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Abstract

In this paper we continue the study of discontinuous Galerkin finite element methods

for nonlinear diffusion equations following the direct discontinuous Galerkin (DDG) meth-

ods for diffusion problems [17] and the direct discontinuous Galerkin (DDG) methods for

diffusion with interface corrections [18]. We introduce a numerical flux for the test func-

tion, and obtain a new direct discontinuous Galerkin method with symmetric structure.

Second order derivative jump terms are included in the numerical flux formula and explicit

guidelines for choosing the numerical flux are given. The constructed scheme has a sym-

metric property and an optimal L2(L2) error estimate is obtained. Numerical examples are

carried out to demonstrate the optimal (k+1)th order of accuracy for the method with P k

polynomial approximations for both linear and nonlinear problems, under one-dimensional

and two-dimensional settings.
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1. Introduction

This paper is a continuous study following [17] and [18] regarding a discontinuous Galerkin

finite element method for solving time dependent nonlinear diffusion equations of the form

Ut −∇ · (A(U)∇U) = 0, (x, t) ∈ Ω× (0, T ), (1.1)

where Ω ⊂ Rd, the matrix A(U) = (aij(U)) is symmetric and positive definite, and U is an

unknown function of (x, t) with x ∈ Ω.

The discontinuous Galerkin (DG) method is a finite element method with discontinuous

piecewise function space for the numerical solution and the test functions. Lacking the restric-

tions of continuities across the computational cells makes these methods extremely flexible. As

a result, DG methods have found application in diverse areas. The application of DG methods

to hyperbolic problems has been quite successful since it was originally introduced by Reed

and Hill [21] in 1973 for neutron transport equations. A major development of the DG method

for nonlinear hyperbolic conservation laws was carried out by Cockburn, Shu, etc. We refer

to [9–11] for reviews and further references of DG methods for hyperbolic type of PDEs.

However, application of DG method to diffusion problems has been a challenging task be-

cause of the subtle difficulty in defining appropriate numerical fluxes for diffusion terms, see
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e.g. [23]. There have been several DG methods suggested in literature for solving diffusion

problems. One class is the interior penalty (IP) method, which dates back to 1982 as the

symmetric interior penalty (SIPG) method by Arnold [1] (also by Baker in [3] and Wheeler

in [28]). We also have the Baumann and Oden method [5, 20], the NIPG method [22] and

the IIPG method [13]. Another class is the local discontinuous Galerkin (LDG) methods intro-

duced in [12] by Cockburn and Shu (originally proposed by Bassi and Rebay [4] for compressible

Navier-Stokes equations). We refer to the unified analysis article [2] in 2002 for different DG

methods involving diffusion term and background references for other DG methods. More re-

cent works include those by Van Leer and Nomura in [26], Gassner et al. in [16], Cheng and

Shu in [8] and Brenner et al. in [6].

Recently in [17], we develop a direct discontinuous Galerkin (DDG) method for diffusion

equations. The scheme is based on the direct weak formulation of (1.1), and a general numerical

flux formula for the solution derivative is proposed. An optimal kth order error estimate in

an energy norm is obtained with P k polynomial approximations for linear diffusion equations.

However, numerical experiments in [17] show that when measured under L2 and L∞ norms, the

scheme accuracy is sensitive to the coefficients in the numerical flux formula. That is, for higher

order P k (k ≥ 4) polynomial approximations it is difficult to identify suitable coefficients in the

numerical flux to obtain optimal (k+ 1)th order of accuracy. In [18], extra interface correction

terms are introduced into the scheme formulation, and a refined version of the DDG method is

obtained. A simpler numerical flux formula is used in [18] and numerically optimal (k + 1)th

order of accuracy is achieved for any P k polynomial approximations.

The DDG method [17] and the DDG method with interface corrections [18] are schemes

which both lack symmetric properties. Thus it is difficult to obtain L2 error analysis. In

this work, we introduce a numerical flux for the test function derivative and include more

interface terms in the scheme formulation. With the same numerical flux formula for the

solution derivative and test function derivative, the bilinear form for the diffusion term thus

obtained has a symmetric property. This symmetric structure is the key to further prove an

optimal L2(L2) error estimate for the DG solution. Also, new guidelines for choosing admissible

numerical fluxes are given. The symmetric DDG method is not sensitive to the coefficients in

the numerical flux formula. There exists a large class of admissible numerical fluxes that lead

to the optimal convergence. Compared to the SIPG method [1], the penalty coefficient estimate

can be decreased from k2 to k2/4. One-dimensional and two-dimensional numerical examples

are carried out and we obtain (k+1)th optimal order of accuracy with piecewise P k polynomial

approximations for both linear and nonlinear diffusion problems.

In this paper we use uppercase letters to represent the exact solution and lowercase letters

to represent the DG numerical solution and test functions. The rest of the paper is organized as

follows. In §2, we describe the scheme formulation for the linear and nonlinear one-dimensional

diffusion equations, present admissibility and stability results, and establish an energy norm

error estimate for the linear case. In §3, extension to two-dimensional diffusion problems is

given. The optimal L2(L2) error estimate for the linear two-dimensional equation is presented

in §4. Finally numerical examples are shown in §5.

2. One-Dimensional Diffusion Equations

2.1. Scheme formulation for 1-D linear diffusion equation

In this section, we present the new discontinuous Galerkin method with the following 1-D
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linear diffusion equation

Ut − Uxx = 0, for (x, t) ∈ Ω× (0, T ), (2.1)

associated with initial data U(x, 0) = U0(x) forx ∈ Ω ⊂ R and periodic boundary condition.

Scheme formulation for general nonlinear 1-D diffusion problems is presented in §2.3. Note that

it is for simplicity of presentation to consider periodic boundary conditions. The scheme can

be easily applied to any well-posed boundary conditions. We use discontinuous Galerkin finite

element method for spacial discretization, then couple with strong-stability preserving (SSP)

explicit high order TVD Runge-Kutta method [24, 25] for time discretization to formulate the

whole scheme. We should mention the scheme is essentially more efficient for problems with

small diffusion coefficient, for example the overall convection dominated convection diffusion

equations.

First we partition the spatial domain Ω into computational cells Ω =
⋃N
j=1 Ij , where

Ij =[xj− 1
2
, xj+ 1

2
], j = 1, ..., N . The center of the cell Ij is denoted by xj = 1

2

(
xj− 1

2
+ xj+ 1

2

)
and the size of the cell is denoted by ∆xj = xj+ 1

2
− xj− 1

2
. We have ∆x = maxj ∆xj . We seek

numerical solution u in the piecewise polynomial space,

Vk∆x :=
{
v ∈ L2(Ω) : v|Ij ∈ P k(Ij), j = 1, · · · , N

}
,

where P k(Ij) denotes the space of polynomials in Ij of degree at most k. We are now ready to

formulate the DG scheme.

Multiply the heat equation (2.1) by any smooth function V ∈ H1(Ω), integrate over Ij , and

perform integration by parts to formally obtain,∫
Ij

UtV dx− UxV
∣∣∣j+1/2

j−1/2
+

∫
Ij

UxVx dx = 0,

where

UxV
∣∣∣j+1/2

j−1/2
= (Ux)j+1/2Vj+1/2 − (Ux)j−1/2Vj−1/2.

Here, (Ux)j±1/2 and Vj±1/2 denote the values of Ux and V at x = xj±1/2 respectively.

Then, replace smooth function V by a test function v ∈ Vk∆x and exact solution U by

approximate solution u ∈ Vk∆x. Thus, as in [17], we have the original DDG scheme defined as

follows: find the unique approximate solution u ∈ Vk∆x such that for all test functions v ∈ Vk∆x
and for all 1 ≤ j ≤ N , we have that,∫

Ij

utv dx− ûxv
∣∣∣j+1/2

j−1/2
+

∫
Ij

uxvx dx = 0, (2.2)∫
Ij

u(x, 0)v(x) dx =

∫
Ij

U0(x)v(x) dx, (2.3)

where

ûxv
∣∣∣j+1/2

j−1/2
= (ûx)j+1/2v

−
j+1/2 − (ûx)j−1/2v

+
j−1/2.

This scheme is well defined if the numerical flux ûx is given. Motivated by the solution derivative

trace formula of the heat equation with discontinuous initial data, in [17], the numerical flux

was introduced as taking the form,

ûx = β0
[u]

∆x
+ ux + β1∆x[uxx] + β2(∆x)3[uxxxx] + · · · . (2.4)
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Note, here and below we adopt the following notation,

u± = u(x± 0, t), [u] = u+ − u−, u =
u+ + u−

2
. (2.5)

The numerical flux ûx approximates Ux and involves the average ux and even order derivatives

jumps of u across the cell interfaces xj±1/2. The coefficients β0, β1, β2, · · · are chosen to ensure

the stability and convergence of the method. Note, it is easily seen that this numerical flux is

both consistent and conservative.

In order to theoretically guarantee optimal rates of convergence in the L2 norm, a numerical

flux term v̂x for the test function v is added to the original DDG method (2.2) to create a

symmetric scheme. This test function numerical flux is of the same form as ûx given above.

The resulting new scheme, known as the symmetric DDG scheme, is formally defined as follows:

find the unique approximate solution u ∈ Vk∆x such that for all test functions v ∈ Vk∆x and for

all 1 ≤ j ≤ N , we have that,∫
Ij

utvdx− ûxv
∣∣∣j+1/2

j−1/2
+

∫
Ij

uxvxdx+ ([u]v̂x)j+1/2 + ([u]v̂x)j−1/2 = 0, (2.6)

with the numerical flux terms defined as,
ûx = β0

[u]
∆x + ux + β1∆x[uxx],

v̂x = β0
[v]
∆x + vx + β1∆x[vxx].

(2.7)

Here ∆x =
∆xj+∆xj+1

2 if the numerical flux is evaluated at the cell interface xj+1/2. Notice we

drop higher order terms in (2.4) and take a simpler numerical flux formula for ûx. An identical

numerical flux formula is used for the test function derivative v̂x. Note numerically we take

the test function v to be nonzero only inside the cell Ij , thus only half of the terms in (2.7)

contributes to the computation of v̂x. In a word, the v̂x terms can be written out explicitly as

the following, 
(v̂x)j+1/2 = −β0

v−

∆x + 1
2 (vx)− − β1∆x(vxx)−,

(v̂x)j−1/2 = β0
v+

∆x + 1
2 (vx)+ + β1∆x(vxx)+.

The v± is as defined in (2.5). This completes the definition of the new symmetric DDG method

for the linear diffusion equation (2.1). Summing the scheme (2.6) over all cells Ij and introducing

the bilinear form,

B(u, v) =

N∑
j=1

∫
Ij

uxvx dx+

N∑
j=1

(ûx[v])j+1/2 +

N∑
j=1

([u]v̂x)j+1/2, (2.8)

we obtain the primal weak formulation as the following,∫
Ω

utvdx+ B(u, v) = 0. (2.9)

It can be seen that the bilinear form B(u, v) has an obvious symmetry. That is, B(u, v) = B(v, u).

It is this feature which gives this method the name, DDG method with symmetric structure.



642 C. VIDDEN AND J. YAN

Up to now, we have taken the method of lines approach and have left time variable t

continuous. After spatial discretization with symmetric DDG method and multiplication of the

local inverse mass matrix, the semidiscrete scheme is equivalent to the first order ODE system,

ut = L(u).

For time discretization, explicit third order TVD Runge-Kutta method [24, 25] was used to

match the accuracy in space. It is given as,
u(1) = un + ∆tL(un),

u(2) = 3
4u

n + 1
4 (u(1) + ∆tL(u(1))),

un+1 = 1
3u

n + 2
3 (u(2) + ∆tL(u(2))).

One advantage of coupling DG method with explicit scheme is that the mass matrix is locally

defined within each computational cell thus there is no global linear system to solve when

comparing with the classical finite element method. The DG solution polynomials communicate

with its neighbors through the cell boundaries (numerical flux), which gives this method high

efficiency with parallel computing, see the reference in the review volume [10]. We should

mention in general the symmetric DDG method coupling with explicit TVD Runge-Kutta

method is more efficient for small diffusion coefficient problem. For example, it is more efficient

for convection dominated problems.

2.2. Admissibility, stability, and error estimates for 1-D case

As for any DG method, the guiding principle for the choice of numerical flux is the stability

requirement. For simplicity of presentation, this section will again consider the one-dimensional

linear case as in (2.1). As in [17] we adopt the following admissibility criterion.

Definition 2.1. (Admissibility) We call numerical flux ûx in (2.7) admissible if there exists

γ ∈ (0, 1), α > 0 such that for any u ∈ Vk∆x,

γ

N∑
j=1

∫
Ij

(ux)2 dx+ 2

N∑
j=1

ûx[u]j+1/2 ≥ α
N∑
j=1

[u]2j+1/2

∆x
. (2.10)

This admissibility ensures the following stability of the symmetric DDG method.

Theorem 2.1. (Stability) Consider the symmetric DDG scheme (2.6). If the numerical flux

(2.7) is admissible as described in (2.10), then we have

1

2

∫
Ω

u2(x, T )dx+ (1− γ)

∫ T

0

N∑
j=1

∫
Ij

u2
x(x, t)dxdt+ α

∫ T

0

N∑
j=1

[u]2j+1/2

∆x
dt

≤1

2

∫
Ω

u2(x, 0)dx. (2.11)

This can be proved directly by summation over all j of (2.6) with v = u, and using the

admissibility condition (2.10).

Next, we list the admissibility theorem that provides the guidelines for choosing an admissi-

ble numerical flux, namely the suitable β0 and β1 in (2.7). The proof of the theorem exclusively

depends on the combinatorial properties of the Hilbert matrices. We refer to [27] for details of

the proof and some further discussions on numerical flux admissibility.
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Theorem 2.2. (Admissibility) The numerical flux ûx in (2.7) is admissible provided that

2β0 ≥ α+
4

γ

(
β2

1

(
k2(k2 − 1)2

3

)
− β1

(
k2(k2 − 1)

2

)
+
k2

4

)
, for k ≥ 1. (2.12)

To minimize β0, we have

β∗1 =
3

4(k2 − 1)
and β∗0 =

α

2
+

1

2γ

k2

4
. (2.13)

Here k is the degree of the approximate polynomial space Vk∆x. For k = 0 we require β0 = 1
2 for

consistency.

The admissibility Theorem 2.2 provides a way to choose suitable β0 and β1 in the numerical

flux formula (2.7). From (2.12) we see any (β0, β1) pair that falls in the parabolic shaded

regions in Fig. 2.1 leads to an admissible numerical flux. Take α = 1, γ = 1
2 , the minimized

(β∗0 , β
∗
1) pair of (2.13) is listed in Table 2.1 with k = 0, · · · , 10. For numerical tests in §5, Table

2.1 is used for choosing (β0, β1) pairs.

Table 2.1: Minimized admissible (β∗0 , β
∗
1 ) from (2.13).

k 0 1 2 3 4 5 6 7 8 9 10

β∗0
1
2

3
2

3
2

11
4

9
2

27
4

19
2

51
4

33
2

83
4

51
2

β∗1 0 0 1
4

3
32

1
20

1
32

3
140

1
64

1
84

3
320

1
132

Fig. 2.1. Admissibility region for (β0, β1) for k = 1, 2, . . . , 10.

Note that in each k ≥ 2 case, having β1 nonzero allows for smaller choice of β0. Numerical

experiments show larger β0 requires more restrictive CFL conditions on the time step size.

Compared to the SIPG method [1], the penalty coefficient (σ = 2β0 with β1 = 0 case) can be

decreased from k2 to four times smaller as k2

4 (here we take γ = 1 as for the elliptic case).

Again k is the polynomial degree of the approximate solution space. The inclusion of second

order derivative jumps in the numerical flux seems to play a significant role. We mention that

Feng and Wu in [15] also explore the importance of higher order normal derivative jump terms

of DG solutions for Helmholtz equations.
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Next, we will study the energy norm error estimate for the linear diffusion equation (2.1).

Denote the energy norm associated with this scheme as being

|||u(·, T )||| :=

∫
Ω

u2 dx+ (1− γ)

∫ T

0

N∑
j=1

∫
Ij

u2
x dxdτ + α

∫ T

0

N∑
j=1

[u]2j+1/2

∆x
dτ

1/2

, (2.14)

with γ ∈ (0, 1) and α > 0 from (2.10). The form of this energy norm is inspired by the stability

estimate (2.11). Before carrying on the error estimate, we first list the following two Lemmas

as approximation properties of the finite element space Vk∆x that can be found in finite element

textbook, e.g. [7].

Lemma 2.1. (Approximation property) Let K ⊂ Rn be any regular element in the sense that

ρ∆x ≤ diam (K) ≤ ∆x for some constant 0 < ρ < 1. Let U ∈ W k+1,p(Ω) and P(U) be the L2

projection of U in Vk∆x. Then we have the following approximation property,

||U − P(U)||Wm,q(K) ≤ ck(∆x)n/q−n/p|U |Wk+1,p(K)(∆x)k+1−m. (2.15)

Here p, q ∈ [1,∞], m ≥ 0 and k ≥ 0 are integers, and the constant ck solely depends on k.

Lemma 2.2. (Inverse inequality) Given the finite dimensional piecewise polynomial space Vk∆x,

with 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 0 ≤ m ≤ l ≤ k, and a regular element K ⊂ Rn, there exists C

independent of ∆x such that for all v ∈ Vk∆x we have,

‖v‖Wm,q(K) ≤ C∆xl−m+n/q−n/p‖v‖W l,p(K). (2.16)

For example, in the following sections we intensively use the inverse inequality estimate with

q =∞, p = 2,m = 0 and n = 2 as follows,

‖v‖L∞(∂K) ≤ C∆xl−1‖v‖Hl(K).

Theorem 2.3. (Energy norm error estimate in one dimension) Let e := u − U be the error

between the exact solution U and the numerical solution u of the symmetric DDG method (2.6).

If the numerical flux (2.7) is admissible as defined in (2.10), then the energy norm of the error

satisfies the inequality,

|||e(·, T )||| ≤ C|||∂k+1
x U(·, T )|||(∆x)k, (2.17)

where C = C(k, γ, α) is a constant depending on k, γ, α but is independent of U and ∆x.

Proof. First, rewrite the error as

e = u− U = u− P(U) + P(U)− U = P(e)− (U − P(U)) . (2.18)

Here P(U) denotes the L2 projection of U into Vk∆x. That is, P(U) is the unique function in

Vk∆x such that for all v ∈ Vk∆x and all j,∫
Ij

(U − P(U))v dx = 0.

Then, with (2.18) we have

|||e(·, T )||| ≤ |||P(e)(·, T )|||+ |||(U − P(U))(·, T )|||.
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Using the standard polynomial projection estimate of Vk∆x as in Lemma 2.1 and the definition

of the energy norm (2.14), we have,

|||(U − P(U))(·, T )||| ≤ C|||∂k+1
x U(·, T )|||(∆x)k.

Thus, we only need to find a bound for |||P(e)(·, T )|||. Notice here and below we use capital

letter C to represent a generic constant. Define the bilinear form C(·, ·) as,

C(w, v) =

∫ T

0

∫
Ω

wtv dxdt+

∫ T

0

N∑
j=1

∫
Ij

wxvx dxdt+ Θ(T,w, v),

with

Θ(T,w, v) =

∫ T

0

N∑
j=1

(ŵx[v])j+1/2 dt+

∫ T

0

N∑
j=1

(v̂x[w])j+1/2 dt.

From the scheme definition (2.6), we have C(u, v) = 0 and C(U, v) = 0 for any test function

v ∈ Vk∆x. This implies C(e, v) = 0 for all such v as well. With (2.18), then we have that

C(P(e), v) = C(U − P(U), v) for all v ∈ Vk∆x. Taking v = u− P(U) = P(e), we then have,

C(P(e),P(e)) = C(U − P(U),P(e)). (2.19)

For the left hand side of (2.19), noting that P(e)(·, 0) = 0 in addition to the admissibility

condition (2.10) for the numerical flux, we obtain,

C(P(e),P(e)) ≥ |||P(e)(·, T )|||2 − 1

2
||P(e)(·, T )||2L2(Ω). (2.20)

Now, turn the attention to the right hand side of (2.19),

C(U − P(U),P(e)) (2.21)

=

∫ T

0

∫
Ω

(U − P(U))tP(e) dxdt+

∫ T

0

N∑
j=1

∫
Ij

(U − P(U))xP(e)x dxdt+ Θ(T,U − P(U),P(e)),

with

Θ(T,U − P(U),P(e))

=

∫ T

0

N∑
j=1

(
̂(U−P(U))x[P(e)]

)
j+1/2

dt+

∫ T

0

N∑
j=1

(
[U−P(U)]P̂(e)x

)
j+1/2

dt.

For the first term in (2.21), with P(e) ∈ Vk∆x we have,∫ T

0

∫
Ω

(U − P(U))tP(e) dxdt = 0.

For the second term of (2.21),∫ T

0

N∑
j=1

∫
Ij

(U − P(U))xP(e)x dxdt

≤ C|||∂k+1
x U(·, T )|||2∆x2k +

1− γ
4

∫ T

0

N∑
j=1

‖P(e)x‖2L2(Ij)dt,
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here Cauchy inequality and projection error estimate as in Lemma 2.1 are used. For the third

term of (2.21), similarly we obtain,

Θ(T,U − P(U),P(e))

≤ C|||∂k+1
x U(·, T )|||2∆x2k +

1− γ
4

∫ T

0

N∑
j=1

‖P(e)x‖2L2(Ij)dt+
α

2

∫ T

0

N∑
j=1

[P(e)x]2j+1/2

∆x
.

Notice inverse inequalities as in Lemma 2.2 are needed for the above estimate. We refer to [17]

and [18] for similar estimates in detail.

Now we have the right hand side of (2.21) as,

C(U − P(U),P(e)))

≤ 1

2
|||P(e)(·, T )|||2 − 1

2
||P(e)(·, T )||2L2(Ω) + C|||∂k+1

x U(·, T )|||2∆x2k.

With the left hand side estimate (2.20), we have that |||P(e)(·, T )||| ≤ C|||∂k+1
x U(·, T )|||(∆x)k.

The needed result follows. �

Next, the L2(L2) a priori error estimate is given for the symmetric DDG method (2.6)-(2.7)

for the 1-D model equation (2.1). Optimal (k + 1)th order of accuracy is obtained with P k

polynomial approximations. A complete proof is given for the 2-D linear diffusion equation case

in §4. Therefore the proof of the 1-D case is omitted here.

Theorem 2.4. (L2(L2) error estimate in one dimension) Consider the 1-D linear model equa-

tion (2.1). Let e := u−U be the error between the exact solution U and the numerical solution

u of the symmetric DDG method (2.6)-(2.7), we have

‖e‖L2(0,T ;L2) ≤ C∆xk+1
(
‖U‖L∞(0,T ;Hk+1) + ‖U‖L2(0,T ;Hk+1) + ∆x‖Ut‖L2(0,T ;Hk)

)
.

2.3. Scheme formulation for 1-D nonlinear diffusion equations

In this section, we extend the above symmetric DDG scheme to the one-dimensional non-

linear diffusion equation,

Ut − (a(U)Ux)x = 0, for(x, t) ∈ Ω× (0, T ), (2.22)

with initial data U(x, 0) = U0(x) and periodic boundary conditions. Here, we assume the

diffusion coefficient a(U) ≥ 0. Also, denote b(s) =
∫
a(s) ds. Then, b(U)x = a(U)Ux.

Partition the domain Ω =
⋃N
j=1 Ij and consider the solution space Vk∆x as above. Then,

taking inspiration from the linear case, we have the following scheme. Find the approximate

solution u ∈ Vk∆x of U in (2.22) such that for all test functions v ∈ Vk∆x and on all Ij , we have,∫
Ij

utv dx− b̂(u)xv
∣∣∣j+1/2

j−1/2
+

∫
Ij

b(u)xvx dx+ ([b(u)]v̂x)j+1/2 + ([b(u)]v̂x)j−1/2 = 0,

with the numerical fluxes defined as
b̂(u)x = β0

[b(u)]
∆x + b(u)x + β1∆x[b(u)xx],

v̂x = β0
[v]
∆x + vx + β1∆x[vxx].

(2.23)
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Summing over all computational cells Ij provides the primal weak formulation,∫
Ω

utv dx+ B(b(u), v) = 0,

where bilinear form B(b(u), v) is as given in (2.8). Note, symmetry of this bilinear form is

maintained in the sense of B(b(u), v) = B(v, b(u)) for the nonlinear diffusion equation.

3. Extension to Two-Dimensional Nonlinear Diffusion Equations

In this section we consider the two-dimensional nonlinear parabolic equation,

Ut −∇ · (A(U)∇U) = 0, (x, t) ∈ Ω× (0, T ), (3.1)

subject to initial data U(x, 0) = U0(x) and periodic boundary conditions. The matrix A(U) =

(aij(U)) is assumed symmetric positive definite and x = (x1, x2) ∈ Ω ⊂ R2. Similar to the

one-dimensional case, we denote bij(U) =
∫
aij(U) dU , i = 1, 2, j = 1, 2.

Let T∆x = {K} be a shape-regular partition of the domain Ω with elements K and denote

∆x = maxK diam(K). As before, define P k(K) as the space of polynomials in the element

K which are of degree at most k. Then, we have the piecewise polynomial numerical solution

space as below,

Vk∆x = {v ∈ L2(Ω) : v
∣∣
K
∈ P k(K),∀K ∈ T∆x}.

Along the element boundary ∂K, we use vintK to denote the value of v evaluated from inside

the element K. Correspondingly we use vextK to denote the value of v evaluated from outside

the element K (inside the neighboring element). The average and jump of v on edge ∂K are

defined as

v =
1

2

(
vextK + vintK

)
, [v] = vextK − vintK .

3.1. Scheme formulation for 2-D linear equation

For sake of presentation, we first consider the case where A(U) = I in (3.1). This gives us

the below 2-D heat equation

Ut −∆U = 0, (x, t) ∈ Ω× (0, T ), (3.2)

associated with initial data U(x, t = 0) = U0(x) and periodic boundary conditions. As in

the 1-D case, multiply the equation by test function, integrate over the computational cell K,

perform integration by parts, add interface terms to symmetrize the scheme, and we have the

following symmetric DDG scheme formulation. We seek the numerical solution u ∈ Vk∆x of U

in (3.2) such that for all test functions v ∈ Vk∆x and on all elements K we have∫
K

utv dx +

∫
K

∇u · ∇v dx−
∫
∂K

ûnv
intK ds+

∫
∂K

v̂n[u] ds = 0, (3.3)

where the numerical flux at the cell boundary ∂K is defined as

ŵn = ∇̂w · n = β0
[w]

∆x
+
∂w

∂n
+ β1∆x[wnn]. (3.4)

Note, in the numerical flux definition, ∆x is the average of the diameter of K and the diameter

of its neighboring element. Here n = (n1, n2) is the outward unit normal along the element
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boundary ∂K. If the cell boundaries are straight lines, such as for triangular meshes, the

numerical flux can be further simplified as

ŵn = ŵx1n1 + ŵx2n2,

with 
ŵx1

= β0
[w]
∆xn1 + wx1 + β1∆x[wx1x1n1 + wx2x1n2],

ŵx2
= β0

[w]
∆xn2 + wx2

+ β1∆x[wx1x2
n1 + wx2x2

n2].

Again, the test function v is taken to be zero outside the element K, thus only one side (inside

of K) contributes to the computation of v̂n along the element boundary ∂K. Then, as in the

1-D case, we can define a notion of numerical flux admissibility in order to ensure L2 stability.

Definition 3.1. (Numerical flux admissibility) We call numerical flux ŵn admissible if there

exists γ ∈ (0, 1), α > 0 such that for any w ∈ Vk∆x,

γ
∑
K∈T∆

∫
K

|∇w|2 dx + 2
∑
K∈T∆

∫
∂K

ŵn[w] ds ≥ α
∑
K∈T∆

∫
∂K

[w]2

∆x
ds. (3.5)

This admissibility ensures the following stability of the symmetric DDG method.

Theorem 3.1. (Stability) Consider the symmetric DDG scheme (3.3)-(3.4). If the numerical

flux is admissible as described in (3.5), then we have

1

2

∫
Ω

u2(x, T ) dx + (1− γ)

∫ T

0

∑
K∈T∆

∫
K

|∇u|2 dxdt+ α

∫ T

0

∑
K∈T∆

∫
∂K

[u]2

∆x
dsdt

≤ 1

2

∫
Ω

u2(x, 0) dx. (3.6)

This can be proved directly by summation over all K ∈ T∆x of (3.3) with v = u and by

using the admissibility condition (3.5). For the 2-D linear model equation (3.2), we have the

following optimal energy norm error estimate.

Theorem 3.2. (Energy norm error estimate in two dimensions) Consider the 2-D linear diffu-

sion equation (3.2). Let e := u−U be the error between the exact solution U and the numerical

solution u of the symmetric DDG method (3.3)-(3.4), we have for multiindex α, |α| = k + 1,

|||u− U ||| ≤ C|||DαU(·, T )|||(∆x)k.

Here, the energy norm is the analogous two-dimensional form of the one-dimensional case. The

proof is similar to the one-dimensional case given in §2.2 and is omitted.

3.2. Scheme formulation for 2-D nonlinear diffusion equations

We consider the fully nonlinear 2-D case as given in (3.1). The scheme formulation is given

as follows. We seek approximation u ∈ Vk∆x of U in (3.1) such that the following scheme is

satisfied for all test functions v ∈ Vk∆x on all elements K,∫
K

utv dx +

∫
K

2∑
i,j=1

bij(u)xjvxi dx−
∫
∂K

2∑
i,j=1

̂bij(u)xjniv
intK ds+

∫
∂K

2∑
i,j=1

v̂xjni[bij(u)] ds = 0.

(3.7)
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For j = 1, 2, the numerical flux terms are defined as

̂bij(u)xj
= β0

[bij(u)]

∆x
nj + bij(u)xj

+ β1∆x[bij(u)x1xj
n1 + bij(u)x2xj

n2],

v̂xj = β0
[v]

∆x
nj + vxj + β1∆x[vx1xjn1 + vx2xjn2].

Again, in the above numerical flux definition, ∆x is the average of the diameter of K and its

neighboring element diameter. Notice in the following section regarding L2(L2) error analysis,

the ∆x is considered to be the maximum diameter among all elements.

4. L2(L2) Error Estimate for 2-D Linear Diffusion Equation

In this section, we carry out the L2(L2) a priori error analysis for the symmetric DDG

method (3.3)-(3.4) of the two-dimensional linear diffusion equation (3.2). We adopt the same

bilinear form notation as the 1-D case (2.8),

B(u, v) =
∑
K

∫
K

∇u · ∇v dx +
∑
K

∫
∂K

ûn[v] ds+
∑
K

∫
∂K

[u]v̂n ds. (4.1)

The primal weak formulation is obtained as,∫
Ω

utv dx + B(u, v) = 0. (4.2)

In the following theorems, we use letter C to represent a generic constant.

4.1. L2(L2) error estimate

Theorem 4.1. (L2(L2) error estimate in two dimensions) Consider the 2-D linear diffusion

equation (3.2). Let e := u − U be the error between the exact solution U and the numerical

solution u of the symmetric DDG method (3.3)-(3.4), we have

‖e‖L2(0,T ;L2(Ω)) ≤ C∆xk+1
(
‖U‖L∞(0,T ;Hk+1(Ω)) + ‖U‖L2(0,T ;Hk+1(Ω)) + ∆x‖Ut‖L2(0,T ;Hk(Ω))

)
.

Proof. We carry out the proof of the theorem in three steps. First, we apply the below

parabolic lift Theorem 4.2 and obtain the following,

‖e‖L2(0,T ;L2(Ω))

≤ C∆x

‖e‖L∞(0,T ;L2(Ω)) + ‖∇e‖L2(0,T ;L2(Ω)) +

√√√√∫ T

0

∑
K

∫
∂K

[e]2

∆x
dsdt


+ C∆x2‖et‖L2(0,T ;L2(Ω)) + C∆x3/2

√√√√∫ T

0

∑
K

∫
∂K

(en)2 dsdt

+ C∆x5/2

√√√√∫ T

0

∑
K

∫
∂K

[enn]2 dsdt.
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Second, we apply the time derivative estimate Theorem 4.3 and the interface error estimate

Theorem 4.4 to bound the ‖et‖L2(0,T ;L2(Ω)) term and the higher derivative interface terms and

obtain,

‖e‖L2(0,T ;L2(Ω))

≤ C∆x

‖e‖L∞(0,T ;L2(Ω)) + ‖∇e‖L2(0,T ;L2(Ω)) +

(∫ T

0

∑
K

∫
∂K

[e]2

∆x
dsdt

)1/2


+ C∆xk+1‖U‖L2(0,T ;Hk+1(Ω)) + C∆xk+2‖Ut‖L2(0,T ;Hk(Ω))

+ C∆xk+1‖U‖L∞(0,T ;Hk+1(Ω)).

Finally, we combine the energy estimate provided by Theorem 3.2 and the above estimate to

complete the proof.

4.2. Parabolic lift

The L2(L2) error estimate is enhanced to optimal (k+1)th order convergence rates through

the following parabolic lift theorem.

Theorem 4.2. (Parabolic lift) Let e := u − U be the error of the symmetric DDG method

(3.3)-(3.4). Assume e ∈ Hk(K), for all elements K. We then have

‖e‖L2(0,T ;L2(Ω))

≤ C∆x

‖e‖L∞(0,T ;L2(Ω)) + ‖∇e‖L2(0,T ;L2(Ω)) +

√√√√∫ T

0

∑
K

∫
∂K

[e]2

∆x
dsdt


+ C∆x2‖et‖L2(0,T ;L2(Ω)) + C∆x3/2

√√√√∫ T

0

∑
K

∫
∂K

(en)2 dsdt

+ C∆x5/2

√√√√∫ T

0

∑
K

∫
∂K

[enn]2 dsdt

Proof. Let’s consider the following dual (backward) problem,
−Φt −∆Φ = e, x ∈ Ω, t ∈ [0, T ],

Φ = 0, x ∈ ∂Ω, t ∈ [0, T ],

Φ = 0, x ∈ Ω, t = T.

By dual regularity [14], there exists a unique solution Φ to this backward problem such that

the following result holds,

‖Φ‖L∞(0,T ;H1(Ω)) + ‖Φ‖L2(0,T ;H2(Ω)) ≤ C‖e‖L2(0,T ;L2(Ω)). (4.3)

Now rewriting ‖e(·, t)‖L2(Ω) in terms of Φ, we have,

‖e(·, t)‖2L2(Ω) =
∑

K∈T∆x

∫
K

e2 dx =
∑
K

∫
K

e (−Φt −∆Φ) dx

= − d

dt

∑
K

∫
K

eΦ dx +
∑
K

∫
K

etΦ dx +
∑
K

∫
K

∇e · ∇Φ dx−
∑
K

∫
∂K

eΦn ds
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= − d

dt

∑
K

∫
K

eΦ dx +
∑
K

∫
K

etΦ dx +
∑
K

∫
K

∇e · ∇Φ dx +
∑
K

∫
∂K

Φn[e] ds

= − d

dt

∑
K

∫
K

eΦ dx +
∑
K

∫
K

etΦ dx + B(e,Φ)− β1∆x
∑
K

∫
∂K

[Φnn][e] ds.

The bilinear form B(e,Φ) is as defined in (4.1). Notice in the above estimate the last two

steps hold true because Φ ∈ H2(Ω) from the regularity of the dual problem (4.3). By use of the

general Sobolev inequality [14], we have Φ ∈ C0,α which implies [Φ] = 0 across cell interfaces.

Let P(Φ) denote the L2 projection of Φ into Vk∆x. Since P(Φ) ∈ Vk∆x, from the scheme primal

formulation we have, 〈et,P(Φ)〉+ B(e,P(Φ)) = 0. Here, we use the notation 〈w, v〉 =
∫

Ω
wv dx.

Now we can formally rewrite ‖e(·, t)‖2L2(Ω) as,

‖e(·, t)‖2L2(Ω)

=− d

dt

∑
K

〈e,Φ〉K +
∑
K

〈et,Φ− P(Φ)〉K + B(e,Φ− P(Φ))− β1∆x
∑
K

∫
∂K

[Φnn][e] ds. (4.4)

Next, let’s estimate the terms on the right hand side of (4.4). We first bound (we assume k ≥ 1

with the approximation polynomial space Vk∆x),∑
K

〈et,Φ− P(Φ)〉K ≤
∑
K

‖et‖L2(K)‖Φ− P(Φ)‖L2(K) ≤ C∆x2‖et‖L2(Ω)‖Φ‖H2(Ω).

Then we have,

B(e,Φ− P(Φ))− β1∆x
∑
K

∫
∂K

[Φnn][e] ds

=
∑
K

∫
K

∇e · ∇(Φ− P(Φ)) dx +
∑
K

∫
∂K

ên[Φ− P(Φ)] ds

+
∑
K

∫
∂K

̂(Φ− P(Φ))n[e] ds− β1∆x
∑
K

∫
∂K

[Φnn][e] ds

=I1 + I2 + I3,

with

I1=
∑
K

∫
K

∇e · ∇(Φ−P(Φ)) dx≤
∑
K

‖∇e‖L2(K)‖∇(Φ−P(Φ))‖L2(K)

≤C∆x‖∇e‖L2(Ω)‖Φ‖H2(Ω),

and

I2 =
∑
K

∫
∂K

ên[Φ− P(Φ)] ds

=
∑
K

∫
∂K

(
β0

∆x
[e] + en + β1∆x[enn]

)
[Φ− P(Φ)] ds

≤

(
Cβ0∆x1/2

√∑
K

∫
∂K

[e]2 ds+ C∆x3/2

√∑
K

∫
∂K

(en)2 ds

+Cβ1∆x5/2

√∑
K

∫
∂K

[enn]2 ds

)
‖Φ‖H2(Ω).
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For the above I1 and I2 estimates, we need Cauchy-Schwarz inequality and the projection error

estimate of Φ−P(Φ) (Lemma 2.1). This is illustrated in detail for the term
∫
∂K

[e][Φ−P(Φ)] ds

as below. ∫
∂K

[e][Φ− P(Φ)] ds

≤

√∫
∂K

[e]2 ds

√∫
∂K

[Φ− P(Φ)]2 ds ≤ ∆x1/2‖Φ− P(Φ)‖L∞(K)

√∫
∂K

[e]2 ds

≤ ∆x1/2C∆x‖Φ‖H2(K)

√∫
∂K

[e]2 ds ≤ C∆x3/2‖Φ‖H2(K)

√∫
∂K

[e]2 ds.

Similarly we can estimate the I3 term as follows,

I3 =
∑
K

∫
∂K

̂(Φ− P(Φ))n[e] ds− β1∆x
∑
K

∫
∂K

[Φnn][e] ds

=
β0

∆x

∑
K

∫
∂K

[Φ− P(Φ)][e] ds+
∑
K

∫
∂K

(Φ− P(Φ))n[e] ds− β1∆x
∑
K

∫
∂K

[P(Φ)nn][e] ds

≤
(
Cβ0∆x1/2 + C∆x1/2 + Cβ1∆x1/2

)
‖Φ‖H2(Ω)

(∑
K

∫
∂K

[e]2 ds

)1/2

.

For the last term [P(Φ)nn][e] in the above inequality, we first use inverse inequality (Lemma

2.2 with m = 2, q =∞) to bound [P(Φ)nn] with ||P(Φ)||H2(Ω). Then we rewrite ‖P(Φ)‖H2(Ω) =

‖(P(Φ)−Φ)+Φ‖H2(Ω) and use the triangle inequality and the approximation property to obtain

the estimate. Finally, apply these bounds to the right hand side of (4.4), and integrate in time

from 0 to T we obtain,

‖e(·, t)‖2L2(0,T ;L2(Ω)) ≤
∑
K

∫
K

e(·, 0)Φ(·, 0) dx + C‖Φ‖L2(0,T ;H2(Ω))Π,

where

Π =∆x2‖et‖L2(0,T ;L2(Ω)) + ∆x‖∇e‖L2(0,T ;L2(Ω))

+ [2β0 + 1 + β1] ∆x1/2

(∫ T

0

∑
K

∫
∂K

[e]2 dsdt

)1/2

+ ∆x3/2

(∫ T

0

∑
K

∫
∂K

(en)2 dsdt

)1/2

+ β1∆x5/2

(∫ T

0

∑
K

∫
∂K

[enn]2 dsdt

)1/2

. (4.5)

For the initial term we have,∑
K

∫
K

e(·, 0)Φ(·, 0) dx

=
∑
K

∫
K

e(·, 0)(Φ(·, 0)− P(Φ)(·, 0)) dx ≤
∑
K

‖e(·, 0)‖L2(K)‖Φ(·, 0)− P(Φ)(·, 0)‖L2(K)

≤ C∆x‖e(·, 0)‖L2(Ω)‖Φ(·, 0)‖H1(Ω) ≤ C∆x‖e‖L∞(0,T ;L2(Ω))‖Φ‖L∞(0,T ;H1(Ω)).
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This implies that

‖e‖2L2(0,T ;L2(Ω)) ≤ C∆x‖e‖L∞(0,T ;L2(Ω))‖Φ‖L∞(0,T ;H1(Ω)) + C‖Φ‖L2(0,T ;H2(Ω))Π.

With the dual regularity result (4.3) we finally obtain,

‖e‖L2(0,T ;L2(Ω)) ≤ C∆x‖e‖L∞(0,T ;L2(Ω)) + CΠ,

where Π is as given in (4.5). �

4.3. Time derivative error estimate and interface error estimate

To finish the L2(L2) error estimate, we need to bound the time derivative error term

‖et‖L2(0,T ;L2(Ω)) = ‖ut − Ut‖L2(0,T ;L2(Ω)) as well as the two high order derivative interface

terms. Theorem 4.3 provides this for the time derivative term, and Theorem 4.4 considers the

two interface terms.

Theorem 4.3. (Time derivative error estimate) Let e := u− U be the error of the symmetric

DDG method (3.3)-(3.4), then we have,

‖et‖L2(0,T ;L2) + ‖∇e‖L∞(0,T ;L2)

≤ C∆xk−1‖U‖L2(0,T ;Hk+1) + C∆xk‖U‖L∞(0,T ;Hk+1) + C∆xk‖Ut‖L2(0,T ;Hk).

Proof. As in the energy norm error estimate, we rewrite the error as e = u−U = u−P(U)+

P(U) − U = P(e) − ξ. For sake of presentation we introduce notation ξ := U − P(U). Then,

again use 〈v, w〉 to denote the L2 inner product. From the DDG scheme (3.3), we get that for

all v ∈ Vk∆x,

〈et, v〉+ B(e, v) = 0,

which implies that

〈P(e)t, v〉+ B(P(e), v) = 〈ξt, v〉+ B(ξ, v).

The bilinear form B(·, ·) is as defined in (4.1). Choose v = P(e)t ∈ Vk∆x and we have,

〈P(e)t,P(e)t〉+ B(P(e),P(e)t) = 〈ξt,P(e)t〉+ B(ξ,P(e)t). (4.6)

After integration in time, the goal will be to bound the left hand side of (4.6) below and the

right hand side of (4.6) above to obtain the estimate of ‖P(e)t‖L2(0,T ;L2(Ω)). Beginning with

the left hand side, we have the terms 〈P(e)t,P(e)t〉 = ‖P(e)t‖2L2(Ω) and

B(P(e),P(e)t)

=
∑
K

∫
K

∇P(e) · ∇(P(e)t) dx +
∑
K

∫
∂K

P̂(e)n[P(e)t] ds+
∑
K

∫
∂K

(̂P(e)t)n[P(e)] ds

=
∑
K

∫
K

∇P(e) · ∇(P(e)t) dx +
2β0

∆x

∑
K

∫
∂K

[P(e)][P(e)t] ds+
∑
K

∫
∂K

P(e)n[P(e)t] ds

+ β1∆x
∑
K

∫
∂K

[P(e)nn][P(e)t] ds+
∑
K

∫
∂K

(P(e)t)n[P(e)] ds

+β1∆x
∑
K

∫
∂K

[(P(e)t)nn][P(e)] ds

=
∂

∂t
(T1 + T2 + T3 + T4),
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where

T1 =
1

2

∑
K

∫
K

|∇P(e)|2 dx, T2 =
β0

∆x

∑
K

∫
∂K

[P(e)]2 ds,

T3 =
∑
K

∫
∂K

P(e)n[P(e)] ds, T4 = β1∆x
∑
K

∫
∂K

[P(e)nn][P(e)] ds.

Note, here the symmetry of the bilinear form B(·, ·) is essential to obtain this complete time

derivative. We then integrate in time of (4.6) and have the left hand side as,∫ t

0

〈P(e)t,P(e)t〉 dτ +

∫ t

0

B(P(e),P(e)t) dτ

=

∫ t

0

‖P(e)t‖L2(Ω) dτ +

4∑
i=1

Ti(t)−
4∑
i=1

Ti(0). (4.7)

We leave T1(t) and T2(t) terms for now because they are positive. For T3(t) and T4(t) terms

we have∣∣∣T3(t)
∣∣∣ =

∣∣∣∑
K

∫
∂K

P(e)n[P(e)] ds
∣∣∣ ≤ ε1∆x

∑
K

∫
∂K

(P(e)n)2 ds+
1

4ε1

∑
K

∫
∂K

[P(e)]2

∆x
ds

≤ ε1C‖∇P(e)‖2L2(Ω) +
1

4ε1

∑
K

∫
∂K

[P(e)]2

∆x
ds,

and ∣∣∣T4(t)
∣∣∣ =

∣∣∣β1∆x
∑
K

∫
∂K

[P(e)nn][P(e)] ds
∣∣∣

≤ ε2∆x
∑
K

∫
∂K

∆x2[P(e)nn]2 ds+
β2

1

4ε2

∑
K

∫
∂K

[P(e)]2

∆x
ds

≤ ε2C‖∇P(e)‖2L2(Ω) +
β2

1

4ε2

∑
K

∫
∂K

[P(e)]2

∆x
ds.

Again, inverse inequalities are used for the above T3 and T4 estimates. The constant C solely

depends on the polynomial degree of the approximation space Vk∆x. Here we choose small

enough ε1 and ε2 to guarantee 1
2−C(ε1+ε2) > 0. Since, by definition, P(e)(0) = u(0)−P(U(0)) =

0, thus we have Ti(0) = 0 for i = 1, · · · , 4. Now we are ready to obtain a lower bound of (4.7)

as follows,∫ t

0

〈P(e)t,P(e)t〉 dτ +

∫ t

0

B(P(e),P(e)t) dτ

≥
∫ t

0

‖P(e)t‖2L2(Ω) dτ +

[
1

2
− ε1C − ε2C

]
‖∇P(e)‖2L2(Ω)+

[
β0−

1

4ε1
− β

2
1

4ε2

]∑
K

∫
∂K

[P(e)]2

∆x
ds

≥
∫ t

0

‖P(e)t‖2L2(Ω) dτ + C‖∇P(e)‖2L2(Ω) + C
∑
K

∫
∂K

[P(e)]2

∆x
ds. (4.8)

Next, consider the right hand side of (4.6). First we have,

〈ξt,P(e)t〉 ≤ ε3‖P(e)t‖2L2(Ω) +
1

4ε3
‖ξt‖2L2(Ω) ≤ ε3‖P(e)t‖2L2(Ω) + C

∆x2k

4ε3
‖Ut‖2Hk(Ω).
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We require Ut ∈ Hk(Ω) in order for this projection estimate to hold. Also, we have the following,

B(ξ,P(e)t)

=
∑
K

∫
K

∇ξ · ∇(P(e)t) dx +
∑
K

∫
∂K

ξ̂n[P(e)t] ds+
∑
K

∫
∂K

(̂P(e)t)n[ξ] ds

=
∑
K

∫
K

∇ξ · ∇(P(e)t) dx +
2β0

∆x

∑
K

∫
∂K

[ξ][P(e)t] ds+
∑
K

∫
∂K

ξn[P(e)t] ds

+ ∆xβ1

∑
K

∫
∂K

[ξnn][P(e)t] ds+
∑
K

∫
∂K

(P(e)t)n[ξ] ds+ ∆xβ1

∑
K

∫
∂K

[(P(e)t)nn][ξ] ds

=: S1 + S2 + S3 + S4 + S5 + S6.

With the projection error estimate and the inverse inequalities, the estimate of these Si’s are

obtained as below.

S1 =
∑
K

∫
K

∇ξ · ∇(P(e)t) dx ≤ ∆x2ε4‖∇(P(e)t)‖2L2(Ω) +
1

4ε4∆x2
‖∇ξ‖2L2(Ω)

≤ ε4C‖P(e)t‖2L2(Ω) +
C

4ε4
∆x2k−2|U |2Hk+1(Ω),

S2 =
2β0

∆x

∑
K

∫
∂K

[ξ][P(e)t] ds ≤
∑
K

∫
∂K

∆xε5[P(e)t]
2 +

β2
0

4ε5∆x3
[ξ]2 ds

≤ ε5C‖P(e)t‖2L2(Ω) +
Cβ2

0

4ε5
∆x2k−2|U |2Hk+1(Ω),

S3 =
∑
K

∫
∂K

ξn[P(e)t] ds ≤
∑
K

∫
∂K

∆xε6[P(e)t]
2 +

1

4ε6∆x
(ξn)2 ds

≤ ε6C‖P(e)t‖2L2(Ω) +
C

4ε6
∆x2k−2|U |2Hk+1(Ω),

S4 = ∆xβ1

∑
K

∫
∂K

[ξnn][P(e)t] ds ≤
∑
K

∫
∂K

∆xε7[P(e)t]
2 +

∆x

4ε7
β2

1 [ξnn]2 ds

≤ ε7C‖P(e)t‖2L2(Ω) +
Cβ2

1

4ε7
∆x2k−2|U |2Hk+1(Ω),

S5 =
∑
K

∫
∂K

(P(e)t)n[ξ] ds ≤
∑
K

∫
∂K

∆x3ε8(P(e)t)
2

n +
1

4ε8∆x3
[ξ]2 ds

≤ ε8C‖P(e)t‖2L2(Ω) +
C

4ε8
∆x2k−2|U |2Hk+1(Ω),

S6 = ∆xβ1

∑
K

∫
∂K

[(P(e)t)nn][ξ] ds ≤
∑
K

∫
∂K

∆x5ε9[(P(e)t)nn]2 +
β2

1 [ξ]2

4ε9∆x3
ds

≤ ε9C‖P(e)t‖2L2(Ω) +
Cβ2

1

4ε9
∆x2k−2|U |2Hk+1(Ω).

We choose small enough εi, i = 3, · · · , 9 to balance the left hand side term ‖P(e)t‖2L2 . Integrate

in time, we obtain the upper bound of the right hand side of (4.6) as,∫ t

0

〈ξt,P(e)t〉 dτ +

∫ t

0

B(ξ,P(e)t) dτ

≤ ε
∫ t

0

‖P(e)t‖2L2(Ω) dτ + C∆x2k‖Ut‖2L2(0,T ;Hk(Ω)) + C∆x2k−2‖U‖2L2(0,T ;Hk+1(Ω)), (4.9)
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where ε = ε3 + C
∑9
i=4 εi. Then, combining (4.9) with (4.8) we obtain∫ t

0

‖P(e)t‖2L2(Ω) +
∑
K

∫
K

|∇P(e)|2 dx +
∑
K

∫
K

[P(e)]2

∆x
ds

≤ C∆x2k−2‖U‖2L2(0,T ;Hk+1) + C∆x2k‖Ut‖2L2(0,T ;Hk).

Recall that e = P(e)− ξ and make use of the triangle inequality and projection error estimates

of ξ = U − P(U), finally we have,

‖et‖L2(0,T ;L2) + ‖∇e‖L∞(0,T ;L2)

≤ C∆xk−1‖U‖L2(0,T ;Hk+1) + C∆xk‖U‖L∞(0,T ;Hk+1) + C∆xk‖Ut‖L2(0,T ;Hk).

Theorem 4.4. (Interface error estimates) Let e := u− U be the error of the symmetric DDG

method (3.3)-(3.4), we have,

∆x3/2

(∫ T

0

∑
K

∫
∂K

(en)2dsdt

)1/2

≤ C∆xk+1‖U‖L2(0,T ;Hk+1(Ω))+C∆xk+1‖U‖L∞(0,T ;Hk+1(Ω)),

∆x5/2

(∫ T

0

∑
K

∫
∂K

[enn]2dsdt

)1/2

≤ C∆xk+1‖U‖L2(0,T ;Hk+1(Ω))+C∆xk+1‖U‖L∞(0,T ;Hk+1(Ω)).

Proof. These results can be obtained using similar techniques as in the proof of the above

theorem. Again we use ξ = U − P(U) to represent the projection error. We have,

∆x3/2

(∫ T

0

∑
K

∫
∂K

((U − u)n)2 dsdt

)1/2

= ∆x3/2

(∫ T

0

∑
K

∫
∂K

((U − P(U) + P(U)− u)n)2 dsdt

)1/2

≤
√

2∆x3/2

(∫ T

0

∑
K

∫
∂K

(ξn)2 ds+
∑
K

∫
∂K

(P(e)n)2 dsdt

)1/2

≤ C∆x3/2
(

∆xk−1/2‖U‖L2(0,T ;Hk+1(Ω)) + ∆x−1/2‖∇P(e)‖L2(0,T ;L2(Ω))

)
≤ C∆xk+1‖U‖L2(0,T ;Hk+1(Ω)) + C∆xk+1‖U‖L∞(0,T ;Hk+1(Ω)).

In the last step, results from the energy norm estimate were made use of. The proof of the

second interface estimate is similar. �

5. Numerical Examples

In this section, we provide numerical examples to illustrate the performance of the symmetric

DDG method. One and two-dimensional linear and nonlinear problems are considered. We
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note here that 2-D numerical examples are implemented on rectangular meshes. For each

computation, Table 2.1 is used as a guideline for the choice of numerical flux coefficients (β0, β1).

Note, in all examples the error is measured using the regular L2 and L∞ norms in space at end

time T . The L∞ error is obtained by evaluating 200 sample points per cell.

Example 5.1. 1-D linear diffusion equation{
Ut − Uxx = 0, x ∈ [0, 2π],

U(x, 0) = sin(x),
(5.1)

with periodic boundary conditions.

Table 5.1: 1-D linear equation (5.1), P k polynomial approximations with uniform mesh. T = 1.

Error Error Order Error Order Error Order

N = 10 N = 20 N = 40 N = 80

β0 3/2 k = 2 L2 1.92E-03 2.36E-04 3.0 2.93E-05 3.0 3.66E-06 3.0

β1 1/4 L∞ 3.64E-03 4.70E-04 3.0 5.92E-05 3.0 7.42E-06 3.0

β0 11/4 k = 3 L2 2.60E-05 1.58E-06 4.0 9.81E-08 4.0 6.12E-09 4.0

β1 3/32 L∞ 5.87E-05 3.67E-06 4.0 2.32E-07 4.0 1.46E-08 4.0

β0 9/2 k = 4 L2 6.92E-07 2.07E-08 5.1 6.40E-10 5.0 1.99E-11 5.0

β1 1/20 L∞ 1.68E-06 5.33E-08 5.0 1.67E-09 5.0 5.23E-11 5.0

N = 8 N = 12 N = 16 N = 20

β0 27/4 k = 5 L2 1.86E-07 1.67E-08 5.9 2.99E-09 6.0 7.87E-10 6.0

β1 1/32 L∞ 3.25E-07 2.97E-08 5.9 5.37E-09 6.0 1.42E-09 6.0

β0 19/2 k = 6 L2 3.06E-09 1.32E-10 7.7 1.48E-11 7.6 2.81E-12 7.4

β1 3/140 L∞ 4.84E-09 2.40E-10 7.4 2.97E-11 7.3 6.02E-12 7.2

We use this example to verify the optimal convergence of the symmetric DDG method with

three tests. The first is carried out on a uniform mesh. Note, for k = 0, 1 in this linear case,

the symmetric DDG scheme is the same as the SIPG method, thus we begin with quadratic

polynomial approximations. Degree k polynomial approximations with k = 2, · · · , 6 are tested,

and optimal (k + 1)th orders of convergence are achieved. See Table 5.1 for L2 and L∞ errors

and orders of convergence. Also, recall that N denotes the total number of computational cells.

Table 5.2: 1-D linear equation (5.1), uniform mesh, P 2 quadratic polynomial approximations. Admis-

sibility test with different (β0, β1) pair.

Error Error Order Error Order Error Order

N = 10 N = 20 N = 40 N = 80

β0 9/2 k = 2 L2 1.68E-03 1.75E-04 3.3 2.07E-05 3.1 2.55E-06 3.0

β1 1/2 L∞ 2.62E-03 3.13E-04 3.1 3.87E-05 3.0 4.83E-06 3.0

β0 3/2 k = 2 L2 1.92E-03 2.36E-04 3.0 2.93E-05 3.0 3.66E-06 3.0

β1 1/4 L∞ 3.64E-03 4.70E-04 3.0 5.92E-05 3.0 7.42E-06 3.0

β0 9/4 k = 2 L2 5.65E-04 7.10E-05 3.0 8.90E-06 3.0 1.11E-06 3.0

β1 1/8 L∞ 1.04E-03 1.33E-04 3.0 1.66E-05 3.0 2.08E-06 3.0

β0 171/50 k = 2 L2 2.90E-04 3.61E-05 3.0 4.50E-06 3.0 5.63E-07 3.0

β1 1/20 L∞ 5.80E-04 7.31E-05 3.0 9.16E-06 3.0 1.15E-06 3.0

β0 393/100 k = 2 L2 2.59E-04 3.19E-05 3.0 3.97E-06 3.0 4.96E-07 3.0

β1 1/40 L∞ 5.20E-04 6.50E-05 3.0 8.12E-06 3.0 1.01E-06 3.0
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The second test addresses the numerical flux admissibility provided by Theorem 2.2, which is

explored computationally. There is a wide range of flux coefficients (β0, β1) which are admissible

as defined by (2.10). Fig. 2.1 illustrates the admissibility region for (β0, β1) pairs with k =

1, 2, . . . , 10. In this test, different β1 values are selected and the correspondingly smallest

admissible β0 is computed from (2.12) with α = 1, γ = 1
2 . We list convergence results for

quadratic approximations (k = 2) in Table 5.2, and numerically the optimal 3rd order of

accuracy is observed for wide range of (β0, β1) pairs.

Table 5.3: 1-D linear equation (5.1), P k approximations on nonuniform mesh. T = 1.

Error Error Order Error Order Error Order

N = 18 N = 36 N = 54 N = 72

β0 20 k = 2 L2 1.41E-04 1.79E-05 3.0 5.45E-06 2.9 2.39E-06 2.9

β1 1/4 L∞ 4.18E-04 5.95E-05 2.8 1.80E-05 2.9 7.68E-06 3.0

β0 25 k = 3 L2 6.70E-06 4.23E-07 4.0 8.41E-08 4.0 2.68E-08 4.0

β1 3/32 L∞ 2.22E-05 1.35E-06 4.0 2.75E-07 3.9 8.71E-08 4.0

β0 25 k = 4 L2 1.02E-07 3.02E-09 5.1 4.00E-10 5.0 9.67E-11 4.9

β1 1/20 L∞ 3.52E-07 1.12E-08 5.0 1.50E-09 5.0 3.59E-10 5.0

The third test is implemented on a nonuniform mesh. The nonuniform mesh is generated

by repeating the pattern ∆x
5 , 3∆x

10 , and ∆x
2 , where ∆x = 2π

N . Table 5.3 provides the convergence

results on such a nonuniform mesh. Note, for this nonuniform mesh it was observed computa-

tionally that a larger β0 was needed for the numerical flux pair. Similar requirement on large

β0 is needed for the SIPG method.

Example 5.2. 1-D nonlinear porous medium equation

Ut − (2UUx)x = 0, x ∈ [−12, 12]. (5.2)

The exact solution is given by

U(x, t) =

(t+ 1)−1/3
(

3− x2

12(t+1)2/3

)
, |x| < 6(t+ 1)1/3,

0, |x| ≥ 6(t+ 1)1/3.

Table 5.4: 1-D nonlinear porous medium equation (5.2), P k polynomial approximations, T = 1.

Error Error Order Error Order Error Order

N = 40 N = 80 N = 160 N = 320

β0 1/2 k = 0 L2 3.54E-02 1.77E-02 1.0 8.84E-03 1.0 4.42E-03 1.0

β1 0 L∞ 1.45E-01 7.36E-02 1.0 3.71E-02 1.0 1.87E-02 1.0

β0 2 k = 1 L2 1.29E-03 3.20E-04 2.0 8.02E-05 2.0 2.00E-05 2.0

β1 1/80 L∞ 4.69E-03 1.15E-03 2.0 2.92E-04 2.0 7.29E-05 2.0

β0 2 k = 2 L2 3.25E-05 7.30E-08 8.8 1.49E-09 5.6 1.40E-10 3.4

β1 1/80 L∞ 4.04E-04 9.48E-07 8.7 3.31E-09 8.2 3.03E-10 3.4

We see that the wave solution travels with finite speed. Accuracy tests are carried out and

results are listed in Table 5.4 at final time T = 1. We obtain (k+1)th order of accuracy with P k

polynomial approximations. Note that errors and orders are computed within domain [−6, 6]

where the solution is smooth. In Fig. 5.1 we illustrate the evolution of the symmetric DDG



A New Direct DG Method for Nonlinear Diffusion Equations 659

Fig. 5.1. 1-D nonlinear porous medium equation (5.2) at T = 1, 2, 4.

solution at times T = 1, 2, 4. In each cell, we output the polynomial solution value at the center

(symbols) to make up the whole figure. We see the symmetric DDG solution resolves the two

kinked corners well with no oscillations.

Example 5.3. 2-D linear diffusion equation{
Ut − ε (Uxx + Uyy) = 0, (x, y) ∈ [0, 2π]× [0, 2π],

U(x, 0) = sin(x+ y),
(5.3)

Table 5.5: 2-D linear equation (5.3), P k approximations with k = 2, 3, 4. T = 5.

Error Error Order Error Order Error Order

N = 10 N = 20 N = 30 N = 40

β0 3/2 k = 2 L2 6.32E-03 9.13E-04 2.8 2.71E-04 3.0 1.14E-04 3.0

β1 1/4 L∞ 1.24E-02 1.84E-03 2.7 5.47E-04 3.0 2.30E-04 3.0

β0 11/4 k = 3 L2 3.74E-04 2.51E-05 3.9 5.01E-06 4.0 1.61E-06 3.9

β1 3/32 L∞ 2.32E-03 1.24E-04 4.2 2.48E-05 4.0 7.85E-06 4.0

β0 9/2 k = 4 L2 1.79E-05 5.07E-07 5.1 6.60E-08 5.0 1.56E-08 5.0

β1 1/20 L∞ 1.01E-04 3.00E-06 5.1 3.93E-07 5.0 9.34E-08 5.0

with periodic boundary conditions and ε = 0.01. P k polynomial approximations are carried out

and errors and orders are listed in Table 5.5 with k = 2, 3, 4. Optimal convergence is obtained.

Note the numerical flux coefficients are chosen according to the 1-D analysis.

Example 5.4. 2-D anisotropic linear diffusion equation{
Ut − ε (Uxx + Uxy + Uyy) = 0, (x, y) ∈ [0, 2π]× [0, 2π],

U(x, 0) = sin(x+ y),
(5.4)

with ε = 0.01. On the rectangular mesh Ii×Ij = [xi−1/2, xi+1/2]×[yj−1/2, yj+1/2], the numerical

flux for the mixed term should be taken as (according to (3.7)),

ûx = ux + β1∆x[uyx], at y = yj±1/2.
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Again, accuracy test is carried out with P k approximations and errors and orders are listed

in Table 5.6 with final time T = 5. Optimal (k + 1)th order of convergence is obtained.

Example 5.5. 2-D nonlinear porous medium equation

Ut − (U2)xx − (U2)yy = 0, (x, y) ∈ [−10, 10]× [−10, 10], (5.5)

with zero boundary conditions. The initial condition is given by two bumps as

U0(x, y) =


e

−1

6−(x−2)2−(y+2)2 , (x− 2)2 + (y + 2)2 < 6,

e
−1

6−(x+2)2−(y−2)2 , (x+ 2)2 + (y − 2)2 < 6,

0, otherwise.

Table 5.6: 2-D anisotropic diffusion equation (5.4), P k polynomial approximations with k = 2, 3, 4.

Error Error Order Error Order Error Order

N = 10 N = 20 N = 30 N = 40

β0 5 k = 2 L2 2.69E-03 3.29E-04 3.0 9.69E-05 3.0 4.08E-05 3.0

β1 1/12 L∞ 1.87E-02 2.27E-03 3.0 6.68E-04 3.0 2.82E-04 3.0

β0 5 k = 3 L2 3.11E-04 2.03E-05 3.9 4.11E-06 3.9 1.33E-06 3.9

β1 1/40 L∞ 2.03E-03 1.30E-04 4.0 2.61E-05 4.0 8.32E-06 4.0

β0 30 k = 4 L2 1.94E-05 5.54E-07 5.1 7.24E-08 5.0 1.77E-08 4.9

β1 1/40 L∞ 8.51E-05 2.26E-06 5.2 2.90E-07 5.1 6.91E-08 5.0

Fig. 5.2. 2-D nonlinear porous medium equation (5.5) at times T = 0, 0.5, 1.0, and 4.0.

Piecewise linear approximation with numerical flux coefficients β0 = 3
2 and β1 = 1

10 is

implemented on a 80× 80 rectangular mesh. Note, even though a linear approximation is used,

second order jump terms are included within the numerical flux in the scheme formulation (3.7)

because of the nonlinearity of the given problem. Results of this test are illustrated in Fig. 5.2

with T = 0, 0.5, 1.0, and 4.0. The symmetric DDG solution effectively captures the evolution

of the surface with sharp resolution. The results agree well with those in literature, see [19].
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