Vol. **49**, No. 1, pp. 57-63 March 2016

On a New Class of Projectively Flat Finsler Metrics

Ying Li and Wei-Dong Song*

School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. of China.

Received 23 April 2015; Accepted (in second revised version) 3 December 2015

Abstract. A class of Finsler metrics with three parameters is constructed. Moreover, a sufficient and necessary condition for this Finsler metrics to be projectively flat was obtained.

AMS subject classifications: 53B40; 53C60; 58B20.

Key words: Finsler metric, projectively flat, flag curvature.

1 Introduction

Finsler geometry is more colorful than Riemannian geometry because there are several non-Riemannian quantities on a Finsler manifold besides the Riemannian quantities. One of the important problems in Finsler geometry is to study and characterize the projectively flat metrics on an open domain $U \subset \mathbb{R}^n$. Projectively flat metrics on U are Finsler metrics whose geodesics are straight lines. This is the Hilbert's 4th problem in the regular case [5]. In 1903, Hamel [4] found a system of partial differential equations

$$F_{x^k y^l} y^k = F_{x^l}, \tag{1.1}$$

which can characterize the projectively flat metrics F = F(x,y) on an open subset $U \subset \mathbb{R}^n$. And we know that Riemannian metrics form a special and important class in Finsler geometry. Beltrami's theorem tells us that a Riemannian metric is locally projectively flat if and only if it is of constant sectional curvature [10]. The flag curvature in Finsler geometry is a natural extension of the sectional curvature in Riemannian geometry. Besides, every locally projectively flat Finsler metric *F* on a manifold *M* is of scalar flag curvature, i.e., the flag curvature K = K(x,y) is a scalar function on $TM \setminus \{0\}$. Many projectively flat Finsler metrics with constant flag curvature are obtained in [8], [1], [12], [2]. Besides, there are a lot of locally projectively flat Finsler metrics which are not of constant flag curvature [9], [13], [6]. Thus, the Beltrami's theorem is no longer true for Finsler metrics.

http://www.global-sci.org/jms

^{*}Corresponding author. *Email addresses:* 909789714@qq.com (Y. Li), swd56@sina.com (W. D. Song)

Recently, Huang and Mo discussed a class of interesting Finsler metrics [13], [6] satisfying

$$F(Ax, Ay) = F(x, y), \tag{1.2}$$

for all $A \in O(n)$. A Finsler metric *F* is said to be spherically symmetric if *F* satisfies (1.2) for all $A \in O(n)$. Besides, it was pointed out in [7] that a Finsler metric *F* on $\mathbb{B}^n(r)$ is a spherically symmetric if and only if there is a function $\phi:[0,r) \times \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$F(x,y) = |y|\phi\left(|x|, \frac{\langle x, y \rangle}{|y|}\right), \qquad (1.3)$$

where $(x, y) \in T\mathbb{R}^n(r) \setminus \{0\}$.

In this paper, we construct a new class of Finsler metrics with three parameters and obtain the formula of the flag curvature of this kind of metrics.

Let ζ be an arbitrary constant and $\Omega = \mathbb{B}^n(r) \subset \mathbb{R}^n$ where $r = \frac{1}{\sqrt{-\zeta}}$ if $\zeta < 0$ and $r = +\infty$ if $\zeta \ge 0$, $|\cdot|$ and \langle , \rangle be the standard Euclidean norm and inner product in \mathbb{R}^n , respectively. Define $F: T\Omega \rightarrow [0, +\infty)$ by

$$F = \frac{\sqrt{\kappa^2 \langle x, y \rangle^2 + \epsilon |y|^2 (1 + \zeta |x|^2)}}{1 + \zeta |x|^2} + \frac{\kappa \langle x, y \rangle}{(1 + \zeta |x|^2)^{\frac{3}{2}}},$$
(1.4)

where ϵ is an arbitrary positive constant, κ is an arbitrary constant.

As a natural prolongation, we obtain the following results

Theorem 1.1. Let $F: T\Omega \rightarrow [0, +\infty)$ be a function given by (1.4). Then, it has the following properties.

- (1) F is a Finsler metric.
- (2) *F* is projectively flat Finsler metric if and only if $\kappa^2 + \epsilon \zeta = 0$.
- (3) When $\kappa^2 + \epsilon \zeta = 0$, the flag curvature of the Finsler metrics (1.4) is given by

$$K = \frac{\kappa^2}{\epsilon^2 F^2} \left[\frac{\Delta \kappa \langle x, y \rangle}{F(1+\zeta|x|^2)^{\frac{7}{2}}} - \frac{\Delta}{(1+\zeta|x|^2)^2} - \frac{\Delta^2 + 6\Delta \kappa^2 \langle x, y \rangle^2 + 6\Delta^{\frac{3}{2}} \kappa \langle x, y \rangle (1+\zeta|x|^2)^{\frac{1}{2}}}{4F^2(1+\zeta|x|^2)^5} \right],$$

where $\Delta = \epsilon |y|^2 (1 + \zeta |x|^2) + \kappa^2 \langle x, y \rangle^2$.

2 Preliminaries

A Minkowski norm $\Psi(y)$ on a vector space *V* is a C^{∞} function on $V \setminus \{0\}$ with the following properties:

(1) $\Psi(y) \ge 0$ and $\Psi(y) = 0$ if and only if y = 0;

- (2) $\Psi(y)$ is positively homogeneous function of degree one, i.e., $\Psi(ty) = t\Psi(y), t \ge 0$;
- (3) $\Psi(y)$ is strongly convex, i.e., for any $y \neq 0$, the matrix $g_{ij}(x,y) := \frac{1}{2} [F^2]_{y^i y^j}(x,y)$ is positive definite.

A Finsler metrict *F* on a manifold *M* is C^{∞} function on $TM \setminus \{0\}$ such that $F_x := F|_{T_xM}$ is a Minkowski norm on T_xM for any $x \in M$. The fundamental tensor $g_{ij}(x,y) := \frac{1}{2}[F^2]_{y^iy^j}(x,y)$ is positive definite. If $g_{ij}(x,y) = g_{ij}(x)$, *F* is a Riemannian metric. If $g_{ij}(x,y) = g_{ij}(y)$, *F* is a locally Minkowski metric. If all geodesics are straight lines, *F* is projectively flat [3], [11], [14]. This is equivalent to $G^i = P(x,y)y^i$ are geodesic coefficients of *F*, and G^i are given by

$$G^{i} = \frac{g^{il}}{4} \{ [F^{2}]_{x^{m}y^{l}} y^{m} - [F^{2}]_{x^{l}} \}.$$

For each tangent plane $\Pi \subset T_x M$ and $y \in \Pi$, the flag curvature of (Π, y) is defined by

$$K(\Pi, y) = \frac{g_{im} R_k^i u^k u^m}{F^2 g_{ij} u^i u^j - [g_{ij} y^i u^j]^2}$$

where Π = span{y, u}, and

$$R_{k}^{i} = 2\frac{\partial G^{i}}{\partial x^{k}} - y^{i}\frac{\partial^{2}G^{i}}{\partial y^{i}\partial y^{k}} + 2G^{j}\frac{\partial^{2}G^{i}}{\partial y^{j}\partial y^{k}} - \frac{\partial G^{i}}{\partial y^{j}}\frac{\partial G^{j}}{\partial y^{k}}$$

We need the following lemmas for later use.

Lemma 2.1. ([15]) Let M be an n-dimensional mainfold. $F = \alpha \phi(b, \frac{\beta}{\alpha})$ is a Finsler metric on M for any Riemannian metric α and 1-form β with $\|\beta\|_{\alpha} < b_0$ if and only if $\phi = \phi(b,s)$ is a positive C^{∞} function satisfying

$$\phi - s\phi_2 > 0, \phi - s\phi_2 + (b^2 - s^2)\phi_{22} > 0, \tag{2.1}$$

when $n \ge 3$ or

$$\phi - s\phi_2 + (b^2 - s^2)\phi_{22} > 0,$$

when n = 2, where *s* and *b* are arbitrary numbers with $|s| \le b < b_0$. ϕ_2 means derivation of ϕ with respect to the second variable *s*.

Lemma 2.2. ([7]) Let $F = |y|\phi(|x|, \frac{\langle x, y \rangle}{|y|})$ be a spherically symmetric Finlser metric on an $\mathbb{B}^n(r)$. Then F = F(x, y) is projectively flat if and only if $\phi = \phi(b, s)$ satisfies

$$s\phi_{bs} + b\phi_{ss} - \phi_b = 0, \qquad (2.2)$$

where $b = \|\beta\|_{\alpha}$, $s = \frac{\beta}{\alpha}$, $\phi = \phi(|x|, \frac{\langle x, y \rangle}{|y|})$. ϕ_b means derivation of ϕ with respect to the first variable *b*.

Lemma 2.3. ([4]) Let *F* be a Finlser metric on an open domain $U \subset \mathbb{R}^n$, *F* is projectively flat on this domain if and only if

$$F_{x^k y^l} y^k = F_{x^l}.$$

In this case, the flag curvature K of F is given by

$$K = \frac{P^2 - P_{x^k} y^k}{F^2},$$

where the projective factor can be expressed as

$$P=\frac{F_{x^m}y^m}{2F}.$$

3 Proof of Theorem 1.1

Proof. (1) Firstly, we prove that *F* is a Finsler metric.

By (1.4), we have

$$F = \frac{\sqrt{\kappa^2 \langle x, y \rangle^2 + \epsilon |y|^2 (1 + \zeta |x|^2)}}{1 + \zeta |x|^2} + \frac{\kappa \langle x, y \rangle}{(1 + \zeta |x|^2)^{\frac{3}{2}}}$$

Let $\alpha = |y|$, $\beta = \langle x, y \rangle$, $s = \frac{\langle x, y \rangle}{|y|}$, $b = ||\beta||_{\alpha} = |x|$, so *F* can be expressed as

$$F = |y| \left(\frac{\sqrt{\epsilon(1+\zeta|x|^2) + \frac{\kappa^2 \langle x, y \rangle^2}{|y|^2}}}{1+\zeta|x|^2} + \frac{\frac{\kappa \langle x, y \rangle}{|y|}}{(1+\zeta|x|^2)^{\frac{3}{2}}} \right)$$

= $|y| \left(\frac{\sqrt{\epsilon(1+\zeta b^2) + \kappa^2 s^2}}{1+\zeta b^2} + \frac{\kappa s}{(1+\zeta b^2)^{\frac{3}{2}}} \right)$
= $\alpha \phi(b,s).$ (3.1)

We set

$$Y = \kappa^2 s^2 + \epsilon (1 + \zeta b^2), \qquad (3.2)$$

where Y is non-negative.

After substituting (3.2) into (3.1), we have

$$\phi = \phi(b,s) = \frac{\sqrt{Y}}{1 + \zeta b^2} + \frac{\kappa s}{(1 + \zeta b^2)^{\frac{3}{2}}}.$$
(3.3)

Differentiating ϕ with respect to *s*, we have

$$\phi_{s} = \frac{Y^{-\frac{1}{2}}\kappa^{2}s}{1+\zeta b^{2}} + \frac{\kappa}{(1+\zeta b^{2})^{\frac{3}{2}}},$$
(3.4)

Y. Li and W. D. Song / J. Math. Study, 49 (2016), pp. 57-63

it follows that

$$\phi_{ss} = \frac{Y^{-\frac{1}{2}}\kappa^2 - Y^{-\frac{3}{2}}\kappa^4 s^2}{1 + \zeta b^2}.$$
(3.5)

Using (3.3) and (3.4) , we have

$$\phi - s\phi_s = \frac{\sqrt{Y}}{1 + \zeta b^2} + \frac{\kappa s}{(1 + \zeta b^2)^{\frac{3}{2}}} - s\left[\frac{Y^{-\frac{1}{2}}\kappa^2 s}{1 + \zeta b^2} + \frac{\kappa}{(1 + \zeta b^2)^{\frac{3}{2}}}\right]$$

$$= \epsilon Y^{-\frac{1}{2}} > 0.$$
(3.6)

Combing (3.5) and (3.6) gives

$$\phi - s\phi_s + (b^2 - s^2)\phi_{ss} = \epsilon Y^{-\frac{1}{2}} + (b^2 - s^2) \frac{Y^{-\frac{1}{2}}\kappa^2 - Y^{-\frac{3}{2}}\kappa^4 s^2}{1 + \zeta b^2}$$

$$= \epsilon Y^{-\frac{1}{2}} + (b^2 - s^2)\epsilon \kappa^2 Y^{-\frac{3}{2}} > 0.$$
(3.7)

Then, according to Lemma 2.1, we know *F* is a Finsler metric.

(2) In this part, we will prove that *F* is projectively flat Finsler metric if and only if $\kappa^2 + \epsilon \zeta = 0$.

From (3.3), we have

$$\phi_{b} = \frac{Y^{-\frac{1}{2}}\epsilon\zeta(1+\zeta b^{2}) - 2\sqrt{Y\zeta b}}{1+\zeta b^{2}} - \frac{3\kappa s\zeta b}{(1+\zeta b^{2})^{\frac{3}{2}}},$$
(3.8)

$$\phi_{bs} = \frac{-Y^{-\frac{3}{2}}\epsilon\zeta b\kappa^2 s}{(1+\zeta b^2)} - \frac{2Y^{-\frac{1}{2}}\zeta b\kappa^2 s}{(1+\zeta b^2)^2} - \frac{3\kappa\zeta b}{(1+\zeta b^2)^{\frac{5}{2}}}.$$
(3.9)

Using (3.5), (3.8) and (3.9), we have

$$\begin{split} s\phi_{bs} + b\phi_{ss} - \phi_b &= s \left[\frac{-Y^{-\frac{3}{2}} \epsilon \zeta b \kappa^2 s}{(1 + \zeta b^2)} - \frac{2Y^{-\frac{1}{2}} \zeta b \kappa^2 s}{(1 + \zeta b^2)^2} - \frac{3\kappa \zeta b}{(1 + \zeta b^2)^{\frac{5}{2}}} \right] + b \left[\frac{Y^{-\frac{1}{2}} \kappa^2 - Y^{-\frac{3}{2}} \kappa^4 s^2}{1 + \zeta b^2} \right] \\ &- \left[\frac{Y^{-\frac{1}{2}} \epsilon \zeta (1 + \zeta b^2) - 2\sqrt{Y\zeta b}}{1 + \zeta b^2} - \frac{3\kappa s \zeta b}{(1 + \zeta b^2)^{\frac{3}{2}}} \right] \\ &= Y^{-\frac{3}{2}} b \epsilon (\kappa^2 + \epsilon \zeta). \end{split}$$

It's easy to see that $s\phi_{bs} + b\phi_{ss} - \phi_b = 0$ is equivalent to $\kappa^2 + \epsilon\zeta = 0$. Then from Lemma 2.2, we know that *F* is projectively flat Finsler metric if and only if $\kappa^2 + \epsilon\zeta = 0$.

(3) From Lemma 2.3, we know that *F* is projectively flat Finsler metric and its projective factor and flag curvature are given by

$$P = \frac{F_{x^m}y^m}{2F}, \quad K = \frac{P^2 - P_{x^k}y^k}{F^2}.$$

61

From (1.4), we obtain

$$F_{x^k}y^k = \frac{\Delta^{-\frac{1}{2}(\kappa^2 + \epsilon\zeta)|y|^2\langle x, y\rangle}}{1 + \zeta|x|^2} - \frac{2\sqrt{\Delta}\zeta\langle x, y\rangle}{(1 + \zeta|x|^2)^2} + \frac{\kappa|y|^2(1 + \zeta|x|^2) - 3\kappa\zeta\langle x, y\rangle^2}{(\langle x, y \rangle)^{\frac{5}{2}}},$$

when $\kappa^2 + \epsilon \zeta = 0$, *F* can be expressed as the following form.

$$F_{x^k}y^k = \frac{\frac{\kappa}{\epsilon}\Delta + 2\frac{\kappa^3 \langle x, y \rangle^2}{\epsilon}}{(1+\zeta|x|^2)^{\frac{5}{2}}} + \frac{2\sqrt{\Delta}\frac{\kappa^2}{\epsilon} \langle x, y \rangle}{(1+\zeta|x|^2)^2}.$$
(3.10)

By (3.10), we get

$$P = \frac{F_{x^k} y^k}{2F}$$

$$= \frac{1}{2F} \left[\frac{\frac{\kappa}{\epsilon} \Delta + 2\frac{\kappa^3 \langle x, y \rangle^2}{\epsilon}}{(1+\zeta |x|^2)^{\frac{5}{2}}} + \frac{2\sqrt{\Delta}\frac{\kappa^2}{\epsilon} \langle x, y \rangle}{(1+\zeta |x|^2)^2} \right].$$
(3.11)

Using (3.11), we have

$$P^{2} = \frac{1}{4F^{2}} \left[\frac{\frac{\kappa}{\epsilon} \Delta + 2\frac{\kappa^{3} \langle x, y \rangle^{2}}{\epsilon}}{(1+\zeta|x|^{2})^{\frac{5}{2}}} + \frac{2\sqrt{\Delta}\frac{\kappa^{2}}{\epsilon} \langle x, y \rangle}{(1+\zeta|x|^{2})^{2}} \right]^{2},$$
(3.12)

$$P_{x^{k}}y^{k} = \frac{\kappa^{2}}{\epsilon^{2}} \left[\frac{\Delta + \kappa^{2} \langle x, y \rangle^{2}}{(1 + \zeta |x|^{2})^{2}} - \frac{\Delta (\Delta - 3\kappa^{2} \langle x, y \rangle^{2} - 3\sqrt{\Delta}\kappa \langle x, y \rangle (1 + \zeta |x|^{2})^{\frac{1}{2}})}{2F^{2}(1 + \zeta |x|^{2})^{5}} \right].$$
(3.13)

Using(3.12) and (3.13), we get

$$\begin{split} & K = \frac{P^2 - P_{x^k} y^k}{F^2} \\ &= \frac{1}{4F^4} \left[\frac{\frac{\kappa}{\epsilon} \Delta + 2\frac{\kappa^3 \langle x, y \rangle^2}{\epsilon}}{(1+\zeta|x|^2)^{\frac{5}{2}}} + \frac{2\sqrt{\Delta}\frac{\kappa^2}{\epsilon} \langle x, y \rangle}{(1+\zeta|x|^2)^2} \right]^2 \\ &- \frac{\kappa^2}{F^2 \epsilon^2} \left[\frac{\Delta + \kappa^2 \langle x, y \rangle^2}{(1+\zeta|x|^2)^2} - \frac{\Delta(\Delta - 3\kappa^2 \langle x, y \rangle^2 - 3\sqrt{\Delta}\kappa \langle x, y \rangle (1+\zeta|x|^2)^{\frac{1}{2}})}{2F^2 (1+\zeta|x|^2)^5} \right] \\ &= \frac{\kappa^2}{\epsilon^2 F^2} \left[\frac{\Delta \kappa \langle x, y \rangle}{F(1+\zeta|x|^2)^{\frac{7}{2}}} - \frac{\Delta}{(1+\zeta|x|^2)^2} - \frac{\Delta^2 + 6\Delta\kappa^2 \langle x, y \rangle^2 + 6\Delta^{\frac{3}{2}} \kappa \langle x, y \rangle (1+\zeta|x|^2)^{\frac{1}{2}}}{4F^2 (1+\zeta|x|^2)^5} \right], \end{split}$$
where $\Delta = \epsilon |y|^2 (1+\zeta|x|^2) + \kappa^2 \langle x, y \rangle^2.$

Acknowledgments

The work was partially supported by NSFC (Grant No.11071005) and Anhui Normal University graduate student research innovation and practical projects (Grant No.2015cxsj108zd).

References

- [1] D.W. Bao, Z.M. Shen. Finsler metrics of constant positive curvature on the lie group *S*³. J. London Math Soc., 2002, 66: 453-467.
- [2] R. Bryant. Finsler strutures on the 2-spheres of constant curvature. Selecta Math (NS), 1997, 3: 161-204.
- [3] X.Y. Cheng, Z.M. Shen. Projectively flat Finsler metrics with almost isotropic S-curvature. Acta Mathmatica Scientia, 2006, 26B: 307-313.
- [4] R.S. Hamilton. Three-manifolds with positive Ricci curvature. J. Diff. Geom., 1982, 17: 255-306.
- [5] D. Hilbert. Mathematical problems., Bull Amer Math Soc., 2001, 37: 407-436.
- [6] L.B. Huang, X.H. Mo. On spherically symmetric Finsler metrics of scalar curvature. Journal of Geometry and Physics, 2012, 62: 2279-2287.
- [7] L.B. Huang, X.H. Mo. Projectively flat Finsler metrics with orthogonal invariance. Annales Plonici Mathematical, 2013, 107: 259-270.
- [8] A. Katok. Ergodic perturbations of degenerate integrable Hamiltonian systems. Lzv Akad Nauk SSSR, 1973, 37: 539-576.
- [9] X.H. Mo, C.H. Yang. The explicit construction of Finsler metrics with special curvature properties. Diff. Geom. Appl., 2006, 24: 119-121.
- [10] X.H. Mo, C.T. Yu. On some explicit constructions of Finsler metrics with scalar flag curvature. Canad. J. Math., 2010, 62: 1325-1339.
- [11] Y.B. Shen, L.L. Zhao. Some projectively flat (α, β) -metrics. Sci. China Ser. A-Math., 2006, 49: 838-851.
- [12] Z.M. Shen. Finsler metrics with *K* = 0 and *S* = 0. Canad. J. Math., 2003, 55: 112-132.
- [13] W.D. Song, F. Zhou. Spherically symmetric Finsler metrics with Scalar Flag Curvature. Turk. J. Math., 2014 (in press), doi: 10. 3906/mat-1311-59.
- [14] B. Xu, B.L. Li. On a class of projectively flat Finsler metrics with flag curvature *K* = 1. Differential Geometry and its Applications., 2013, 31: 524-532.
- [15] C.T. Yu, H.M. Zhu. On a new class of Finsler metrics. Differential Geometry and its Applications, 2011, 29: 244-254.