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Abstract

An effective algorithm for solving large saddle-point linear systems, presented by Krukier

et al., is applied to the constrained optimization problems. This method is a modification

of skew-Hermitian triangular splitting iteration methods. We consider the saddle-point

linear systems with singular or semidefinite (1, 1) blocks. Moreover, this method is applied

to precondition the GMRES. Numerical results have confirmed the effectiveness of the

method and showed that the new method can produce high-quality preconditioners for the

Krylov subspace methods for solving large sparse saddle-point linear systems.
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1. Introduction

Large sparse linear systems of saddle-point type arise in different applications. In many

cases the matrix of such linear system has zero (2, 2) block. Consider iterative solution of the

large sparse indefinite system of linear equations in block-structured form

(
M ET

E 0

)(
u

µ

)
=

(
f

g

)
.

The matrix M ∈ R
p×p is assumed to be symmetric positive semidefinite, the matrix E ∈ R

q×p

has full row rank, q ≤ p, f ∈ R
p and g ∈ R

q are two given vectors. Here ET denotes the

transpose of the matrix E. We assume that matrices M and E have no nontrivial null vectors.

It is the condition that guarantees the existence and uniqueness of the solution; see [2].

This linear system corresponds to minimizing the quadratic objective functional J(u) ≡
1
2u

TMu − uT f , subject to q linear constraints Eu = g. The Lagrangian functional L(u, µ) =

J(u)+µT (Eu−g) is associated with this constrained minimization problem, µ denotes the vector

of Lagrange multipliers. Here M is the Hessian of the quadratic function to be minimized, and

E is the Jacobian of the linear constraints [10, 11, 14].

A number of solvers have been developed for saddle-point linear systems in recent years,

for example, projection methods [8], null space methods [1], HSS-like methods [3, 4, 6, 9],

generalized successive overrelaxation methods [7], SSOR-like methods [18], and so on.
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We consider cases when the (1, 1) block in the linear system is semidefinite or singular.

Frequently the singularity appears in the form of semidefiniteness. Our approach is based

on augmentation of the (1, 1) block. We replace the (1, 1) block by a matrix that is much

easier to invert. We employ the augmented Lagrangian method, the matrix M will be replaced

by a positive definite matrix, and iterative methods can be applied to solve the augmented

linear system. We replace the quadratic objective functional J(u) by a regularized functional

Jγ(u) ≡ J(u)+γ‖Eu−g‖2W , where γ > 0 is a parameter, W = WT > 0 is a weighting matrix of

size q, and ‖Eu−g‖2W = (Eu−g)TW (Eu−g). The augmented Lagrangian Lγ(u, µ) associated

with the minimization of Jγ(u) is defined as [13]:

Lγ(u, µ) = L(u, µ) +
γ

2
‖Eu− g‖2W . (1.1)

In the augmented saddle-point linear system, matrix M will be replaced by the matrix M̃ ≡

M + γETWE that will be positive definite for γ > 0. Applying the first derivative test to

determine the saddle point of Lγ(u, µ) yields the following linear system [13, 14]:

(
M̃ ET

E 0

)(
u

µ

)
=

(
f + γETWg

g

)
. (1.2)

Clearly, this linear system has precisely the same solution as the original one.

Recently in [15] the authors presented generalized skew-Hermitian triangular splitting it-

eration method (GSTS) for solving large non-Hermitian linear systems. The GSTS iteration

method reduces to the skew-Hermitian triangular splitting (STS) iteration method studied in

[17] and the product-type skew-Hermitian triangular splitting (PSTS) iteration method es-

tablished in [16]. Then authors applied the GSTS iteration method to solve non-Hermitian

saddle-point linear systems, proved its convergence under suitable restrictions on the iteration

parameters, and implemented the method by solving the Stokes problem [15].

For iteratively solving linear systems arising in the constrained optimization problems, we

use the GSOR [7] and the GSTS iteration methods. Numerical results show that the GSTS

iteration method is effective for solving saddle-point linear systems arising in the constrained

optimization problems with singular or semidefinite (1, 1) blocks by the augmented Lagrangian

method.

2. Iteration Methods

We can rewrite the saddle-point linear system into an equivalent non-symmetric form [10,11]

Ax = b, (2.1a)

where

A =

(
M ET

−E 0

)
, x =

(
u

µ

)
, b =

(
f

−g

)
. (2.1b)

The matrix A ∈ R
(p+q)×(p+q) is positive stable now, that is, the eigenvalues of A have

positive real parts [9, 11]. Analogous to [5] the matrix A can be split into its symmetric and

skew-symmetric parts as

A = AH +AS , (2.2)
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where

AH =
1

2
(A+AT ), AS =

1

2
(A−AT ). (2.3)

The symmetric and the skew-symmetric parts of the matrix A are given by

AH =

(
M 0

0 0

)
, AS =

(
0 ET

−E 0

)
, (2.4)

and the skew-symmetric part AS can be split into

AS = KL +KU =

(
0 0

−E 0

)
+

(
0 ET

0 0

)
, (2.5)

where 0 is a zero matrix with suitable dimension, KL and KU are, respectively, the strictly

lower- and the strictly upper- triangular parts of AS . Note that KL = −KT
U . Based on these

splittings, in [15] the authors established the generalized skew-Hermitian triangular splitting

(GSTS) iteration method for solving the saddle-point linear systems. Note that the GSTS

iteration method can be applied when (2, 2) block of the linear system is not equal to zero.

Let the matrix BC be defined as

BC =

(
B1 0

0 B2

)
, (2.6)

where B1 and B2 are symmetric and nonsingular matrices.

We have the following iteration sequence for the approximate solution x(k) of the saddle-

point linear systems:

x(k+1) = G(ω1, ω2, τ)x
(k) + τB(ω1, ω2)

−1b, (2.7a)

where

G(ω1, ω2, τ) = B(ω1, ω2)
−1(B(ω1, ω2)− τA) = I − τB(ω1, ω2)

−1A, (2.7b)

and τ is a positive parameter. Here, the matrix B(ω1, ω2) is defined as

B(ω1, ω2) = (BC + ω1KL)B
−1
C (BC + ω2KU ), (2.7c)

where ω1 and ω2 are nonnegative acceleration parameters and, at least, one of them is nonzero.

Method 2.1. (The GSTS Iteration Method) ([15]) Given an initial guess x(0) = (u(0), µ(0)) ∈

R
(p+q), and a positive iteration parameter τ , for k = 0, 1, 2, .... until {x(k)} convergence, compute

{
B2µ

(k+1) = B2µ
(k) + τ [ω1EB−1

1 (f −Mu(k) − ETµ(k)) + Eu(k) − g],

B1u
(k+1) = B1u

(k) − τMu(k) + ET [(ω2 − τ)µ(k) − ω2µ
(k+1)] + τf,

(2.8)

where ω1 and ω2 are nonnegative acceleration parameters and, at least, one of them is nonzero.

We consider two cases for the GSTS iteration method according to the different choices

of the matrix B2, and obtain effective solvers for the saddle-point linear systems. In actual

implementations we choose B1 = M̃ .
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Method 2.2. (The GSOR Iteration Method) ([7])

Let S ∈ R
q×q be a nonsingular and symmetric matrix. Given an initial guess x

(0) =

(u(0), µ(0)) ∈ R
(p+q), for k = 0, 1, 2, .... until {x(k)} convergence, compute

{
u(k+1) = (1− ω)u(k) + ωM−1(f − ETµ(k)),

µ(k+1) = µ(k) + τS−1(Eu(k+1) − g).

Here, S is an approximate (preconditioning) matrix of the Schur complement matrix EM−1ET ,

and ω, τ 6= 0 are two relaxation factors.

3. Practical Choice of the Parameter γ and the Weighting Matrix W

We need to choose the positive parameter γ and the weighting matrix W so that augmented

linear system is easier to solve than the original one. There is goal like minimizing the condition

number of the augmented matrix, maintaining sparsity, obtaining positive definiteness of the

(1, 1) block, and other considerations, not all of which can be satisfied simultaneously. One

of the difficulties in forming M̃ is the loss of sparsity, which could occur if M and ET have

different sparsity patterns. Moreover, the matrix ETE is usually not as sparse as the matrix

ET . When W = I is used, the choice γ = ‖M‖2/‖E‖
2
2 has been found to perform well in

practice, in the sense that the condition number of both (1, 1) block and the whole coefficient

matrix are approximately minimized [11]. The point made in [14] was that for the positive

semidefine M and the choice W = I there exists a range of (typically moderate) values of γ for

which the spectral properties and the conditioning of the associated matrix A(γ) are possibly

better than those of the original matrix A. If the (1, 1) block is singular or ill-conditioned, we

should seek a value of γ that is large enough so as to eliminate the effect of the ill-conditioning

or the singularity of the matrix M , but not too large, so as to avoid the effect of the singular

matrix ETE [14]. The condition number of the matrix M + γETWE grows like a (possibly

large) multiple of γ for the equality-constrained least squares problems. In practice, for the

large values of γ the coefficient matrix M + γETWE is dominated by the term γETWE, and

approximate solutions of the linear system are difficult to obtain.

The choice of the weighting matrix W is highly problem-dependent. For example, if we

consider solving the steady-state Oseen equations, a good choice of W is a pressure mass

matrix, but in practice we should use the main diagonal of this matrix instead, in order to

maintain the sparsity in the matrix M̃ [12]. If the weighting matrix W is diagonal or block

diagonal with small blocks, then the matrix M + γETWE is also going to be sparse.

4. Numerical Results

In this section, we use examples to examine the effectiveness of the GSTS iteration method

for solving the constrained optimization problems with different iteration parameters from as-

pects of number of iteration steps (denoted by “IT”), elapsed CPU time in seconds (denoted

by “CPU”) and norm of absolute residual vectors (denoted by “RES”) or the norm of absolute

error vectors (denoted by “ERR”). Here, the “RES” and the “ERR” are defined to be

RES :=
√
||f −Mu(k) − ETµ(k)||22 + ||g − Eu(k)||22,
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and

ERR :=

√
||u(k) − u∗||22 + ||µ

(k) − µ∗||22√
||u(0) − u∗||22 + ||µ

(0) − µ∗||22
,

respectively, where (u(k)T , µ(k)T )T is the final approximate solution. In actual computations we

choose the right-hand-side vector (fT , gT )T ∈ R
p+q such that the exact solutions of the linear

systems are ((u∗)T , (µ∗)T )T = (1, 1, ...., 1)T ∈ R
p+q. All runs are started from the zero vector

and terminated if the current iterations satisfy RES ≤ 10−7 or if the number of iteration steps

exceed 1000 (this case is denoted by the symbol “-” in the tables). Numerical experiments are

performed in MATLAB with a machine precision 10−16.

We test two cases for the GSTS iteration method: GSTS(1) and GSTS(2) with different

choices of the matrix B2 (Table 4.1 for Example 4.1 and Table 4.2 for Example 4.2). In all tests

we choose B1 = M̃ .

Table 4.1: Choices of the matrix B2 for Example 4.1.

Methods Matrix B2 Description

GSTS(1) EM̂−1ET M̂ = tridiag(M̃)

GSTS(2) tridiag(EM̃−1ET )

Table 4.2: Choices of the matrix B2 for Example 4.2.

Methods Matrix B2 Description

GSTS(1) EM̂−1ET M̂ = tridiag(M̃)

GSTS(2) EM̂−1ET M̂ = tridiag(M) + γdiag(ETE)

Optimal values of the relaxation parameters ω, τ for GSOR are the theoretical optimal

values in [7]. The optimal values of the parameters for GSTS(1) and GSTS(2) are numerical

optimal values, and the parameters ω1 = ω2 = ωexp, τ = τexp. The approximate matrix S of

the Schur complement for GSOR is S = EM̂−1ET , M̂ = tridiag(M̃). All testing methods are

employed both as solvers and as preconditioners to full GMRES.

In the numerical experiments we choose W ≡ I, where I ∈ R
q×q is the identity matrix. For

the augmented linear system we take γ = ‖M‖2/‖E‖
2
2.

Table 4.3: IT, CPU and RES for Example 4.1 (m = 1/8).

p 1024 1600 2304 3136 4096 5184

q 32 40 48 56 64 72

p+ q 1056 1640 2352 3192 4160 5256

IT 24 26 28 29 32 36

GSTS(1) CPU 0.0089 0.0088 0.0091 0.054 0.061 0.076

RES 9.71e-7 3.92e-7 7.72e-7 6.54e-7 5.33e-7 4.33e-7

IT 19 20 21 23 28 30

GSTS(2) CPU 0.0043 0.0055 0.0061 0.018 0.034 0.043

RES 6.73e-6 5.66e-7 8.78e-7 7.71e-7 9.52e-6 2.19e-7

IT 22 24 25 27 30 33

GSOR CPU 0.0062 0.0069 0.0078 0.034 0.052 0.059

RES 8.07e-7 9.73e-7 8.42e-7 8.01e-7 6.96e-7 7.68e-6
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Table 4.4: IT, CPU and RES for Example 4.1 (m = 3).

p 1024 1600 2304 3136 4096 5184

q 32 40 48 56 64 72

p+ q 1056 1640 2352 3192 4160 5256

IT 53 56 67 76 92 108

GSTS(1) CPU 0.019 0.027 0.047 0.068 0.097 0.232

RES 6.61e-7 3.12e-6 1.22e-7 1.44e-6 4.93e-7 8.31e-7

IT 48 52 61 68 87 96

GSTS(2) CPU 0.013 0.019 0.033 0.049 0.077 0.173

RES 6.73e-6 5.66e-7 8.78e-7 7.71e-7 9.52e-6 2.19e-7

IT 50 54 65 72 89 103

GSOR CPU 0.016 0.022 0.042 0.054 0.083 0.211

RES 8.07e-7 9.73e-7 8.42e-7 8.01e-7 6.96e-7 7.68e-6

Table 4.5: IT, CPU and RES of GMRES for Example 4.1 (m = 1/8).

p 1024 1600 2304 3136 4096 5184

q 32 40 48 56 64 72

p+ q 1056 1640 2352 3192 4160 5256

IT 253 323 379 488 695 -

GMRES CPU 37.97 43.44 49.52 58.12 85.15 -

RES 2.21e-7 1.12e-6 6.02e-7 1.24e-6 3.73e-7 -

IT 13 13 15 16 21 27

GSTS(1) CPU 0.033 0.051 0.082 0.096 0.216 0.357

RES 6.61e-7 3.12e-6 1.22e-7 1.44e-6 4.93e-7 8.31e-7

IT 10 11 12 13 16 22

PGMRES GSTS(2) CPU 0.028 0.041 0.069 0.088 0.174 0.321

RES 6.73e-6 5.66e-7 8.78e-7 7.71e-7 9.52e-6 2.19e-7

IT 12 13 14 15 19 25

GSOR CPU 0.031 0.048 0.078 0.092 0.191 0.342

RES 8.07e-7 9.73e-7 8.42e-7 8.01e-7 6.96e-7 7.68e-6

Example 4.1. Consider the saddle-point linear system, in which the matrix blockM ∈ R
p×p is

the three-point difference matrix of the one-dimensional Laplace operator with periodic bound-

ary conditions. So the matrixM is singular. The matrix ET = UΣV with U ∈ R
p×q being a col-

umn orthogonal matrix, V ∈ R
q×q being an orthogonal matrix, Σ = diag(1, 2m, ..., qm) ∈ R

q×q

and m a given positive real number. Here, U and V are generated randomly with normal

distribution by the MATLAB code randn.

In Tables 4.3 and 4.4 we list numerical results for Example 4.1 with respect to varying

p and q when m = 1/8 and m = 3, correspondingly. From these tables we see that all the

testing methods with the experimental or the theoretical optimal parameters quickly produce

approximate solution of high-quality. GSTS(2) always outperforms the other testing methods

in iteration steps and CPU time. The performance of GSOR is a little bit better than GSTS(1)

in iteration steps and CPU time.

In Tables 4.5 and 4.6 we list numerical results for Example 4.1 when the full GMRES

method and the preconditioned GMRES method, with the testing methods as preconditioners,

are used to solving saddle-point linear systems. We can see that if no preconditioner is used,
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Table 4.6: IT, CPU and RES of GMRES for Example 4.1 (m = 3).

p 1024 1600 2304 3136 4096 5184

q 32 40 48 56 64 72

p+ q 1056 1640 2352 3192 4160 5256

IT 328 542 648 868 - -

GMRES CPU 51.44 68.12 71.23 89.11 - -

RES 6.61e-7 3.12e-6 1.22e-7 1.44e-6 4.93e-7 8.31e-7

IT 30 32 32 35 37 39

GSTS(1) CPU 0.388 0.395 0.416 0.436 0.452 1.397

RES 6.61e-7 3.12e-6 1.22e-7 1.44e-6 4.93e-7 8.31e-7

IT 25 26 26 28 29 30

PGMRES GSTS(2) CPU 0.351 0.364 0.387 0.413 0.436 1.181

RES 6.73e-6 5.66e-7 8.78e-7 7.71e-7 9.52e-6 2.19e-7

IT 29 31 31 34 36 37

GSOR CPU 0.379 0.386 0.397 0.429 0.441 1.261

RES 8.07e-7 9.73e-7 8.42e-7 8.01e-7 6.96e-7 7.68e-6

Table 4.7: IT, CPU and RES for Example 4.2.

p 500 1000 1500 2000 2500 3000

q 500 500 500 500 500 500

p+ q 1000 1500 2000 2500 3000 3500

γ 1.98e-1 2.77e-1 1.09e-1 3.75e-1 1.75e-1 7.98e-2

IT 79 91 132 141 156 173

GSTS(1) CPU 0.091 0.166 0.176 0.193 0.453 1.954

RES 1.22e-7 3.82e-6 6.12e-7 9.44e-6 3.88e-7 6.31e-7

IT 70 83 108 129 138 147

GSTS(2) CPU 0.041 0.085 0.093 0.129 0.252 1.564

RES 1.23e-6 9.06e-7 7.58e-7 4.71e-7 1.32e-6 1.19e-7

IT 75 88 119 137 149 159

GSOR CPU 0.072 0.152 0.163 0.175 0.386 1.873

RES 3.57e-7 7.33e-6 2.42e-7 3.55e-7 3.96e-7 9.48e-6

GMRES converges very slowly to the approximate solution. However, when GSTS(i) (i = 1, 2)

and GSOR are used, the preconditioned GMRES method successfully converges to the exact

solution of the saddle-point linear systems, and GSTS(2) show the best preconditioning effect

than the other testing methods.

Example 4.2. ([14]) Consider the saddle-point linear system constructed in the following

manner: the matrix M ∈ R
p×p is the block-diagonal matrix of n pentadiagonal blocks (n =

10l, l = 1, ..., 6) with dimension 50 × 50, consisting of normally distributed random numbers.

Each pentadiagonal block Mi has nullity equal to 1, which is generated by setting Mi ←

Mi − λmin(Mi)I after the construction. So, the matrix M is semidefinite and its rank is 49n.

The random matrixE ∈ R
q×p is comprised of l tridiagonal blocksEi (i = 1, ..., l) with dimension

500× 500 assembled together (l = 1, ..., 6).

The numerical results for Example 4.2 are listed in Table 4.7 and Table 4.8 when the testing

methods are used both as solvers and as preconditioners to GMRES. Numerical results show

that GSTS is effective for solving the augmented saddle-point linear systems and, in some
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Table 4.8: IT, CPU and RES of GMRES for Example 4.2.

p 500 1000 1500 2000 2500 3000

q 500 500 500 500 500 500

p+ q 1000 1500 2000 2500 3000 3500

γ 1.8e-01 1.6e-01 1.1e-01 3.5e-01 2.9e-02 2.5e-02

IT 256 348 417 653 869 -

GMRES CPU 49.01 58.98 77.76 104.07 137.54 -

RES 2.86e-7 2.12e-6 8.51e-7 9.24e-6 6.23e-7 -

IT 38 53 56 60 74 79

GSTS(1) CPU 17.21 28.81 35.52 40.01 46.54 54.81

RES 1.41e-7 8.12e-6 4.33e-7 9.44e-6 6.65e-7 4.31e-7

IT 29 44 46 48 57 61

PGMRES GSTS(2) CPU 12.53 18.64 28.05 34.41 38.64 43.96

RES 4.23e-6 2.76e-7 9.78e-7 3.71e-6 4.52e-6 8.49e-6

IT 35 51 54 55 59 68

GSOR CPU 17.01 22.55 31.48 37.98 44.03 48.73

RES 3.77e-7 2.43e-7 4.12e-7 9.41e-6 5.96e-6 3.68e-6

cases, GSTS(2) converges better than GSOR. As one can see, GSTS converges significantly

faster than (full) GMRES without preconditioning. We also observe that as a preconditioner

GSTS(2) shows the best preconditioning effect; the performance of the GMRES preconditioned

by GSOR is better than those preconditioned by GSTS(1).

Therefore, GSTS is effective for solving the saddle-point linear systems both as a solver and

as a preconditioner to GMRES.

5. Concluding Remarks

We have discussed indefinite saddle-point linear systems, possibly having singular (1, 1)

blocks. Our focus is on how to modify the linear systems such that they are easily solvable. We

have considered and examined some aspects of the augmented Lagrangian technique and solved

the augmented saddle-point linear system by GSOR and GSTS iteration methods. Note that in

[7] and [15] these methods employed in the case when the (1, 1) blocks of the original matrix

is positive definite were only. Numerical results have shown that GSTS and GSOR iteration

methods are effective for solving the saddle-point linear systems with semidefinite and singular

(1, 1) blocks. The study of the convergence factor of GSTS for saddle-point linear systems and

the relationships between the parameter γ of the augmented saddle-point linear system and

the convergence factor of GSTS will be a research topic in future that is of both theoretical

importance and practical value.
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