSA (with α = αopt) when n+m = 1066.

From these tables and figures, we can also see that using preconditioners can accelerate the

convergence greatly, especially when suitable parameters are used. Moreover, the parameter α

in the RHSS preconditioner is less sensitive than the parameter α in the HSS preconditioner.

For the preconditioner PRHSS , α = 1 is also a practical choice.
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Fig. 4.5. Eigenvalue distribution for Example 4.2.

5. Conclusion

In this paper, we studied a relaxed Hermitian and skew-Hermitian splitting (RHSS) precon-

ditioner for saddle point problems from the element-free Galerkin (EFG) discretization method,

which is one of the most widely used meshfree methods. The RHSS preconditioner is constructed

much closer to the coefficient matrix than the well-known HSS preconditioner. Although the

new preconditioner no longer relates to an alternating direction method, it can be induced by

a matrix splitting iterative method, which is called the RHSS iteration method. Convergence

of the RHSS iteration method is analyzed and an optimal parameter is studied. Although the

RHSS iteration method is very simple and very easy to implement, the convergence is typically

too slow even with optimal parameter if bad conditions happen. For this reason, the Krylov

subspace method (like GMRES) is used to accelerate the convergence of the RHSS iteration.

Properties of the preconditioned matrix are studied. The eigenvalues of the preconditioned

matrix are 1 with multiplicity at least n, and the remaining eigenvalues are real and located in

a positive interval. Most important, the parameter has no effect on the ratio of the interval.

Thus we suggest the parameter to be 1 in implementing the RHSS preconditioner. Besides,

theoretical analysis shows that the degree of the minimal polynomial of the preconditioned

matrix, which is equal to the dimension of the Krylov subspace, is at most m + 1. This indi-

cates that the RHSS preconditioner is very efficient for saddle point problems from the EFG

discretization method. Numerical experiments arising from two model problems are presented

to confirm the analytical results and to show effectiveness of the parameter α = 1 used in the

RHSS preconditioner.
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