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Abstract

In this paper, by exploiting the special block and sparse structure of the coefficient

matrix, we present a new preconditioning strategy for solving large sparse linear systems

arising in the time-dependent distributed control problem involving the heat equation with

two different functions. First a natural order-reduction is performed, and then the reduced-

order linear system of equations is solved by the preconditioned MINRES algorithm with a

new preconditioning techniques. The spectral properties of the preconditioned matrix are

analyzed. Numerical results demonstrate that the preconditioning strategy for solving the

large sparse systems discretized from the time-dependent problems is more effective for a

wide range of mesh sizes and the value of the regularization parameter.
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1. Introduction

In this paper, we focus on preconditioned iterative methods for solving the large linear

system arising in the time-dependent distributed control problem involving the heat equation.

Specifically, we consider the following distributed control of the heat equations:

min
y,u

J(y, u),

subject to







∂y
∂t −∇2y = u, for (x, t) ∈ Ω× (0, T ),

y = f, on ∂Ω × (0, T ),

y = y0, at t = 0,

(1.1)

for certain functional J(y, u), where f and y0 depend maybe on x but not on t. Two target

functionals to be considered in this paper are

J1(y, u) =
1

2

∫ T

0

∫

Ω

(y(x, t)− ȳ(x, t))2dΩdt+
β

2

∫ T

0

∫

∂Ω

(u(x, t))2dΩdt,
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and

J2(y, u) =
1

2

∫

Ω

(y(x, T )− ȳ(x))2dΩ +
β

2

∫ T

0

∫

∂Ω

(u(x, t))2dΩdt.

Here y, u, ȳ and p are vectors corresponding to the state, control, desired state and adjoint at

all time steps 1, 2, · · · , Nt, respectively, and β is the regularization parameter.

By the way of J(y, u) = J1(y, u) being applied the discretize-then-optimize approach ([20,34]),

which discretizes this problem with equal-order finite element basis functions for y, u, and the

adjoint variable p, results in the linear system ([34])





τM1/2 0 KT

0 βτM1/2 −τM1,1

K −τM1,1 0









y

u

p



 =





τM1,1ȳ

0

d



 , (1.2)

where K , M1/2 and M1,1 are all matrices in R
(nNt)×(nNt), and

K =











M + τK

−M M + τK

. . .
. . .

−M M + τK

−M M + τK











,

M1/2 =











1
2M

M

. . .

M
1
2M











, d =











M1,1y0 + c

c
...

c

c











.

Here and in the following, I denotes the identity matrix. Denote by

M2 :=











2M

M

. . .

M

2M











, Is :=











sI

I

. . .

I

sI











,

Mγ,δ :=











γM

γM

. . .

γM

δM











∈ R
(nNt)×(nNt),

where s = 1
2 or 2. In the above, Nt is the number of time steps of (constant) size τ used

to discretize the PDEs, c the boundary conditions of the PDEs and M a finite element mass

matrix and K a stiffness matrix on Ω, which are of the dimension n×n with n being the degrees

of freedom of the finite element approximation.

If J(y, u) = J1(y, u) is alternatively used in the optimize-then-discretize approach, the linear
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system (1.2) becomes





τM1,0 0 KT

0 βτM1/2 −τM1,1

K −τM1,1 0









y

u

p



 =





τM1,0ȳ

0

d



 . (1.3)

If J(y, u) = J2(y, u), using the discretize-then-optimal approach, the linear system becomes





τM0,1 0 KT

0 βτM1/2 −τM1,1

K −τM1,1 0









y

u

p



 =





τM0,1ȳ

0

d



 . (1.4)

As many other problems involving optimization with constraints ([18, 21, 23, 26]), after dis-

cretization, these problems often lead to the linear system of equations (1.2), (1.3) or (1.4) of

saddle point structure, see, e.g., [14–16, 25, 30, 32–34]. We see that the total size of the linear

system (1.2), (1.3) or (1.4) is (3nNt) × (3nNt). A key fact about the discretization of these

systems is that the matrix blocks may be extremely large even for rather coarse mesh dis-

cretizations because of the higher dimensional setting. Therefore iterative methods are usually

employed for their solution and finding an efficient numerical method becomes very important.

Moreover, this system must be properly preconditioned in order to avoid stagnation in the

convergence in terms of the norm of the residual. Many efficient iterative and preconditioned

methods have been studied in many literature. For example, Uzawa-like methods ([10, 16]),

GSOR methods ([9]), RPCG methods ([8]), HSS-like methods ([4, 6, 7]), and so on. We refer

to [3,14] for algebraic properties for saddle point problems. However, the matrix splitting meth-

ods can not be separated from the preconditioning techniques, which can be found in many

literature, e.g., [2, 3, 9, 11, 16, 17, 20, 28, 30, 34]. Thus research has recently gone into developing

preconditioners ([1,2,5,22,24,25,27–30,32–34]) that are insensitive to regularization parameter

as well as the mesh size.

Recently, Pearson, Stoll and Wathen ([27]) built a solver for the boundary control problem,

both in the time-independent Poisson control and the time-dependent heat equation control

cases. It is well known that an initial reduction ( [12, 32]) of the matrix size may lead to

significant savings, as long as this reduction does not entail extra computational burden.

In this paper, following the strategies of [12, 21, 24, 25, 27] and [32], first a particularly

simple and effective reduction is performed. Thus the total size of the linear system (1.2), (1.3)

or (1.4) can be reduced to (2nNt) × (2nNt). Then the solution of the reduced-order linear

system exploits to build effective preconditioning techniques for the obtained reduced-order

system. Finally, a new preconditioning needs only to be concerned with the relevant blocks

in the reduced-order system is presented. Numerical experiments show that the CPU time to

solve the structured linear system of equations arising in the time-dependent PDE-constrained

optimization problems is significantly reduced for a wide range of mesh sizes and the value of

the regularization parameter. Therefore the new preconditioning strategy in this paper is much

effective.

The organization of the paper is as follows. In Section 2, a new strategy for solving the

structured linear system of equations arising in time-dependent PDE-constrained optimization

problems is described. First, the reduced-order linear system is established and then the pre-

conditioning technique for the reduced-order system is presented. In Section 3, the theoretical

analysis of the preconditioning approaches is given. In Section 4, numerical results for a variety

of test problems to demonstrate the effectiveness of the new strategy for solving the structured
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linear system of equations arising in time-dependent PDE-constrained optimization problems

are provided. In Section 5, some concluding remarks are given.

2. The New Solution Strategy

In this section, firstly, the reduced-order linear systems for the structured linear systems

(1.2), (1.3) and (1.4) will be obtained. Then some new structured preconditioning techniques

for the reduced-order linear system will be explored.

Noticing that M1/2 in (1.2) is a symmetric positive definite(SPD) matrix, and the middle

block leads to (βτM1/2)u = (τM1,1)p. Hence we have

u =
1

β











2I

I

. . .

I

2I











p =
1

β
I2p.

Then the number of blocks of the linear system (1.2) can be decreased from 3 × 3 to 2 × 2,

resulting in the reduced-order linear system

(

τM1/2 KT

K − 1
β τM2

)(
y

p

)

=

(
τM1,1ȳ

d

)

,

or equivalently,

A1

(
y

p

)

:=

(

A1 KT

K − 1
βC

)(
y

p

)

=

(
τM1,1ȳ

d

)

, (2.1)

where A1 := τM1/2, C := τM2.

In a similar way, the reduced-order system for (1.3) can be written as

(

τM1,0 KT

K − 1
β τM2

)(
y

p

)

=

(
τM1,0ȳ

d

)

.

Because M1,0 is a rank-deficient matrix (see [34]), we use M1,γ instead of the matrix M1,0

and choose 0 < γ ≪ 1 so that the matrix M1,γ is SPD and sufficiently approximate to M1,0.

Then the reduced-order system for (1.3) can be rewritten as

A2

(
y

p

)

:=

(

A2 KT

K − 1
βC

)(
y

p

)

=

(
τM1,γ ȳ

d

)

, (2.2)

with A2 = τM1,γ .

By the same strategies as above, we useMγ,1 instead of the matrixM0,1. The reduced-order

system for the linear system (1.4) can be obtained as

(

τMγ,1 KT

K − 1
β τM2

)(
y

p

)

=

(
τMγ,1ȳ

d

)

.
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Also the reduced-order linear system for (1.4) can be rewritten as

A3

(
y

p

)

:=

(

A3 KT

K − 1
βC

)(
y

p

)

=

(
τMγ,1ȳ

d

)

, (2.3)

with A3 = τMγ,1.

Next, we consider preconditioning techniques for the reduced-order linear systems (2.1),

(2.2) and (2.3). Noticing that all the three reduced-order linear systems (2.2), (2.3) and (2.4)

have the same form:

Az :=

(

A BT

B − 1
βC

)

z = g, (2.4)

where A and C ∈ R
(nNt)×(nNt) are SPD matrices and B ∈ R

(nNt)×(nNt) is a block lower-

triangular matrix with symmetric positive definite diagonal blocks.

For the general form of the reduced-order linear system (2.4), there exist many efficient

preconditioners.

When A and B are symmetric positive semi-definite and with at least one of them being

positive definite, Bai ([5]) introduced an additive block diagonal preconditioner. Following this

idea, we can consider the following additive block diagonal preconditioner for the reduced-order

linear system (2.4), denoted by PABD:

PABD =

(

A+
√
βB

1
β (C +

√
βB)

)

.

The block diagonal preconditioner with the Schur complement can be described as

PS =

(

A
1
βC +BA−1BT

)

.

In practice, solving linear systems involving the Schur complement can be expensive. In an

actual implementation, an application of preconditioner will involve some approximate of the

Schur complement.

Based on the approach for approximation of the Schur complement developed in [28] (see

also in [1, 13]), we give some new preconditioner for the linear systems (2.1)-(2.4).

We define E1 := 1√
β
A+Bd, E2 := 1√

β
C+Bd, where Bd = Blkdiag(B) is the block diagonal

matrix with the block the same in the diagonal block in B. We have (Bd + 1√
β
A)A−1(Bd +

1√
β
C)T = E1A−1E2. Then we can obtain a modified preconditioner

PMS =

(
A

E1A−1E2

)

. (2.5)

PMS can be seen as a block diagonal preconditioner with an approximation Schur complement,

more detail about this preconditioner can be found in [27].

Based on the approach of [1,5,13] and [27], we propose a new ABD−like preconditioner for

the reduced-order linear system (2.4):

PABD−like =

(√
βE1

1√
β
E2

)

. (2.6)
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Let

E12 := (M + τK) +
1

2
√
β
τM, E21 := (M + τK) +

2√
β
τM,

Eγ = (M + τK) +
γ√
β
τM, E := (M + τK) +

1√
β
τM.

With the preconditioner PABD−like defined in (2.6) being applied to the three reduced-order

linear systems (2.1)-(2.3), we can obtain immediately the preconditioners P1new,P2new and

P3new for the linear systems (2.1), (2.2) and (2.3), respectively. Here

P1new = blkdiag(
√

βE12,
√

βE, · · · ,
√

βE,
√

βE12
︸ ︷︷ ︸

Nt

,
1√
β
E21,

1√
β
E, · · · , 1√

β
E,

1√
β
E21

︸ ︷︷ ︸

Nt

),

P2new = blkdiag(
√

βE,
√

βE, · · · ,
√

βE,
√

βEγ
︸ ︷︷ ︸

Nt

,
1√
β
E21,

1√
β
E, · · · , 1√

β
E,

1√
β
E21

︸ ︷︷ ︸

Nt

),

P3new = blkdiag(
√

βEγ ,
√

βEγ , · · · ,
√

βEγ ,
√

βE
︸ ︷︷ ︸

Nt

,
1√
β
E21,

1√
β
E, · · · , 1√

β
E,

1√
β
E21

︸ ︷︷ ︸

Nt

).

3. Spectral Analysis of the Reduced-Order Linear Systems

In this section, we will analyze the spectral properties of the reduced-order and the pre-

conditioned reduced-order linear system. Some theoretical bounds on the spectrum of the

preconditioned matrix are established.

First some basic notations and definition will be introduced. Let A and C ∈ R
(nNt)×(nNt) be

SPD matrices and B ∈ R
(nNt)×(nNt) be block lower-triangular matrix with symmetric positive

definite diagonal blocks. Define S := BTB.

Here and in the sequel, λ(·), α· , β· and λ· denote the eigenvalue, the minimum eigenvalue,

the maximum eigenvalue and the Rayleigh quotients of the matrix (·), respectively. sp(·) denotes
the set of the eigenvalues of the matrix (·). Suppose that

αA ≤ λA ≤ βA, αC ≤ λC ≤ βC , αS ≤ λS ≤ βS .

First, we consider the spectral properties for the general form of the reduced-order linear

systems (2.4). The result straightforwardly follows from [31] or the Proposition 2.1 in [32].

Theorem 3.1. Assume that the matrix A is the coefficient matrix defined in (2.4), then

sp(A) ⊆ I− ∪ I+,

where

I− =

[
1

2
(− 1

β
βA −

√
1

β2
β2
A + 4βS ,

1

2
(βA −

√

β2
A + 4αS)

]

,

I+ =

[
1

2
(− 1

β
βA +

√
1

β2
β2
A + 4αS,

1

2
(βA +

√

β2
A + 4βS)

]

.
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From Theorem 3.1, we can see that the eigenvalues of the coefficient matrix before precondi-

tioning is dependent of O( 1β ), so they increase rapidly when β ≪ 1. Therefore a preconditioning

technique must be taken to change the ill-conditioning property of the linear system. Next we

give the spectral properties of the preconditioned matrix P−1
ABD−likeA.

We give bounds about the preconditioned matrices for the preconditioned linear systems

(2.1), (2.2) and (2.3), respectively.

Theorem 3.2. Let µ be the eigenvalue of the preconditioned matrix P−1
ABD−likeA, A and PABD−like

be defined in (2.4) and (2.6), respectively. Assume that the eigenvector corresponding to the

eigenvalue µ is (xT , yT )T . Then

µ =
1

2

( b̃

a
− b

a

)

± 1

2

√
( b̃

a
− b

a

)2

+ 4
( 1

β

c

a
+

1

a

)

, (3.1)

where







a :=
yTB−TE1B−1E2y

yT y
, b :=

yTB−TE1B−1Cy

yT y
,

c :=
yTB−TAB−1Cy

yT y
, b̃ :=

yTB−TAB−1E2y
yT y

.

(3.2)

Proof. Noting the properties of the matrices A, B and C, we know that x 6= 0 and y 6= 0.

Then we have
{

Ax +BT y =
√
βµE1x,

Bx− 1
βCy = µ 1√

β
E2y.

By substituting x = 1
βB

−1(µ
√
βE2 + C)y into the first equation, after some simple algebra

computations, we have

µ2 y
TB−TE1B−1E2y

yT y
+

µ√
β

(
yTB−TE1B−1Cy

yT y
− yTB−TAB−1E2y

yT y

)

−
(
1

β

yTB−TAB−1Cy

yT y
+ 1

)

= 0.

Using the definitions of a, b, b̃ and c in (3.2), we can rewrite the above equation as

µ2a+
µ√
β
(b − b̃)−

( 1

β
c+ 1

)

= 0.

The roots of the above equation gives (3.1). �

Theorem 3.3. Let A be one of the matrices A1, A2 or A3, where A1, A2, A3 and A are defined

in (2.1), (2.2), (2.3) and (2.4), respectively. Let µ be an eigenvalue of the preconditioned matrix

P−1
ABD−likeA with A being defined in (2.4). Then

µ ∈
[
1

2

(

− 1

β
b2 −

√
1

β2
b22 + 4d2

)

,
1

2

(

a2 −
√

a22 + 4c2

)]

⋃
[
1

2

(

− 1

β
b2 +

√
1

β2
b22 + 4c2

)

,
1

2

(

a2 +
√

a22 + 4d2

)]

,
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where

a2 =
1

1 +
√
β( 1τ + αK

βM
)
, b2 =

β

1 +
√
β

2τ (1 + τ αK

βM

)
,

c2 =
αS

(τβM +
√
β(βM + τβK))(2τβ βM + 1√

β
(βM + τβK))

,

d2 =
βS

(rταM +
√
β(αM + ταK))( τβαM + 1√

β
(αM + ταK))

.

Here r = 1
2 when A = A1, and r = γ when A = A2 or A3.

Proof. Denote by

Ã := P− 1

2

ABD−likeAP− 1

2

ABD−like =

(

Ã B̃T

B̃ − 1
β C̃

)

=

(

P− 1

2AP− 1

2 P− 1

2BTR− 1

2

R− 1

2BP− 1

2 − 1
βR

− 1

2CR− 1

2

)

,

where

PABD−like =

(
P

R

)

=

(√
βE1

1√
β
E2

)

.

From Theorem 3.1, we can get bounds for the eigenvalues of the preconditioned matrix

P−1
ABD−likeA as Ĩ− ∪ Ĩ+, where

Ĩ− =

[
1

2

(

− 1

β
βC̃ −

√
1

β2
β2
C̃
+ 4βS̃

)

,
1

2

(

βÃ −
√

β2
Ã
+ 4αS̃

)]

,

Ĩ+ =

[
1

2

(

− 1

β
βC̃ +

√
1

β2
β2
C̃
+ 4αS̃

)

,
1

2

(

βÃ +
√

β2
Ã
+ 4βS̃

)]

.

(3.3)

In order to obtain bounds for the eigenvalues of the preconditioned matrix corresponding to

A = A1 or A = A2 (or A3), we first compute the largest eigenvalues of Ã and C̃, and the largest

and smallest eigenvalues of the matrix S̃ = B̃T B̃.

When A = A1, r = 1
2 , we have P =

√
βE1 and R = 1√

β
E2. Then

yT Ãy

yT y
=

xTAx

xT (A+
√
βBd)x

=
1

1 +
√
β · xTBdx

xTAx

≤ 1

1 +
√
β( 1τ + αK

βM

)
:= βÃ,

yT C̃y

yT y
=

1
1
β + 1√

β
· xTBdx

xTCx

≤ β

1 +
√
β

2τ (1 + τ αK

βM

)
:= βC̃ .

Noticing that

BT (
1

β
C +

1√
β
Bd)

−1B ∼ (
1

β
C +

1√
β
Bd)

− 1

2BBT (
1

β
C +

1√
β
Bd)

− 1

2 ,

we see that

yT B̃T B̃y

yT y
=

xTBT ( 1βC + 1√
β
Bd)

−1Bx

xT (A+
√
βBd)x

=
pT ( 1βC + 1√

β
Bd)

− 1

2BBT ( 1βC + 1√
β
Bd)

− 1

2 p

pT p
· xTx

xT (A+
√
βBd)x
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=
zTBBT z

zT z

zT z

zT ( 1βC + 1√
β
Bd)z

xTx

xT (A+
√
βBd)x

≤ βS

(rταM +
√
β(αM + ταK))( τβαM + 1√

β
(αM + ταK))

:= βS̃ ,

and
yT B̃T B̃y

yT y
≥ αS

(τβM +
√
β(βM + τβK))(2τβ βM + 1√

β
(βM + τβK))

:= αS̃ .

Substituting βÃ := a2, βC̃ := b2, αS̃ := c2 and βS̃ := d2 into (3.3) gives the designed result. �

For the case A = A2 or A3, we only need to replace r = 1
2 by r = γ in the above proof.

4. Numerical Experiments

In this section, some numerical examples are given to support the theoretical results. We

examine our new strategy by using the following time-dependent PDE-constrained optimization

problem, which is used in [27]:

min
y,u

J(y, u),

subject to







∂y
∂t −∇2y = u, for (x, t) ∈ Ω× (0, T ),

y = f, on ∂Ω × (0, T ),

y = y0, at t = 0.

(4.1)

The experiments are performed for T = 1 and τ = 0.05, i.e., 20 time-steps, the domain consid-

ered Ω = [0, 1]2 is a unit square, the desired state is given by

ȳ(x1, x2) =







(2x1 − 1)2(2x2 − 1)2, if (x1, x2) ∈ [0,
1

2
]2,

0, otherwise.
(4.2)

The zero Dirichlet boundary condition for the distributed control problem, with f = 0 and

y0 = 1, is considered in all the experiments.

In our implementations, all iteration processes are terminated once the Euclidean norms of

the current relative residuals are reduced by a factor of 10−4 from those of the initial residuals.

The relative residual error (denoted as err) is defined as

err =
‖g −Az(k)‖2
‖g −Az(0)‖2

.

Table 4.1: Information about the experimental environments.

Hardware and Software Details

Computer Microsoft Window XP, Professional, Service Pack 3

AMD Phenom(tm) II X4 830 Processor

2.79GHz,Memory 3.00GB

Version of Matlab R2009b(7.9.0.529)

32-bit(win32)
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We also use the degree of freedom (DoF) to represent the order of matrix tested in our perfor-

mance, IT is the number of iteration steps and CPU is the elapsed CPU time in seconds. PS

and PMS are the preconditioners for the original linear system (before order-reduced):

PS =






τH
βτM1/2

1
τKH−1K + τ

βM1,1(M1/2)
−1M1,1




 ,

PMS =






τH
βτM1/2

1
τ (K + τ√

β
M1,1)H−1(K + τ√

β
M1,1)




 ,

where H is referred to M1/2 in Example 4.1, M1,γ in Example 4.2, and Mγ,1 in Example 4.3,

respectively. For details about this example, we refer to [19, 27].

Example 4.1. The time-dependent distributed control problem is defined by (4.1)-(4.2).

In Example 4.1, we minimize J = J1 with discretize-then-optimize approach. We refer

to [19, 27] for a more detailed description about this example. The problem is discretized in

time using a backward Euler implicit time-stepping method with Nt time steps of size τ , which

results in the linear system (1.2).

Example 4.2. The time-dependent distributed control problem is the same as Example 4.1.

In Example 4.2, we use the optimize-then-discretize approach ( [27]) with J(y, u) =

J1(y, u) and discretize in time using a backward Euler implicit time-stepping method with Nt

time steps of size τ , which leads to the linear system (1.3).
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Fig. 4.1. Eigenvalue distributions for Example 4.1 with β = 10−8. Before preconditioning(top left

corner ), preconditioned by PS(top right corner), PMS (left bottom), P1new (right bottom).
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Table 4.2: Preconditioned by PS, PMS and the new preconditioning strategy for Example 4.1.

DoF β PS PMS P1new

2940

10−2 IT 2 14 19

CPU 0.15 0.61 0.06

10−4 IT 2 20 12

CPU 0.15 0.84 0.04

10−6 IT 2 26 13

CPU 0.15 1.04 0.04

13500

10−2 IT 2 14 16

CPU 3.24 13.21 0.32

10−4 IT 2 22 13

CPU 3.24 19.76 0.27

10−6 IT 2 26 12

CPU 3.29 22.73 0.25

Example 4.3. The time-dependent distributed control problem is described as the above.

For this Example, applying the discretize-then-optimize formulation with J(y, u) = J2(y, u)

approach, by the same discretizing way as Example 4.1, we obtain the linear system (1.4).

Eigenvalue distributions of the preconditioned matrices are very important to analyze the

Table 4.3: Numerical results with different β for Example 4.1.

DoF β PS PMS P1new

2940

10−2 IT 6 10 19

CPU 0.28 0.40 0.06

10−4 IT 13 13 12

CPU 0.53 0.51 0.04

10−6 IT 10 15 13

CPU 0.43 0.58 0.04

10−10 IT 1 4 4

CPU 0.10 0.20 0.02

10−2 IT 6 10 16

CPU 6.34 9.62 0.32

10−4 IT 13 13 13

13500 CPU 13.27 11.90 0.27

10−6 IT 13 17 12

CPU 12.27 15.50 0.25

10−10 IT 3 4 6

CPU 3.99 4.90 0.14

Table 4.4: Numerical results for larger DoF for Example 4.1.

DoF P1new β = 10−2 β = 10−4 β = 10−8

57660
IT 15 12 13

CPU 1.89 1.55 1.66

238140
IT 13 12 13

CPU 10.15 9.49 10.17

253500
IT 16 13 12

CPU 33.62 21.11 19.32
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Fig. 4.2. Eigenvalue distributions for Example 4.2 with β = 10−8, γ = τβ and DoF=2940). Before

preconditioning(top left corner ), preconditioned by PS(top right corner), PMS (left bottom), P2new

(right bottom).
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Fig. 4.3. Eigenvalue distributions for Example 4.3 with β = 10−8, γ = 10−3. Before preconditioning(top

left corner ), preconditioned by PS(top right corner), PMS (left bottom), P3new (right bottom).
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Table 4.5: Preconditioned by PS, PMS and the new preconditioning strategy for Example 4.2.

DoF β γ = 0.5 PS PMS P2new

2940

10−2 IT 2 22 19

CPU 0.15 0.90 0.06

10−4 IT 2 16 12

CPU 0.15 0.68 0.05

10−6 IT 2 26 13

CPU 0.14 1.04 0.04

13500

10−2 IT 2 16 16

CPU 3.24 14.89 0.33

10−4 IT 2 24 13

CPU 3.19 21.09 0.28

10−6 IT 2 26 12

CPU 3.25 22.92 0.26

Table 4.6: Numerical results with different γ for Example 4.2.

DoF : 2940 β = 10−4
PS PMS P2new

γ = τ
IT 14 21 19

CPU 0.54 0.34 0.061

γ = τβ
IT 14 35 20

CPU 0.55 0.55 0.07

γ = β2 IT 14 42 20

CPU 0.55 0.73 0.08

γ = (τβ)2
IT 14 46 20

CPU 0.55 0.69 0.06

Table 4.7: Numerical results with different γ for Example 4.2.

DoF:13500 β = 10−4
PS PMS P2new

γ = τβ
IT 14 37 22

CPU 12.85 9.15 0.44

γ = β2 IT 14 53 22

CPU 12.92 12.61 0.44

γ = (τβ)2
IT 14 44 22

CPU 12.01 10.43 0.44

Table 4.8: Numerical results with different β for Example 4.2.

DoF:13500 γ = τ PS PMS P2new

β = 10−2 IT 7 13 16

CPU 6.31 3.23 0.33

β = 10−4 IT 14 21 17

CPU 12.87 5.39 0.35

β = 10−6 IT 17 26 19

CPU 14.57 6.67 0.40

β = 10−10 IT 4 17 12

CPU 3.98 4.28 0.26
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Table 4.9: Numerical results for larger DoF using new preconditioning strategy for Example 4.2.

P2new, DoF γ = τ β = 10−2 β = 10−4 β = 10−8

57660
IT 15 17 22

CPU 1.90 2.11 2.68

238140
IT 13 17 21

CPU 10.22 12.93 15.73

253500
IT 13 17 22

CPU 33.56 35.11 53.32

Table 4.10: Preconditioned by PS, PMS and the new preconditioning strategy for Example 4.3.

DoF β γ = 0.5 PS PMS P3new

2940

β = 10−2 IT 2 16 19

CPU 0.15 0.66 0.06

β = 10−4 IT 2 28 12

CPU 0.15 1.12 0.04

β = 10−6 IT 2 32 11

CPU 0.15 1.27 0.03

13500

β = 10−2 IT 2 14 17

CPU 3.33 13.24 0.34

β = 10−4 IT 2 24 12

CPU 3.30 21.20 0.27

β = 10−6 IT 2 28 11

CPU 3.29 24.63 0.24

Table 4.11: Numerical results with different β for Example 4.3.

γ = τ DoF:2940 PS PMS P3new

β = 10−8 IT 9 18 15

CPU 0.37 0.29 0.05

β = 10−6 IT 17 27 18

CPU 0.66 0.43 0.06

β = 10−4 IT 13 28 20

CPU 0.51 0.43 0.06

β = 10−2 IT 5 37 19

CPU 0.24 0.58 0.06

Table 4.12: Numerical results with different β and γ for Example 4.3.

(β, γ) DoF:2940 PS PMS P3new

(102, 0.01)
IT 1 5 21

CPU 0.10 0.63 0.07

(10−2, 0.01)
IT 21 30 19

CPU 1.96 2.67 0.07

(10−4, 0.0001)
IT 13 43 29

CPU 0.51 3.85 0.09

(10−10, 0.001)
IT 18 25 14

CPU 1.71 2.21 0.05
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Table 4.13: Numerical results for larger DoF using new preconditioning strategy for Example 4.3.

DoF P3new β = 10−8, γ = 0.05 β = 10−8, γ = 0.1 β = 10−8, γ = 0.5

13500
IT 20 16 11

CPU 0.99 0.33 0.24

57660
IT 21 18 13

CPU 2.63 2.27 1.72

238140
IT 20 17 11

CPU 15.08 13.03 8.97

253500
IT 20 17 12

CPU 57.92 50.55 35.90

Table 4.14: Numerical results with the stopping criterion 10−6 using new preconditioning strategy.

γ β DoF: 2940 13500 57660 238140

Example 4.1 −

10−2 IT 27 25 24 23

CPU 0.33 2.09 13.08 84.85

10−4 IT 20 20 20 18

CPU 0.25 1.70 11.09 68.71

10−8 IT 13 17 20 19

CPU 0.21 1.43 11.07 72.46

Example 4.2

0.05

10−2 IT 27 26 24 23

CPU 0.33 2.15 13.06 85.75

10−4 IT 27 28 27 26

CPU 0.33 2.27 14.58 94.45

10−8 IT 23 32 32 31

CPU 0.32 2.64 17.08 102.63

0.5

10−2 IT 27 25 24 23

CPU 0.34 2.13 12.58 82.01

10−4 IT 20 20 20 18

CPU 0.25 1.71 10.69 65.45

10−8 IT 12 17 19 19

CPU 0.21 1.41 10.22 69.75

Example 4.3

0.05 10−8 IT 24 28 29 29

CPU 0.36 2.49 16.44 110.97

0.1 10−8 IT 19 24 26 25

CPU 0.29 1.98 15.18 96.22

0.5 10−8 IT 13 18 18 18

CPU 0.22 1.49 10.64 70.63

preconditions properties. In Figs. 4.1-4.3, we depict the eigenvalue distributions in the complex

plane.

Fig. 4.1 shows the eigenvalue distributions of the coefficient matrix without preconditioning

and preconditioned by PS , PMS and P1new for Example 4.1, respectively.

Figs. 4.2 and 4.3 depict the eigenvalue distributions of the coefficient matrix without pre-

conditioning and preconditioned by PS , PMS and P2new or P3new for Example 4.2 or Example

4.3, respectively.

From Theorem 3.3, we can obtain the real intervals of the eigenvalues of the matrices

P−1
1newA1, P−1

2newA2 and P−1
3newA3 are [−1.0692,−2.0048× 10−6]∪ [2.0008× 10−6, 1.0674] (when

r = 1
2 ), [−2.1107,−2.0048× 10−6] ∪ [2.0008× 10−6, 2.1094] (when r = τβ and β = 10−8) and
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Table 4.15: Numerical results with the stopping criterion 10−6 preconditioned by PS or PMS .

γ β DoF: 2940 13500

Pre.: PS PMS PS PMS

Example 4.1 −

10−2 IT 8 10 8 29

CPU 0.48 0.73 13.69 10.98

10−4 IT 19 20 19 20

CPU 0.99 0.50 28.35 7.92

10−8 IT 5 9 10 17

CPU 0.33 0.26 16.29 7.01

Example 4.2

0.05

10−2 IT 10 29 10 29

CPU 0.57 0.70 16.44 11.33

10−4 IT 21 29 21 29

CPU 1.08 0.68 31.17 11.06

10−8 IT 9 23 18 32

CPU 0.53 0.55 29.26 13.12

0.5

10−2 IT 8 29 8 27

CPU 0.47 0.68 13.52 10.20

10−4 IT 19 20 19 20

CPU 1.01 0.49 28.62 8.12

10−8 IT 5 9 10 16

CPU 0.33 0.28 17.28 6.72

Example 4.3

0.05 10−8 IT 13 25 21 36

CPU 0.73 0.61 31.96 13.93

0.1 10−8 IT 10 19 19 30

CPU 0.58 0.47 29.19 11.78

0.5 10−8 IT 7 10 12 18

CPU 1.86 0.28 19.83 7.42

[−2.0691,−2.0048×10−6]∪ [2.0008×10−6, 2.0678] (when r = 10−3 and β = 10−8), respectively.

From Figs. 4.1-4.3 we see that the experimental results are in agreement with theoretical

analysis. In Tables 4.2-4.13, we list the numbers of iteration steps, the computing times with

respect to the preconditioners PS , PMS and PABD−like, which are employed to precondition

MINRES with the stopping criterion 10−4. Tables 4.14-4.15 list the numerical results (numbers

of iteration steps, the computing times) with respect to the preconditioners PS , PMS and

PABD−like with the stopping criterion 10−6.

For Examples 4.1-4.3, we can apply PS , PMS , PS , PMS and P1new (or P2new or P3new) to

serve as preconditioners for MINRES.

Table 4.2 shows the numerical results for Example 4.1 using preconditioner PS , PMS and

P1new . Table 4.3 gives the numerical results for Example 4.1 using preconditioner PS , PMS and

P1new . And Table 4.4 list the numerical results for Example 4.1 preconditioned by and P1new

for larger DoF.

From Tables 4.1-4.3 we see that the new preconditioning strategy requires larger number

of iteration steps in some cases, but costs less computing time. Moreover, the difference in

computing time becomes more significant for larger DoF.

Similarly, Tables 4.5-4.9 and Tables 4.10-4.13 show the numerical results for Example 4.2

and Example 4.3, respectively.

From Tables 4.14-4.15 we see that the results with the stopping criterion 10−4 can be
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extended to the case when the stopping criterion is 10−4. Besides, when preconditioned by PS

or PMS , if the matrix dimension DOF is more than 57660, the computer will be out of memory.

However, when using new preconditioning strategy preconditioned, it works well.

From Tables 4.2-4.15, we observe that in terms of computing time new preconditioning

strategy perform significantly better than the other solvers (such as preconditioned by PS and

PMS )in solving these problems. The new preconditioning strategy costs less computing time

than other solvers and the difference becomes much greater when the mesh is more refined. And

the new preconditioning strategy seems to be more effective for a wider range of regularization

parameter values as well as mesh sizes for solving the large sparse system which is discretized

from time-dependent PDE-constrained optimization problem.

5. Conclusions

By utilizing the algebraic properties and the sparse structures of the coefficient matrix,

we present a new preconditioning strategy for solving the large sparse system arising in the

time-dependent PDE-constrained optimization problems. By using a particularly simple and

effective reduction, we first obtain the order-reduced structural linear system. Then a new

effective preconditioner is proposed for the reduced-order linear system. Spectral analysis of the

original and the preconditioned reduced-order linear system are discussed. Numerical examples

illustrate that the new preconditioning strategy shows great advantage in the CPU time for

solving this kind of problems for a wide range of mesh sizes and regularization parameter.

Acknowledgments. The work was supported by the National Natural Science Foundation

of China (11271174). The authors would like to thank the referees for the comments and

constructive suggestions, which are valuable in improving the quality of the manuscript.

References

[1] O. Axelsson, M. Neytcheva, B. Ahmad, A comparison of iterative methods to solve complex valued

linear algebraic systems, TR 2013-005.

[2] Z.-Z. Bai, Block preconditioners for elliptic PDE-constrained optimization, Computing, 91 (2011),

379–395.

[3] Z.-Z. Bai, Structured preconditioners for nonsingular matrices of block two-by-two structures,

Math. Comput., 75 (2006), 791–815.

[4] Z.-Z. Bai, Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading

blocks, J. Comput. Appl. Math., 237 (2013), 295–306.

[5] Z.-Z. Bai, F. Chen, Z.-Q. Wang, Additive block diagonal preconditioning for block two-by-two

linear systems of skew-Hamiltonian coefficient matrices, Numer. Algor., 62 (2013), 655–675.

[6] Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-

Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603–626.

[7] Z.-Z. Bai, G.H. Golub, J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods

for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1–32.

[8] Z.-Z. Bai, G.-Q. Li, Restrictively preconditioned conjugate gradient methods for systems of linear

equations, IMA J. Numer. Anal., 23 (2003), 561–580.

[9] Z.-Z. Bai, B.N. Parlett, Z.-Q. Wang, On generalized successive overrelaxation methods for aug-

mented linear systems, Numer. Math., 102 (2005), 1–38.

[10] Z.-Z. Bai, Z.-Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point

problems, Linear Algebra Appl., 428 (2008), 2900–2932.



232 M.L. ZENG AND G.F. ZHANG

[11] Z.-Z. Bai, M.K. Ng, Z.-Q. Wang, Constraint preconditioners for symmetric indefinite matrices,

SIAM J. Matrix Anal. Appl., 31 (2009), 410–433.

[12] Z.-Z. Bai, M. Benzi, F. Chen, Z.-Q. Wang, Preconditioned MHSS iteration methods for a class of

block two-by-two linear systems with applications to distributed control problems, IMA J. Numer.

Anal., 33 (2013), 343–369.

[13] Z.-Z. Bai, On preconditioned iteration methods for complex linear systems, J. Engrg. Math., 2013.

[14] M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14

(2005), 1–137.

[15] M. Benzi, V. Simoncini, On the eigenvalues of a class of saddle point matrices, Numer. Math.,

103 (2006), 173–196.

[16] J.H. Bramble, J.E. Pascisk, Analysis of the inexact Uzawa algorithm for saddle point problems,

Comput. Optim. Appl., 34 (1997), 1072–1092.

[17] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991.

[18] M. Gunzburger, C. Trenchea, Optimal control of the time-periodic MHD equations, Nonlinear

Anal., 63 (2005), 1687–1699.

[19] H.C. Elman, A. Ramage, D.J. Silvester, Algorithm 866: IFISS, A Matlab toolbox for modelling

incompressible flow, ACM Trans. Math. Softw., 33 (2007).

[20] M. Hinze, Optimization with PDE constraints, Springer, 2009.

[21] M. Kollmann, M. Kolmbauer, U. Langer, M. Wolfmayr, W. Zulehner, A robust finite element

solver for a multiharmonic parabolic optimal control problem, Comput. Math. Appl., 65 (2013),

469–486.

[22] M. Kolmbauer, Efficient solvers for multiharmonic eddy current optimal control problems with

various constraints and their analysis, IMA J. Numer. Anal., 2012, doi: 10.1093/imanum/drs025.

[23] M.Kollmann, M. Kolmbauer, A preconditioned MinRes solver for time-periodic parabolic optimal

control problems, Numer. Linear Algebra Appl., 2012, doi: 10.1002/nla.1842.

[24] M. Kolmbauer, U. Langer, A robust preconditioned Minres solver for distributed time-periodic

eddy current optimal control problems, SIAM J. Sci. Comput., 34 (2012), 785–809.

[25] W. Krendl, V. Simoncini, W. Zulehner, Stability estimates and structural spectral properties of

saddle point problems, Numer. Math., 124 (2013), 183–213.

[26] J.L. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer,

1971.

[27] J.W. Pearson, M. Stoll, A.J. Wathen, Regularization-robust preconditioners for time-dependent

PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), 1126–1152.

[28] J.W. Pearson, A.J. Wathen, A new approximation of the Schur complement in preconditioners

for PDE-constrained optimization, Numer. Linear Algebra Appl., 19 (2012), 816–829.

[29] T. Rees, M. Stoll, Block-triangular preconditioners for PDE-constrained optimization, Numer.

Linear Algebra Appl., 17 (2010), 977–996.
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