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Abstract

A local remapping algorithm for scalar function on quadrilateral meshes is described.

The remapper from a distorted grid to a rezoned grid is usually regarded as a conservative

interpolation problem. The present paper introduces a pseudo time to transform the

interpolation into an initial value problem on a moving grid, and construct a moving

mesh method to solve it. The new feature of the algorithm is the introduction of multi-

point information on each edge, which leads to the numerical flux consistent with grid

node motion. During the procedure of deriving scheme, we illustrate a framework about

how the algorithms on a rectangular mesh are easily generated to those on a moving

mesh. The basic ideas include: (i) introducing coordinate transformation, which maps

the irregular domain in physical space to a perfectly regular computational domain, and

(ii) deriving finite volume methods in the physical domain, which can be viewed as a

discretization of the transformed equation. The resulting scheme is second-order accurate,

conservative and monotonicity preserving. Numerical examples are carried out to show

the good performance of our schemes.

Mathematics subject classification: 65D05, 76M12, 34M25.
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ric conservation law.

1. Introduction

In numerical simulations of fluid flow, the arbitrary Lagrangian Eulerian method (ALE) has

been regarded as having excellent accuracy, robustness, or computational efficiency compared

with Euler and Lagrangian method. It is usual to be separated into three phases. These are: (1)

a Lagrangian phase in which the solution and grid are updated; (2) a rezoning phase in which

the nodes of the computational grid (old) are moved to more optimal positions (new); and (3)

a remapping phase in which the solution is mapped from a distorted Lagrangian gird onto the

rezoned grid. Hence the remapping algorithm is a very important part in ALE method.

Given a distorted Lagrangian grid and a rezoned grid, there are two kinds of classical remap-

ping methods. One is finding the intersections of each new cell with the old ones. Such method
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is suitable for the problems in which the two grids are independent even have different topolo-

gies. Recently such methods have been extensively used in multi-material flows calculation

with interface reconstruction or reconnection-based ALE methods [11] [12] [20]. Finding the

intersections is feasible but computationally very expensive in two dimensions, and not practical

in three dimensions due to its complication. Another remapper usually termed as continuous

remapping is constructed by advection algorithms, which can avoid detailed calculations of the

intersections. The underlying assumptions are that the topology of the mesh is fixed and the

mesh motion during a step is less than the dimensions of the elements.

There is an extensive literature about advection algorithms, cf. [9] [40] [29] [1] [2] [5] [30] [26].

The most widely used is the donor cell upwind (DCU) method in which the advected quantity

only streams from the adjacent cell on the upwind side (the donor cell). For a structured

quadrilateral grid, it has five-point stencils. Such method is accurate and robust in most

situations, but sometimes it may suffer from some small flaws. For example, suppose the flow is

two-dimensional, and some physical quantities should be transported between grid cells sharing

only a vertex. If only the one-dimensional advection algorithms are applied simultaneously

in the two mesh directions, the velocity at which a signal propagates for advection along the

diagonal may be slower than in the two mesh directions [19]. To alleviate or cure this kind

of error, the corner transport upwind (CTU) method proposed by Colella [5] is a good choice,

which is based on tracing the characteristics of the advection equation in two dimensions. The

CTU scheme involves more information, such as nine-point stencils in structured quadrilateral

grid, hence has larger Courant number compared with the DCU method. The same algorithm

was derived in a different manner by van Leer [16]. Dukowicz and Baumgardner put forward a

kind of new method with corner contributions [9].

In remapping algorithm framework based on advection approach, a local remapper exchang-

ing conservation quantities between neighboring cells is extensively used [12] [3] [15] [24] [25] [28]

[31] [33] [39]. Among them, Pember and Anderson [33] proposed a corner transport method.

Since the remapping algorithm presented in [33] is only a middle procedure in solving ALE

problems, some details and numerical results of this algorithm are omitted. In addition, all

of the above schemes do not consider grid node moving information and use single-edge flux

at cell interface, which may result in large errors in some situations (see case 1 in numerical

experiments, below). P. Hoch et.al. [14] considered such case, and computed two sub-volumes

of fluxing for an edge for both adjacent cell. But the method has not to be generalized to the

higher-order accurate case and the details are neglected.

In this paper, we hope to benefit from all previous experiences and develop a second-order

accurate CTU method for solving remapping problem. Analogously with [31] [33], we introduce

a pseudo time and transform the interpolation into an initial value problem (hereafter we call

it remapping equation) on a moving grid. However, we adopt a wave propagation method

[18] which may be easier than that in [33] to extend to solving more complicated system of

nonlinear conservation laws in moving grid context, especially for those nonlinear equations

in non-conservative form, such as Elasticity equations or multi-phase fluid problems. The

main new feature of our remapping scheme compared with traditional ones is to introduce

‘node velocity’ and two half edge fluxes per cell interface which is consistent with node motion

manner. Such technique has been extensively used in solving Lagrangian form hydrodynamics,

cf [7] [23] [21] [22] [4], but does not appear in other moving mesh method context. Different

from [14], we need not to compute self-tangled patch created by edge displacement. At the

same time, a high order CTU method is implemented.
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The ‘node velocity’ in remapping problem results from the introduction of the pseudo time

and avoids the difficulty of evaluating exact intersection areas of two layer grid. We design an

elaborate example to show the drawbacks of traditional single-edge flux method and advantages

of our algorithm.

Although this paper aims to design remapping algorithms, the remapping problem is not

introduced immediately at the beginning of the paper for the sake of clarity. An outline of

this paper is as follows. We recall two kinds of classical advection methods on a fixed grid

in Section 2, including the DCU, CTU algorithms and their high-order accurate correction

on quadrilateral grid. In Section 3, we make a modification to the classical DCU and CTU

method when discretizing advection equation, in which multi-point flux at edge of a grid cell

is introduced. In Section 4, we discuss the remapping methods. Firstly, the physical pictures

of an advection equation and the remapping equation are described. Then a finite volume

method with the first order accurate DCU flux for solving the remapping equation is recalled,

and a coordinate transformation approach equivalent to the DCU scheme is depicted. Also the

CTU and its second-order accurate modification schemes are derived. In the end, a multi-point

flux remapping scheme according to the modification in Section 3 is constructed. In Section

5, some two-dimensional remapping simulations on different sequences of grids are performed.

The results are shown graphically and analyzed from the viewpoints of accuracy and order of

convergence. Some concluding remarks are given in Section 6.

2. The Advection Algorithm

Consider a two-dimensional variable-coefficient advection equation

qt + (uq)x + (vq)y = 0, (2.1)

where q(x, y, t) is a conservative quantity, and u(x, y), v(x, y) are advection velocities along x

and y direction, respectively.
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Fig. 2.1. Notations on (a) a quadrilateral grid and (b) a rectangular grid.

The finite volume approach can be applied on any shape control volume C. In this pa-

per, we assume that the velocities ~u = (u, v) are defined at the edge of grid and limit our

method on logically rectangular grids. We adopt the following notations. A grid cell Ci,j has

vertices (points) Pi−1/2,j−1/2, Pi+1/2,j−1/2, Pi+1/2,j+1/2 and Pi−1/2,j+1/2. The coordinates of
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a vertex Pi+1/2,j+1/2 are (xi+1/2,j+1/2 , yi+1/2,j+1/2). The edge connecting points Pi+1/2,j−1/2

and Pi+1/2,j+1/2 is denoted by Ii+1/2,j , its midpoint is Pi+1/2,j , and the flux defined at the

edge is Fi+1/2,j . Similarly, the edge connecting points Pi−1/2,j+1/2 and Pi+1/2,j+1/2 is Ii,j+1/2,

and the flux is Gi,j+1/2, see Fig. 2.1(a). A special case is a rectangular grid cell of the form

Ci,j = [xi−1/2, xi+1/2]×[yj−1/2, yj+1/2], where xi+1/2−xi−1/2 = ∆xi and yj+1/2−yj−1/2 = ∆yj ,

see Fig. 2.1(b).

2.1. Finite volume approach

Using the integral form of the conservation law on grid Ci,j in Fig. 2.1(a), there is

Qn+1
ij = Qn

ij −
1

|Ci,j |

∫ tn+1

tn

∫

∂Ci,j

(u, v) · ~n(s)q(x(s), y(s), t)dsdt,

where Qn
ij represents the cell average of quantity q over this cell at time tn, |Ci,j | is the area of

the cell Ci,j , and ~n(s) is the outward vector normal to the edge (x(s), y(s)) of Ci,j parameterized

by the arclength s.

The fully discrete finite volume method in flux form is

Qn+1
ij = Qn

ij −
∆t

|Ci,j |
(Fi+1/2,j |Ii+1/2,j | − Fi−1/2,j |Ii−1/2,j |

+Gi,j+1/2|Ii,j+1/2| −Gi,j−1/2|Ii,j−1/2|), (2.2)

where |Ii+1/2,j | is the length of the interface Ii+1/2,j , and the fluxes are

Fi+ 1
2
,j =

1

∆t|Ii+1/2,j |

∫ tn+1

tn

∫

Ii+1/2,j

(u, v) · ~n(s)q(x(s), y(s), t)dsdt, (2.3a)

Gi,j+ 1
2
=

1

∆t|Ii,j+1/2|

∫ tn+1

tn

∫

Ii,j+1/2

(u, v) · ~n(s)q(x(s), y(s), t)dsdt. (2.3b)

The simplest finite volume method for the advection equation is the first-order DCU method.

Its fluxes are
FD
i+ 1

2
,j
= (U0

i+ 1
2
,j
)+Qn

i,j + (U0
i+ 1

2
,j
)−Qn

i+1,j ,

GD
i,j+ 1

2

= (V 0
i,j+ 1

2

)+Qn
i,j + (V 0

i,j+ 1
2

)−Qn
i,j+1,

(2.4)

where the superscript ’D’ in the flux function expresses the DCU flux. If we denote advection

velocity by ~uA
i+1/2,j = (ui+1/2,j , vi+1/2,j), ~vAi,j+1/2 = (ui,j+1/2, vi,j+1/2), then the transport

velocities at normal direction of edges Ii+1/2,j and Ii,j+1/2 are

U0
i+ 1

2
,j = ~uA

i+1/2,j · ~ni+1/2,j , V 0
i,j+1/2 = ~vi,j+1/2 · ~ni,j+1/2, (2.5)

where ~ni+1/2,j ,~ni,j+1/2 are outward normal directions of edges Ii+1/2,j and Ii,j+1/2. In addition,

u+ = max(u, 0), u− = min(u, 0).

Colella [5] took account of the flow direction more fully and proposed a better scheme on

rectangular grid: the CTU method. Fig. 2.2 displays a distinguish between DCU and CTU

fluxes in the situation of U0
i+ 1

2
,j
> 0, V 0

i,j−1/2 > 0. For the general velocities U0 and V 0, the

numerical scheme (2.2) with the DCU flux has five-point stencils at most. The CTU method

may include nine-point stencils, thus it has better stability.

When extending the CTU scheme to a general quadrilateral grid, we can still use finite

volume method in physical space to describe CTU fluxes. But a simpler method is using the

coordinate transformation, which is easier in designing more complex schemes.
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Fig. 2.2. Two advection ways in numerical algorithms for a physical quantity. (a) The DCU method.

(b) The CTU method.

2.2. Coordinate transformation

In this subsection we will use coordinate transformation to introduce the CTU method. At

first, a coordinate transformation for dealing with general domains is introduced, and the trans-

formation maps an irregular domain in physical space (x, y) to a perfectly regular computational

domain in computational space (ξ, η), see Fig. 2.3. The advection equation is discretized in a

perfectly regular mesh as done for Cartesian domains. We know such methods may not be easy

to exactly conserve the correct physical quantities in the physical space, and they have strict

requirements to the smoothness of mapping transformation. To cure such defects, we construct

a first-order discretization of the transformed equation and keep it be consistent with the DCU

finite volume method (2.2) in the physical domain; then construct a CTU, a high-order accurate

flux scheme for the transformation equation. Similar coordinate transformed idea has been used

in more complicated flow problems [8].

Define the transformation via
{

dx = Adξ + Ldη,

dy = Bdξ +Mdη,

where K = (A,B,L,M) are the geometric variables satisfying

A = xξ, L = xη, B = yξ, M = yη, Aη = Lξ, Bη = Mξ. (2.6)

The advection equation (2.1) defined in physical space in terms of the (x, y) coordinates is

transformed into computational space in terms of the generalized coordinates (ξ, η) as

(Jq)t +
∂

∂ξ
(Uq) +

∂

∂η
(V q) = 0, (2.7)

where J is the determinant of Jacobian transformation matrix, i.e. J = AM − BL. U, V are

transformed advection velocities,

U = Mu− Lv, V = −Bu+Av.

The discrete scheme in computational space for advection equation (2.7) can be expressed

by

Qn+1
ij = Qn

ij −
∆t

Jij∆ξ
(Fi+ 1

2
,j − Fi− 1

2
,j)−

∆t

Jij∆η
(Gi,j+ 1

2
−Gi,j− 1

2
), (2.8)
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Fig. 2.3. The physical grid cells (left) are mapped to computational grid cells (right).

where

Qn
ij =

∫ ∫
Jq(ξ, η, tn)dξdη

Jij∆ξ∆η
,

Fi+ 1
2
,j =

1

∆t∆η

∫ tn+1

tn

∫ η
j+1

2

η
j− 1

2

Uqdηdt, Gi,j+ 1
2
=

1

∆t∆ξ

∫ tn+1

tn

∫ ξ
i+1

2

ξ
i− 1

2

V qdξdt,

Jij = |Cij |/∆ξ∆η, and |Ci,j | is the area of the cell Ci,j . Note that Fi+1/2,j is the flux per unit

length in computational space, which is different from the one in (2.2) with a scaling factor.

In order to keep the consistency with the finite volume scheme (2.2) on arbitrary quadrilat-

eral grids, there must be

∫

Ii+1/2,j

(u, v) · ~n(s)qds =

∫ η
j+1

2

η
j− 1

2

Uqdη,

∫

Ii,j+1/2

(u, v) · ~n(s)qds =

∫ ξ
i+1

2

ξ
i− 1

2

V qdξ.

To satisfy these conditions it is enough to let

Mi+ 1
2
,j =

yi+1/2,j+1/2 − yi+1/2,j−1/2

∆η
, Li+ 1

2
,j =

xi+1/2,j+1/2 − xi+1/2,j−1/2

∆η
,

Ai,j+ 1
2
=

xi+1/2,j+1/2 − xi−1/2,j+1/2

∆ξ
, Bi,j+ 1

2
=

yi+1/2,j+1/2 − yi−1/2,j+1/2

∆ξ
,

(2.9)

which satisfies the discrete Piola compatibility conditions (2.6). Denote

Ui+ 1
2
,j = Mi+ 1

2
,jui+ 1

2
,j − Li+ 1

2
,jvi+ 1

2
,j ,

Vi,j+ 1
2
= −Bi,j+ 1

2
ui,j+ 1

2
+Ai,j+ 1

2
vi,j+ 1

2
.

(2.10)

Then Ui+ 1
2
,j and Vi,j+ 1

2
describe normal velocities at edges. The DCU fluxes are

FD
i+ 1

2
,j = U+

i+ 1
2
,j
Qn

ij + U−

i+ 1
2
,j
Qn

i+1,j, GD
i,j+ 1

2

= V +
i,j+ 1

2

Qn
ij + V −

i,j+ 1
2

Qn
i,j+1. (2.11)

For the CTU scheme, one may obtain flux by tracing back the characteristics q(ξ−U∆t, η−

V∆t, tn), but a simple and unified derivation to DCU, CTU and high resolution approaches is

to use Taylor series expansion.



598 Z.J. SHEN AND G.X. LV

We make a Taylor expansion

q(ξ, η, tn+1) = q(ξ, η, tn) + ∆tqt +
∆t2

2
qtt +O(∆t3)

= q(ξ, η, tn)−
1

J
∆t(Uq)ξ −

1

J
∆t(V q)η (2.12)

+
∆t2

2J

(
(
U

J
(Uq)ξ)ξ + (

U

J
(V q)η)ξ + (

V

J
(Uq)ξ)η + (

V

J
(V q)η)η

)
+O(∆t3).

Obviously, the DCU fluxes (2.11) use upwind approximations to the derivatives (Uq)ξ/J

and (V q)η/J in the O(∆t) terms of the above expansion.

The CTU flux modification will be provided by the discretization of cross-derivative terms

(U(V q)η/J)ξ/J and (V (Uq)ξ/J)η/J in the O((∆t)2) terms of the Taylor expansion (2.12), that

is

FC
i+ 1

2
,j = FD

i+ 1
2
,j −

1

2

∆t

Ji+1/2,j∆η

(
U+
i+ 1

2
,j
(B+∆Qi,j− 1

2
+ B−∆Qi,j+ 1

2
)

+ U−

i+ 1
2
,j
(B+∆Qi+1,j− 1

2
+ B−∆Qi+1,j+ 1

2
)
)
, (2.13a)

GC
i,j+ 1

2

= GD
i,j+ 1

2

−
1

2

∆t

Ji,j+1/2∆ξ

(
V +
i,j+ 1

2

(A+∆Qi− 1
2
,j +A−∆Qi+ 1

2
,j)

+ V −

i,j+ 1
2

(A+∆Qi− 1
2
,j+1 +A−∆Qi+ 1

2
,j+1)

)
, (2.13b)

where the superscript ’C’ in the flux function expresses the CTU flux, Jij∆ξ in (2.8) represents

average grid space in ξ -direction within a grid cell Cij , and Ji+1/2,j∆ξ represents average grid

space between two cells Cij and Ci+1,j . Thus Ji+1/2,j and Ji,j+1/2 usually have forms as

Ji+1/2,j = (Ji,j + Ji+1,j)/2, Ji,j+1/2 = (Ji,j + Ji,j+1)/2.

Partial cross-derivative terms

B±∆Qi,j− 1
2
= V ±

i,j− 1
2

(Qn
ij −Qn

i,j−1), A±∆Qi+ 1
2
,j = U±

i+ 1
2
,j
(Qn

i+1,j −Qn
i,j), (2.14)

introduce transverse propagation of waves Qn
ij −Qn

i,j−1 and Qn
i+1,j −Qn

i,j to fluxes Fi+ 1
2
,j and

Gi,j+ 1
2
. Then the transverse jumps are transported by advection velocities U and V . Fig. 2.4

gives the case of Fi+1/2,j . Normally three out of these four corrections will vanish, as in the

case that U and V are constants. Due to the contribution of these transverse waves to fluxes,

the corner information is introduced.

The CTU schemes fail to be second-order accurate because of lack of discretization to terms

(U(Uq)η/J)ξ and (V (V q)ξ/J)η in the O((∆t)2) terms of the Taylor expansion (2.12). These

two modification terms are discretized in [18] as

F̃i+ 1
2
,j =

1

2
|Ui+ 1

2
,j|(1 − |Ui+ 1

2
,j |

∆t

Ji+1/2,j∆ξ
)W̃i+ 1

2
,j , (2.15a)

G̃i,j+ 1
2
=

1

2
|Vi,j+ 1

2
|(1− |Vi,j+ 1

2
|

∆t

Ji,j+1/2∆η
)W̃i,j+ 1

2
. (2.15b)

where W̃i+1/2,j is a limited version of wave Wi+1/2,j = Qn
i+1,j −Qn

i,j ,

W̃i+1/2,j = φ(θi+1/2,j)Wi+1/2,j ,
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u u
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Fig. 2.4. The correction terms in the CTU flux Fi+1/2,j consist of four possible transverse jumps. Their

contributions to the flux depend on single-point velocities U±

i+1/2,j
.

where θi+1/2,j should be some measure of the smoothness of the single wave. It is easily obtained

by comparing this jump with those at the neighboring Riemann problem in the upwind direction.

Denote

I =

{
i, if ui+1/2,j > 0.

i+ 1, if ui+1/2,j < 0.

Then we have

θi+1/2,j =
WI+1/2,j

Wi+1/2,j
.

φ is a high-resolution limiter, for example, φ(θ) = minmod(1, θ) is the minmode limiter, and

φ(θ) = max(0,min((1 + θ)/2, 2, 2θ) is the monotinized centered one. For more details see [18].

The similar expresses for W̃i,j+ 1
2
can be obtained.

The final fluxes including high-resolution correction terms can be implemented by adding

corrections in the ξ- and η- directions separately, for example,

FD,2

i+ 1
2
,j
= FD

i+ 1
2
,j + F̃i+ 1

2
,j, GD,2

i,j+ 1
2

= GD
i,j+ 1

2

+ G̃i,j+ 1
2
, (2.16)

FC,2

i+ 1
2
,j
= FC

i+ 1
2
,j + F̃i+ 1

2
,j, GC,2

i,j+ 1
2

= GC
i,j+ 1

2

+ G̃i,j+ 1
2
, (2.17)

where the superscript ’2’ in a flux function denotes the resulting flux with second-order accurate

modification.

During the computation, we introduce two constants ∆ξ and ∆η, whose choices do not

affect the computing results. In our code, we let ∆ξ = Lξ/Nξ,∆η = Lη/Nη, where Lξ, Lη are

domain lengths in ξ and η directions, and Nξ, Nη are cell numbers in these two directions.

Remark 2.1. The CTU method has better stability properties than DCU one. The stable

steplength limit condition for the CTU method is

∆tmax

(
U+
i−1/2,j

Jij∆ξ
,
−U−

i+1/2,j

Jij∆ξ
,
V +
i,j−1/2

Jij∆η
,
−V −

i,j+1/2

Jij∆η

)
≤ Ccfl,

where Ccfl < 1 is Courant number. The stable condition for DCU method is

∆t

(
U+
i−1/2,j

Jij∆ξ
+

−U−

i+1/2,j

Jij∆ξ
+

V +
i,j−1/2

Jij∆η
+

−V −

i,j+1/2

Jij∆η

)
≤ Ccfl.
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Remark 2.2. The discretization scheme (2.8) of the transformed equation (2.7) is consistent

with a finite volume method (2.2) in the meaning of keeping the same DCU algorithm, so

the method remains valid and accurate even on a highly nonuniform grid (corresponding to

a nonsmooth mapping). At the same time, the conservation of quantity q(x, y, t) is strictly

preserved in physical space.

3. A Modified Advection Algorithm

When advection velocity ~uA = (u, v) varies smoothly along a cell edge Ii+1/2,j , using single-

edge velocity approximation (ui+1/2,j , vi+1/2,j) can provide good results (Fig. 3.1(a)). But

if transverse variation of advection velocity is very large, such as in Fig. 3.1(b), single-edge

velocity transportation may result in large errors. Here we describe a new multi-point flux

method which includes more information.

-

-

t

�

-

t

ui+1/2,j

ui+1/2,j

ui+1/2,j

ui+1/2,j
6

6t

?
6t

vi,j−1/2 vi,j−1/2 vi,j−1/2 vi,j−1/2

Fig. 3.1. Normal velocity distribution along an edge of a grid cell. (a) Small variation. (b) Large

variation.

Introduce two advection velocities ~uA
i+1/2,j and ~uA

i+1/2,j
at each cell edge Ii+1/2,j , where

~uA
i+1/2,j = (ui+1/2,j , vi+1/2,j) and ~uA

i+1/2,j
= (ui+1/2,j , vi+1/2,j) represent the velocities at the

lower and upper half-face of Ii+1/2,j , respectively. Similarly, ~uA
i,j+1/2 and ~uA

i,j+1/2
are half-face

velocities at edge Ii,j+1/2 (Fig. 3.1). Then the flux of physical quantity q passing Ii+1/2,j will

have multi-point characteristic.

Adopting similar derivative procedure in Section 2.2, the multi-point flux algorithm on

quadrilateral grid with variable coefficients can be constructed easily. Let us write down con-

clusions to those schemes.

In the DCU method, the edge flux is the summation of partial fluxes

FD,M

i+ 1
2
,j
=

1

2

(
U+
i+ 1

2
,j
+ U+

i+ 1
2
,j

)
Qn

ij +
1

2

(
U−

i+ 1
2
,j
+ U−

i+ 1
2
,j

)
Qn

i+1,j , (3.1a)

GD,M

i,j+ 1
2

=
1

2

(
V +
i,j+ 1

2

+ V +

i,j+ 1
2

)
Qn

ij +
1

2

(
V −

i,j+ 1
2

+ V −

i,j+ 1
2

)
Qn

i,j+1, (3.1b)

where the superscript ’M’ means multi-point flux, and

Ui+ 1
2
,j = Mi+ 1

2
,jui+ 1

2
,j − Li+ 1

2
,jvi+ 1

2
,j , Ui+ 1

2
,j = Mi+ 1

2
,jui+ 1

2
,j − Li+ 1

2
,jvi+ 1

2
,j ,

Vi,j+ 1
2
= −Bi,j+ 1

2
ui,j+ 1

2
+Ai,j+ 1

2
vi,j+ 1

2
, Vi,j+ 1

2

= −Bi,j+ 1
2
ui,j+ 1

2

+Ai,j+ 1
2
vi,j+ 1

2

,

where geometric variables A,B,L,M are the same as given in (2.9).

Note that if velocities Ui+ 1
2
,j and Ui+ 1

2
,j have same signs, and Vi,j+ 1

2
and Vi,j+ 1

2

have same

signs, then flux (3.1) degenerates to the classical DCU fluxes (2.11).
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66

??
ss

ss

-�

�-

s

U±

i+1/2,j

U±

i+1/2,j

B+∆Qi+1,j+1/2B+∆Qi,j−1/2

B−∆Qi+1,j+1/2B−∆Qi,j+1/2

Fig. 3.2. The correction terms in the multi-point CTU flux Fi+1/2,j consist of four local transverse

jumps. Their contributions to the flux Fi+1/2,j depend on local velocities.

For CTU scheme, there are

FC,M

i+ 1
2
,j
= FD,M

i+ 1
2
,j
−

1

2

∆t

Ji+1/2,j∆η

(
U+
i+ 1

2
,j
B+∆Qi,j− 1

2

+ U+

i+ 1
2
,j
B−∆Qi,j+ 1

2

+ U−

i+ 1
2
,j
B+∆Qi+1,j− 1

2
+ U−

i+ 1
2
,j
B−∆Qi+1,j+ 1

2

)
, (3.2)

GC,M

i,j+ 1
2

= GD,M

i,j+ 1
2

−
1

2

∆t

Ji,j+1/2∆ξ

(
V +
i,j+ 1

2

A+∆Qi− 1
2
,j + V +

i,j+ 1
2

A−∆Qi+ 1
2
,j

+ V −

i,j+ 1
2

A+∆Qi− 1
2
,j+1 + V −

i,j+ 1
2

A−∆Qi+ 1
2
,j+1

)
, (3.3)

where

B±∆Qi,j− 1
2
= V ±

i,j− 1
2

(Qn
ij −Qn

i,j−1), B±∆Qi,j− 1
2

= V ±

i,j− 1
2

(Qn
ij −Qn

i,j−1),

A±∆Qi+ 1
2
,j = U±

i+ 1
2
,j
(Qn

i+1,j −Qn
i,j), A±∆Qi+ 1

2
,j = U±

i+ 1
2
,j
(Qn

i+1,j −Qn
i,j).

(3.4)

The discrepancies between new multi-point CTU fluxes (3.2)-(3.3) and classical ones (2.13)

can be illustrated by comparing Fig. 2.4 and Fig. 3.2. The corrections in the traditional

CTU flux Fi+1/2,j consist of four possible global transverse jumps. Whereas the corrections

in the new multi-point CTU flux Fi+1/2,j consist of four possible local transverse jumps. The

contributions of these local jumps depend on local propagation velocities U±

i+1/2,j and U±

i+1/2,j
.

The second-order accurate numerical fluxes in (2.8) are

FC,M,2

i+ 1
2
,j

= FC,M

i+ 1
2
,j
+

1

2
(F̃i+ 1

2
,j + F̃i+ 1

2
,j),

GC,M,2

i,j+ 1
2

= GC,M

i,j+ 1
2

+
1

2
(G̃i,j+ 1

2
+ G̃i,j+ 1

2

),

where F̃i+ 1
2
,j represents high-order modification terms (2.15) with Ui+ 1

2
,j replaced by Ui+ 1

2
,j .

The other expression has the similar transformation way.

The stable steplength limit condition for the CTU method is

∆tmax

(
U+
i−1/2,j

Jij∆ξ
,
U+

i−1/2,j

Jij∆ξ
,
−U−

i+1/2,j

Jij∆ξ
,
−U−

i+1/2,j

Jij∆ξ
,
V +
i,j−1/2

Jij∆η
,

V +

i,j−1/2

Jij∆η
,
−V −

i,j+1/2

Jij∆η
,
−V −

i,j+1/2

Jij∆η

)
≤ Ccfl, (3.5)



602 Z.J. SHEN AND G.X. LV

where Courant number Ccfl < 1.

Remark 3.1. If a grid can be refined arbitrarily, the multi-point flux method seems not to ex-

hibit more advantages than the classical advection algorithm. But it is suitable to the following

problems:

1. A grid is not allowed to be refined arbitrarily.

2. Even if a grid is refined, the transverse variation of the transport velocities at edge of

grid cell still may have large variation.

The remapping problem belongs to such kind of ones.

4. The Remapping Method

4.1. Statement of the Remapping problem

The Remapping problem includes two grids and corresponding physical quantities on these

grids. For the sake of consistency with latter discussion, we adopt the following notations. The

physical quantity q on the old grid has superscript n, whereas superscript n + 1 indicates the

quantity on the new (remapped) grid. For the quadrilateral grid, an old grid Cn
i,j has coordinates

vertices Pn
i−1/2,j−1/2, Pn

i+1/2,j−1/2, Pn
i+1/2,j+1/2 and Pn

i−1/2,j+1/2. The interface connecting

vertices Pn
i+1/2,j−1/2 and Pn

i+1/2,j+1/2 is denoted by Ini+1/2,j , and its length is |Ini+1/2,j |. Similar

notations will be employed in new grid with the superscript n replaced by n+1, see Fig. 4.1(a).

Pn
i−1/2,j−1/2

Pn+1
i−1/2,j−1/2

Pn
i+1/2,j−1/2

Pn+1
i+1/2,j−1/2

Pn
i−1/2,j+1/2

Pn+1
i−1/2,j+1/2

Pn
i+1/2,j+1/2

Pn+1
i+1/2,j+1/2

Pn+1
i+1/2,j−1/2

Pn
i+1/2,j−1/2

Pn+1
i+1/2,j+1/2

Pn
i+1/2,j+1/2

Pn+1
i−1/2,j−1/2

Pn
i−1/2,j−1/2

Pn
i−1/2,j+1/2

Pn+1
i−1/2,j+1/2

Fig. 4.1. Old and new mesh in remapping problem. (a) The planform plot.(b) The control volume with

a pseudo time.

We assume that there is a function q(x, y) defined on the domain. The only information

available of this function is its mean value in each of the cells of the old grid:

Qn
i,j =

∫
Cn

i,j
q(x, y)dxdy

|Cn
i,j |

. (4.1)

Once given a new grid, the problem statement is to find approximations to

Qn+1
i,j =

∫
Cn+1

i,j
q(x, y)dxdy

|Cn+1
i,j |

,
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and the new quantities should satisfy the following conservation requirement
∑

i,j

Qn+1
i,j |Cn+1

i,j | =
∑

i,j

Qn
i,j |C

n
i,j |.

4.2. The remapping equation

Introducing a pseudo time t, then the continuous remapping problem can be regarded as

being equivalent to the following equation (see, e.g., [31] [33])

∂q

∂t
= 0 (4.2)

with a grid moving from Cn
i,j to Cn+1

i,j , see Fig. 4.1(b).

In fact, the remapping problem arises from a time splitting procedure during a time step

when solving fluid hydrodynamics equations on a moving grid. In the time step, the mass,

momentum and total energy keep constant but the grid moves. The conservative quantities

naturally satisfy equation (4.2). The benefit of introducing remapping equation is to transform

a conservation interpolation problem into solving a partial differential problem.

Let us observe two pictures: an initial physical distribution q(x, y, 0) is at rest where a

grid moves with velocity (−u,−v) or q(x, y, 0) shifts with velocity (u, v) on a fixed grid. The

former is described by equation (4.2) with grid velocity (−u,−v) and the latter is by advection

equation (2.1) with transport velocity (u, v). Obviously the two physical phenomena are the

same if the observer moves with grid.

4.3. The finite volume approach

It is convenient to recast equations (4.2) into the more fundamental control volume formu-

lation, which holds for an arbitrary moving control volume:

d

dt

∫

C(x,y,t)

qdv =

∫

∂C(x,y,t)

(u, v) · ~n(s(t))q(x(s(t), t), y(s(t), t)ds,

where C(x, y, t) is a control volume, ∂C(x, y, t) is the boundary of C(x, y, t), ~n(s(t)) is the unit

outward normal vector, and s is the length element on ∂C. The boundary of the control volume

is assumed to move with an arbitrary local velocity (u, v).

In our notation, the moving velocity at vertex Pn
i+1/2,j+1/2 of grid cell Ci,j(t) is

~uM (Pi+1/2,j+1/2) = (u
n+1/2
i+1/2,j+1/2, v

n+1/2
i+1/2,j+1/2),

where

u
n+1/2
i+1/2,j+1/2 =

xn+1
i+1/2,j+1/2 − xn

i+1/2,j+1/2

∆t
, v

n+1/2
i+1/2,j+1/2 =

yn+1
i+1/2,j+1/2 − yni+1/2,j+1/2

∆t
.

Thus the edge Ii+1/2,j(t) moves with

~uM
i+1/2,j = 0.5

(
~uM (Pi+1/2,j−1/2) + ~uM (Pi+1/2,j+1/2)

)
.

The fully discrete finite volume method for (4.2) in flux form is

Qn+1
ij =

|Cn
i,j |

|Cn+1
i,j |

Qn
ij +

∆t

|Cn+1
i,j |

(
Fi+ 1

2
,j |I

n+1/2

i+ 1
2
,j
| − Fi− 1

2
,j|I

n+1/2

i− 1
2
,j
|

+Gi,j+ 1
2
|I

n+1/2

i,j+ 1
2

| −Gi,j− 1
2
|I

n+1/2

i,j− 1
2

|
)
, (4.3)



604 Z.J. SHEN AND G.X. LV

where Qn
i,j is given by (4.1), and the fluxes are

Fi+ 1
2
,j =

1

∆t|I
n+1/2

i+ 1
2
,j
|

∫ tn+1

tn

∫

I
i+1

2
,j
(t)

(u, v) · ~n(s(t))q(x(s(t), t), y(s(t), t)dsdt, (4.4a)

Gi,j+ 1
2
=

1

∆t|I
n+1/2

i,+ 1
2

|

∫ tn+1

tn

∫

I
i,j+ 1

2

(t)

(u, v) · ~n(s(t))q(x(s(t), t), y(s(t), t)dsdt, (4.4b)

where |I
n+1/2

i+ 1
2
,j
| is the average length of the interface Ii+ 1

2
,j(t), that is

|I
n+1/2

i+ 1
2
,j
| =

1

∆t

∫ tn+1

tn

∫

I
i+1

2
,j
(t)

(u, v) · ~n(s(t))dsdt.

Substituting the grid moving velocity into Ii+ 1
2
,j(t) gives

|I
n+1/2

i+ 1
2
,j
| =

1

2

(
|Ini+ 1

2
,j |+ |In+1

i+ 1
2
,j
|
)
.

The time integration between tn and tn+1 of the equations (4.4) raises the issue of where

to evaluate the numerical flux function: on the mesh configuration at n time layer, or on that

at n+ 1 time layer, or in between these two configurations? This problem is often referred to

as the geometric conservation law (GCL), which may be regarded as an identity that must be

satisfied, if the conservative property is to be maintained [10] [27] [13] [17] [37] [38]. In the

present situation the GCL is satisfied if fluxes are computed on the control volume at tn+1/2.

Denote ~n
n+1/2
i+1/2,j = (~nn

i+1/2,j + ~nn+1
i+1/2,j)/2 as the unit vector normal to the middle interface

I
n+1/2
i+1/2,j , the fluxes in the DCU method are

FD
i+ 1

2
,j
= (U0

i+ 1
2
,j
)+Qn

i,j + (U0
i+ 1

2
,j
)−Qn

i+1,j ,

GD
i,j+ 1

2

= (V 0
i,j+ 1

2

)+Qn
i,j + (V 0

i,j+ 1
2

)−Qn
i,j+1,

where U0
i+1/2,j = −~uM

i+1/2,j · ~n
n+1/2
i+1/2,j , V 0

i,j+1/2 = −~uM
i,j+1/2 · ~n

n+1/2
i,j+1/2.

Notice that the numerical fluxes of the remapping equation in the DCU method are the

same as (2.4) of the advection equation except U0 and V 0 with opposite signs.

Remark 4.1. Geometric conservation law states a conservation property between geometric

quantities. When q = 1, note that

∆tFi+1/2,j |I
n+1/2
i+1/2,j | = ∆tU0

i+1/2,j |I
n+1/2
i+1/2,j | = Vi+1/2,j ,

here Vi+1/2,j is surface integrals over the region swept by the displacement of the cell faces

from their old to their new locations Pn
i+1/2,j−1/2P

n
i+1/2,j+1/2 Pn+1

i+1/2,j+1/2P
n+1
i+1/2,j−1/2, see Fig.

4.1(a). Similar equalities hold to other edges. From scheme (4.3) there is

|Cn+1
i,j | = |Cn

i,j |+ Vi+1/2,j + Vi−1/2,j + Vi,j+1/2 + Vi,j−1/2. (4.5)

Thus, the discrete geometric conservation law associated with the numerical scheme (4.3) is

satisfied.
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4.4. The coordinate transformation approach

Once more we use coordinate transformation to introduce the CTU and more complicated

schemes. We will derive finite volume methods in the physical domain, then view it as a

discretization of the transformed equation. That means the discretization of the transformed

equation is consistent with the moving mesh method.

Transform the independent variables in physical space (x, y, t) to a new set of independent

variables in a transformed space (ξ, η, τ) by





dt = dτ,

dx = udτ +Adξ + Ldη,

dy = vdτ +Bdξ +Mdη.

(4.6)

Denote K = (A,B,L,M) as geometric variables, and W = (u, v) as the mesh moving velocity.

The consistent relations between each two geometric variables are

Aτ = uξ, Lτ = uη, Aη = Lξ,

Bτ = vξ, Mτ = vη, Bη = Mξ.

Under the transformation (4.6), the remapping equation is transformed into

(Jq)τ +
∂

∂ξ
[(−Mu+ Lv)q] +

∂

∂η
[(Bu−Av)q] = 0, (4.7)

where J = AM − BL is the determinant of Jacobian transformation matrix, which satisfies

geometric conservation law

Jτ +
∂

∂ξ
(−Mu+ Lv) +

∂

∂η
(Bu−Av) = 0. (4.8)

The remapping equation (4.7) has been transformed into an advection equation in a com-

putational space. The advection algorithms in Section 2 and 3 can be used. But two new

requirements need to be considered. One is the metric parameter J varying with time t; the

other is that the discretization of fluxes should satisfy discrete geometric conservation law. That

means the discretization of (4.7) and (4.8) is consistent.

Denote U = −Mu + Lv, V = Bu − Av. The discrete scheme in computational space for

the remapping equation (4.7) is

Qn+1
ij =

Jn
ij

Jn+1
ij

Qn
ij −

∆t

Jn+1
ij ∆ξ

(Fi+ 1
2
,j − Fi− 1

2
,j)−

∆t

Jn+1
ij ∆η

(Gi,j+ 1
2
−Gi,j− 1

2
), (4.9)

where

Fi+ 1
2
,j =

1

∆t∆η

∫ tn+1

tn

∫ η
j+1

2

η
j− 1

2

Uqdηdt, Gi,j+ 1
2
=

1

∆t∆ξ

∫ tn+1

tn

∫ ξ
i+1

2

ξ
i− 1

2

V qdξdt,

Jn
ij = |Cn

ij |/∆ξ∆η, Jn+1
ij = |Cn+1

ij |/∆ξ∆η.

In order to keep the consistency with the finite volume scheme (4.3) on a moving quadrilateral
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grid, it is enough to let

M
n+1/2

i+ 1
2
,j

=
y
n+1/2
i+1/2,j+1/2 − y

n+1/2
i+1/2,j−1/2

∆η
, L

n+1/2

i+ 1
2
,j

=
x
n+1/2
i+1/2,j+1/2 − x

n+1/2
i+1/2,j−1/2

∆η
,

A
n+1/2

i,j+ 1
2

=
x
n+1/2
i+1/2,j+1/2 − x

n+1/2
i−1/2,j+1/2

∆ξ
, B

n+1/2

i,j+ 1
2

=
y
n+1/2
i+1/2,j+1/2 − y

n+1/2
i−1/2,j+1/2

∆ξ
,

u
n+1/2

i+ 1
2
,j

=
xn+1
i+1/2,j − xn

i+1/2,j

∆t
, v

n+1/2

i+ 1
2
,j

=
yn+1
i+1/2,j − yni+1/2,j

∆t
,

where (xi+1/2,j , yi+1/2,j) are the coordinates of the middle point Pi+1/2,j at edge Ii+1/2,j .

Define
Ui+ 1

2
,j = −M

n+1/2

i+ 1
2
,j
u
n+1/2

i+ 1
2
,j

+ L
n+1/2

i+ 1
2
,j
v
n+1/2

i+ 1
2
,j
,

Vi,j+ 1
2
= B

n+1/2

i,j+ 1
2

u
n+1/2

i,j+ 1
2

−A
n+1/2

i,j+ 1
2

v
n+1/2

i,j+ 1
2

,
(4.10)

as normal velocities on edges I
n+1/2
i+1/2,j and I

n+1/2
i,j+1/2. The DCU fluxes are

FD
i+ 1

2
,j = U+

i+ 1
2
,j
Qn

i,j + U−

i+ 1
2
,j
Qn

i+1,j, GD
i,j+ 1

2

= V +
i,j+ 1

2

Qn
i,j + V −

i,j+ 1
2

Qn
i,j+1. (4.11)

The two fluxes have the same form as (2.11) except the definition of U and V in (2.10) is

now replaced by (4.10). It is noted from (4.10) that

Ui+ 1
2
,j = |I

n+1/2
i+1/2,j |/∆ηU0

i+ 1
2
,j , Vi,j+ 1

2
= |I

n+1/2
i,j+1/2|/∆ξV 0

i,j+ 1
2

.

The DCU scheme (4.9) is then equivalent to (4.3).

4.4.1. The CTU method and high-order corrections

Construction of the CTU fluxes and high-order corrections depends on Taylor expansion

(Jq)(ξ, η, τn+1) = (Jq)(ξ, η, τn) + ∆t(Jq)τ +
1

2
∆t2(Jq)ττ +O(∆t3), (4.12)

where from (4.7), there is

(Jq)τ = −(Uq)ξ − (V q)η, (4.13)

and

(Jq)ττ = −(Uq)ξτ − (V q)ητ = −(Uτq)ξ − (Vτ q)η − (Uqτ )ξ − (V qτ )η

= −(Uτq)ξ − (Vτ q)η +
(Jτ
J
Uq
)
ξ
+
(Jτ
J
V q
)
η

+
(U
J
(Uq)ξ

)
ξ
+
(U
J
(V q)η

)
ξ
+
(V
J
(Uq)ξ

)
η
+
(V
J
(V q)η

)
η
. (4.14)

Substitute (4.13) and (4.14) into (4.12), let us consider discrete form of each term in this

expansion. The CTU fluxes include cross-derivative terms (U(V q)η/J)ξ and (V (Uq)ξ/J)η, thus

FC
i+ 1

2
,j = FD

i+ 1
2
,j −

1

2

∆t

Jn+1
i+1/2,j∆η

(U+
i+ 1

2
,j
(B+∆Qi,j− 1

2
+ B−∆Qi,j+ 1

2
)

+ U−

i+ 1
2
,j
(B+∆Qi+1,j− 1

2
+ B−∆Qi+1,j+ 1

2
)),
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GC
i,j+ 1

2

= GD
i,j+ 1

2

−
1

2

∆t

Jn+1
i,j+1/2∆ξ

(V +
i,j+ 1

2

(A+∆Qi− 1
2
,j +A−∆Qi+ 1

2
,j)

+ V −

i,j+ 1
2

(A+∆Qi− 1
2
,j+1 +A−∆Qi+ 1

2
,j+1)),

where A± and B± have the same expressions as (2.14) except the definition of U and V .

The high-order corrections are

F̃i+ 1
2
,j =

1

2
|Ui+ 1

2
,j |(1− |Ui+ 1

2
,j |

∆t

Jn+1
i+1/2,j∆ξ

)W̃i+ 1
2
,j ,

G̃i,j+ 1
2
=

1

2
|Vi,j+ 1

2
|(1 − |Vi,j+ 1

2
|

∆t

Jn+1
i,j+1/2∆η

)W̃i,j+ 1
2
.

Jacobi J in these fluxes may be more properly evaluated at time tn+1/2 rather than tn+1,

however, if the mesh varies smoothly this only affects high-order terms.

Remark 4.2. Neglecting other second order terms in (4.14), the flux form in remapping

method is the same as that in advection equation except definition of U , V and J .

Table 4.1: Comparisons of the advection algorithm and the remapping one.

Advection algorithm Remapping algorithm

Numerical schemes (2.8) (4.9)

Ui+1/2,j , Vi,j+1/2 (2.10) (4.10)

Space steplength in Fi+1/2,j Ji+1/2,j∆ξ, Ji+1/2,j∆η Jn+1
i+1/2,j∆ξ, Jn+1

i+1/2,j∆η

Space steplength in Gi+1/2,j Ji,j+1/2∆ξ, Ji,j+1/2∆η Jn+1
i,j+1/2∆ξ, Jn+1

i,j+1/2∆η

The numerical results are good enough using the above remapping scheme, so we would

not make further discretization to other terms. In general, to obtain an overall second-order

accurate scheme in moving mesh frame is rather difficult, not only due to poor accuracy at

extrema (local maxima or minima in q), but also due to the discretization to terms U±
τ and

V ±
τ .

4.4.2. The multi-point flux CTU method

In continuous remapping computation, possible relative locations of old and new meshes are

shown in Fig. 4.2(a) and 4.2(b). In the situation depicted in Fig. 4.2(a), the moving directions

at the vertexes Pi−1/2,j−1/2 and Pi−1/2,j+1/2 coincide with edge normal direction, so the single-

edge flux is enough. But for the case in Fig. 4.2(b), the volumes of the total swept regions at

Ii+1/2,j may approximate to zero due to the fact that two opposite direction vertex velocities

may cancel out, however, when physical quantity has large difference between edge Ii−1/2,j , the
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Fig. 4.2. Two situations of remapping grids. (a) Without distortion at the edge Ii−1/2,j , (b) With

distortion at the edge Ii−1/2,j .

transportation of the physical quantity is not zero. So using single-edge velocity to construct

numerical flux may result in large error.

At each edge Ii+1/2,j we introduce two normal transport velocities according to the vertex

velocities ~uM (Pi+1/2,j−1/2) and ~uM (Pi+1/2,j+1/2), which are

Ui+ 1
2
,j = −M

n+1/2

i+ 1
2
,j
u
n+1/2

i+ 1
2
,j− 1

2

+ L
n+1/2

i+ 1
2
,j
v
n+1/2

i+ 1
2
,j− 1

2

,

Ui+ 1
2
,j = −M

n+1/2

i+ 1
2
,j
u
n+1/2

i+ 1
2
,j+ 1

2

+ L
n+1/2

i+ 1
2
,j
v
n+1/2

i+ 1
2
,j+ 1

2

.

Similarly at edge Ii,j+1/2, we have

Vi,j+ 1
2
= B

n+1/2

i,j+ 1
2

u
n+1/2

i− 1
2
,j+ 1

2

−A
n+1/2

i,j+ 1
2

v
n+1/2

i− 1
2
,j+ 1

2

,

Vi,j+ 1
2
= B

n+1/2

i,j+ 1
2

u
n+1/2

i+ 1
2
,j+ 1

2

−A
n+1/2

i,j+ 1
2

v
n+1/2

i+ 1
2
,j+ 1

2

.

Just like the analysis to single-edge flux, the multi-point fluxes in the DCU method have the

completely same form as (3.1), which are fluxes in the advection equation. The CTU scheme

has fluxes

FC,M

i+ 1
2
,j
= FD,M

i+ 1
2
,j
−

1

2

∆t

Jn+1
i+1/2,j∆η

(
U+
i+ 1

2
,j
B+∆Qi,j− 1

2

+ U+

i+ 1
2
,j
B−∆Qi,j+ 1

2

+U−

i+ 1
2
,j
B+∆Qi+1,j− 1

2
+ U−

i+ 1
2
,j
B−∆Qi+1,j+ 1

2

)
,

GC,M

i,j+ 1
2

= GD,M

i,j+ 1
2

−
1

2

∆t

Jn+1
i,j+1/2∆ξ

(
V +
i,j+ 1

2

A+∆Qi− 1
2
,j + V +

i,j+ 1
2

A−∆Qi+ 1
2
,j

+V −

i,j+ 1
2

A+∆Qi− 1
2
,j+1 + V −

i,j+ 1
2

A−∆Qi+ 1
2
,j+1

)
,

where A± and B± have the same expression as (3.4) except definitions of U and V .

The numerical fluxes in (4.9) with second-order modification are

FC,M,2

i+ 1
2
,j

= FC,M

i+ 1
2
,j
+ 1

2 (F̃i+ 1
2
,j + F̃i+ 1

2
,j), GC,M,2

i,j+ 1
2

= GC,M

i,j+ 1
2

+ 1
2 (G̃i,j+ 1

2
+ G̃i,j+ 1

2

). (4.15)
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Remark 4.3. Since numerical flux FC,M,2

i+ 1
2
,j

in (4.15) is same to cells Ci,j and Ci+1,j , the remap-

ping scheme (4.9) is conservative.

Remark 4.4. Numerical scheme (4.9) with corner transport upwind and high order modifica-

tion terms (4.15) satisfies discrete geometric law. In fact, when q = 1, these modification terms

are zero. The discrete fluxes will degenerate to the DCU fluxes (4.11), which satisfies discrete

GCL.

5. Numerical Results

In this section we will only test the numerical results of the remapping equation in the

context of interpolation. That is, we will choose an underlying function, prescribe a grid motion,

and compare the exact integrals of this function on the new grids with the numerical simulations.

All algorithms with second-order accurate modifications use the monotinized centered limiter.

Case 1. The first remapped function represents a discontinuous one. It is defined as

q(x, y, 0) =





1, if − 1 < x < 0,

0, if 0 < x < 1.

We carry out a simple test problem on a square domain [−1, 1]× [−1, 1], subdivided into a

uniform grid of 20× 20 cells. The special node velocity is chosen as v = 0 and

ui+ 1
2
,j+ 1

2
=





1, if i = 10 and j is odd,

−1, if i = 10 and j is even,

0, others.

In this situation, the middle two-layer grid cells are stretched all the time until t = 0.1 when

the quadrilateral meshes are degenerated to triangular ones. During this procedure, despite

the overall sweep area is zero strictly, the transport of physical quantity exists. The exact

integrals of this function on the new grids are 0.75 and 0.25, respectively. Using single-edge

remapping method, whether the DCU method or the CTU method, the edge flux Fi+ 1
2
,j is

zero. The false numerical result at t = 0.1 is shown in Fig. 5.1. The first and second-order

accurate results are the same. The multi-point flux method presented in this paper can remedy

the defect. The integral on local transport area can guarantee the remapped physical quantity

not being counteracted. Figs. 5.2 and 5.3 give the results using multi-point CTU method.

The second-order accurate scheme is more accurate than the first-order one. The Table 5.1

compares these results on cells (10, j) and (11, j), where ‘SCTU’ represents single-edge CTU

method and ‘MCTU’ is the new one proposed in this paper.

Case 2. The second example comes from [25]: The mesh moves according to a sequence of

tensor product grids in the unit square [0, 1]× [0, 1], generated by

xn
i+ 1

2
,j+ 1

2

= x(ξi, ηj , t
n), yni+ 1

2
,j+ 1

2

= y(ξi, ηj , t
n),

where ξi = (i− 1)/Ix, i = 1, · · · , Ix + 1; ηj = (j − 1)/Jy, j = 1, · · · , Jy + 1, Ix and Jy are mesh

numbers in x-direction and y-direction, respectively, and

x(ξ, η, t) = (1 − α(t))ξ + α(t)ξ3, y(ξ, η, t) = (1− α(t))η + α(t)η2,
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Table 5.1: Case 1: Comparison of classical CTU method and Multi-point flux method.

Mesh 1st SCTU 2nd SCTU 1st MCTU 2nd MCTU Exact

(10, j) 1 1 0.686 0.786 0.75

(11, j) 0 0 0.314 0.214 0.25

Table 5.2: Case 2: The errors on the sequence tensor product grids for numerical results of ‘peak’

function.

Mesh Number ∆t Norm 1st MCTU order 2nd MCTU order

64× 64 2.0e-3 L1 4.40e-2 – 3.02e-3 –

128× 128 1.0e-3 L1 2.73e-2 0.69 1.02e-3 1.57

256× 256 5.0e-4 L1 1.57e-2 0.80 3.52e-4 1.53

64× 64 2.0e-3 L∞ 0.55e-0 – 0.13e-0 –

128× 128 1.0e-3 L∞ 0.42e-0 0.39 8.37e-2 0.64

256× 256 5.0e-4 L∞ 0.31e-0 0.44 5.82e-2 0.52

where α(t) = 0.5 sin(4πt). The final time is t = 1. During this time, the mesh moves along

x-direction and y-direction non-uniformly. We use the anisotropic grids to check our remapping

algorithm.

The remapped physical quantity is a ‘peak’ value function defined as

q(x, y, 0) =

{
0 r > 0.25,

max(0.001, 4(r− 0.25)) r ≤ 0.25.

where r =
√
(x− 0.25)2 + (y − 0.25)2.

To discuss convergence, we first choose two norms,

||q − qex||L∞ = max
i,j

|q(xN
i,j , y

N
i,j)− qex(xN

i , yNj )|,

||q − qex||L1 =
∑

i,j

(|(q(xN
i,j , y

N
i,j)− qex(xN

i,j , y
N
i,j)| · |Ci,j |),

where qex is the exact quantity, and q is the numerical results. We use three different lev-

els of refinement to investigate convergence. The grid numbers are Ix = Jy = 64, 128, 256,

respectively, and corresponding time steplengths decrease in proportion.

Fig. 5.4 gives the contour and 3D fully view plots for second-order multi-point flux method

with 128×128 grid. Due to the anisotropy of the grids, the results are not perfect. The peak of
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Fig. 5.1. Case 1: Classical flux methods (including DCU, CTU, the 1st-order, 2nd-order accurate)

provide false results, left: 2D side view ; right: 3D full view.
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Fig. 5.2. Case 1: Multi-point flux method (first-order), left: 2D side view; right: 3D full view.
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Fig. 5.3. Case 1: Multi-point flux method (second-order), left: 2D side view; right: 3D full view.

the cone is chopped off. But the method preserves the symmetry of the contour line very well.

In Table 5.2 we summarize the convergence results for the sequence of tensor product grids.

The L1 norm convergent rates are about 1.57 and 1.53 for the two-level grids, respectively.

Compared with ones in [25], these convergent rates and absolute errors are satisfying.

Obtaining such results is reasonable. In fact our scheme is monotonicity preserving due to
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Fig. 5.4. Case 2: The ‘peak’ function on tensor product grids. Left: The contour, right: surface plot.

the use of limiter. It is well known that the high-resolution methods give rather poor accuracy

at extrema (local maxima or minima in q), even though the solution is smooth. Osher and

Chakravarthy [32] proved that TVD methods must in fact degenerate to first-order accuracy

at extremal points. So our method is generally second-order accurate at most. With the

development of TVD schemes, high-order accurate results at extremal point can be constructed

see, e.g., [6, 35]. Another possibility affecting numerical results may be the anisotropy of the

grids. As comparison, let us consider the next example.

Case 3. We will compute the same ‘peak’ value function on consecutive smoothing of an

initially random grid.

Now we consider a sequence of grids, in which each is obtained from the previous one by

smoothing

~xn+1
i+ 1

2
,j+ 1

2

=
1

2
~xn
i+ 1

2
,j+ 1

2

+
~xn
i− 1

2
,j+ 1

2

+ ~xn
i+ 3

2
,j+ 1

2

+ ~xn
i+ 1

2
,j− 1

2

+ ~xn
i+ 1

2
,j+ 3

2

8
.

Table 5.3: Case 3: The errors on random smoothing grids for numerical results of ‘peak’ function.

Mesh Number ∆t Norm 1st MCTU order 2nd MCTU order

64× 64 2.0e-3 L1 4.04e-4 – 1.39e-4 –

128× 128 1.0e-3 L1 1.75e-4 1.21 5.55e-5 1.32

256× 256 5.0e-4 L1 8.02e-5 1.13 2.29e-5 1.28

64× 64 2.0e-3 L∞ 1.22e-2 – 6.32e-3 –

128× 128 1.0e-3 L∞ 8.47e-3 0.53 5.32e-3 0.25

256× 256 5.0e-4 L∞ 2.51e-3 1.75 1.98e-3 1.43
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Fig. 5.5. Case 4: Initial value of a solid-body, left: contour; right: surface plots.

The initial grid is a random perturbation of a uniform grid

x0
i+ 1

2
,j+ 1

2

= (i− 1)∆ξ + γri∆ξ, y0i+ 1
2
,j+ 1

2

= (j − 1)∆η + γrj∆η,

where −0.5 ≤ ri, rj ≤ 0.5 are random numbers, factor γ = 0.5, ∆ξ = 1/Ix and ∆η = 1/Jy, Ix
and Jy are mesh numbers in x and y direction, respectively. For nodes on the boundary of the

unit square, only one coordinate is perturbed.

Graphically, the ‘peak’ value function is not distinguishable from that on tensor product

grids, and so is not shown. The numerical errors and the convergent rates are presented in Table

5.3. Note that these results are more accurate than those on the sequence of tensor product

grids but the convergent rates are lower. Margolin and Shashkov [25] regarded that the random

sequence of grids maybe not allow a systematic buildup of remapping error, thus the results

are better than those on anisotropic grids. At the same time, they regarded it should not use

random grids to measure convergence rate.

Case 4. We will carry out a comparison of the remapping algorithm and the advection algo-

rithm in this and next cases. The initial distribution comes from [18]. Fig. 5.5 shows an initial

solid-body on a 128 × 128 grid with data q = 0 except in a square region where q = 1 and a

circular region where q is cone-shaped, growing to a value 1 at the center:

q(x, y, 0) =





1 if 0.1 < x < 0.6 and − 0.25 < y < 0.25,

1− r/0.35 if r ≡
√
(x+ 0.45)2 + y2,

0 otherwise.

Table 5.4: Case 4: The errors in L1 norm for numerical results of Case 5.

Mesh Number ∆t Norm 1st MCTU order 2nd MCTU order

64× 64 2.0e-3 L1 3.86e-1 – 5.82e-2 –

128× 128 1.0e-3 L1 2.88e-1 0.42 2.87e-2 1.02

256× 256 5.0e-4 L1 2.04e-1 0.50 1.42e-2 1.02
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Fig. 5.6. Case 4: Time t = π/8, left: contour; right: surface plots.
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Fig. 5.7. Case 4: Time t = 7π/8, left: contour; right: surface plots.
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Fig. 5.8. Case 4: Time t = π, left: contour; right: surface plots.

In the remapping problem, the velocity field of the grid movement corresponds to uniform

clockwise angular rotation about the center of the domain where the velocity is u(x, y) =

2y, v(x, y) = −2x. Obviously, at time t = Nπ, the grid agrees with the initial one for any

integer N .

Figs. 5.6 – 5.8 show what we would obtain with the second-order multi-point flux scheme

at time t = π/8, t = 7π/8 and t = π. The accuracy comparison at t = π using the first and
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Fig. 5.9. Case 4: Time t = π, left: contour; right: surface plots. Obtained by using the first-order

CTU method.
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Fig. 5.10. Case 5: Advection. Time t = π/8, left: contour; right: surface plots.
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Fig. 5.11. Case 5: Advection. Time t = 7π/8, left: contour; right: surface plots.

second -order schemes are given in Table 5.4.

Once again we find the discontinuity in q is smeared out, and the peak of the cone is chopped

off. In particular, the convergent order just attains first for the second-order accurate scheme.

However, this high-resolution method shows much better results than would be obtained with

the first-order methods. Fig. 5.9 gives results with the first-order CTU method, and the
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Fig. 5.12. Case 5: Advection. Time t = π, left: contour; right: surface plots.

convergent rate is just about 0.4 or so.

Case 5. We evaluate an advection problem corresponding to the previous remapping case.

The initial value is the same as that in Case 4, and the velocity field of the solid-body u(x, y) =

2y, v(x, y) = −2x. Figs. 5.10 – 5.12 give the solid-body rotation results at three different

times. Comparing with Figs. 5.6 – 5.8 we can see that the discontinuity resolutions between

the advection and remapping algorithm are almost same.

6. Summary

This paper consists of two parts. One is advection algorithm; the other is the remapping one.

Starting from the classical advection algorithms, we use coordinate transformation method to

derive a new multi-point flux advection algorithm on an arbitrary quadrilateral grid. The new

algorithm contains more information than classical CTU method. Furthermore, by introducing

remapping equation, the remapping problem is shown to be equivalent to the advection one.

With the help of the remapping equation, the conservative interpolation problem is transformed

into solving the partial differential equation. Due to the grid motion, the remapping algorithm is

not completely equivalent to the advection one, and more conditions need to be satisfied, such

as discrete geometric conservation law. In addition, to obtain overall second-order accurate

scheme in form, the remapping algorithm needs to discretize more terms in the associated

truncation error expansion than the advection one. But if neglecting these extra terms, the

flux formulations in the remapping algorithm are almost the same as those in advection scheme

(see Remark 4.2). Once more we use coordinate transformation method to construct a new

multi-point remapping algorithm suitable for continuous rezone ALE procedures. It can be

regarded as a natural generalization of multi-point flux advection algorithm.

The new multi-point flux method retains many advantageous properties, such as conserva-

tion, accuracy, and including corner-coupling terms. Notable among these is the consistency

with node local motion, which can remedy partial defects of the conventional CTU method.

A numerical experiment validates this point. The other numerical tests either show that the

scheme has good robustness on anisotropic grids, or illustrate the accuracy on random grids. In

general, the new remapping method has almost the same resolution as corresponding advection

algorithm.

Essentially, the process of deriving remapping schemes in this paper provides a framework to
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transform an algorithm on a rectangular grid into the one on moving grid. In this framework,

we may construct algorithm not only for linear remapping equation, but also for nonlinear

scalar equation and nonlinear systems of conservation law. The next work is to construct a

moving mesh method for gas hydrodynamics equations. The feature of the new algorithm will

include corner coupling information and be consistent with grid motion. Of course, due to the

nonlinearity and its viscosity properties, the finite volume method for system of conservation law

may suffer from numerical shock instability or other nonphysical phenomena (see, e.g., [34,36]),

more modification techniques need to be adopted.
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