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Abstract

Based on the nonmonotone line search technique proposed by Gu and Mo (Appl. Math.

Comput. 55, (2008) pp. 2158-2172), a new nonmonotone trust region algorithm is pro-

posed for solving unconstrained optimization problems in this paper. The new algorithm

is developed by resetting the ratio ρk for evaluating the trial step dk whenever acceptable.

The global and superlinear convergence of the algorithm are proved under suitable condi-

tions. Numerical results show that the new algorithm is effective for solving unconstrained

optimization problems.
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1. Introduction

We consider the following unconstrained optimization problem

min
x∈ℜn

f(x), (1.1)

where f : ℜn → ℜ is a continuously differentiable function.

Line search method and trust region method are two principal methods for solving uncon-

strained optimization problem (1.1). Line search method produce a sequence x0, x1, · · · , where

xk+1 is generated from the current approximate solution xk, the specific direction dk and a

stepsize αk > 0 by the rule xk+1 = xk + αkdk. On the other hand, the trust region methods

obtain a trial step dk by solving the following quadric program subproblem:

min
d∈ℜn

φk(d) = gTk d+
1

2
dTBkd,

s.t. ‖d‖ ≤ ∆k,
(1.2)

where gk = ∇f(xk), Bk ∈ ℜn×n is a symmetric matrix which is either the exact Hessian matrix

of f at xk or an approximation for it, ∆k > 0 is the trust region radius and ‖ · ‖ denotes the

Euclidean norm. The traditional trust region methods evaluate the trial step dk by the ratio

ρk =
f(xk)− f(xk + dk)

φk(0)− φk(dk)
. (1.3)

The trial step dk is accepted whenever ρk is greater than a positive constant µ, then we can

set the new point xk+1 = xk+dk and enlarge the trust region radius. Otherwise, the traditional
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trust region methods resolve the subproblem (1.2) by reducing the trust region radius until an

acceptable step is found. Solving the region subproblems may lead us to solve one or more

quadric program problems and increase the total cost of computation for large scale problems.

Compared with line search techniques, new trust region methods have a strong convergence

property, its computational cost is much lower than the traditional trust region methods (e.g.

[1-3]). Some theoretical and numerical results of these trust region methods with line search

are also interesting.

However, all these methods enforce monotonically decreasing of the objective function values

at each iteration may slow the convergence rate in the minimization process, see [4,8]. In order

to overcome the shortcomings, the earliest nonmonotone line search framework was developed

by Grippo, Lampariello and Lucidi in [5] for Newton’s method, in which their approach was:

parameters λ1, λ2, σ and β are introduced, where 0 < λ1 < λ2, β, σ ∈ (0, 1) and αk = ᾱkσ
hk ,

where ᾱk ∈ (λ1, λ2) is the trial step and hk is the smallest nonnegative integer such that

f(xk + dk) ≤ max
0≤j≤mk

f(xk−j) + βαk∇f(xk)
T dk, (1.4)

the memory mk is a nondecreasing integer by setting

mk =

{

0, k = 0,

0 < mk ≤ min{mk−1 + 1,M}, k > 0,

where M is a prefixed nonnegative integer.

From then on, researches in nonlinear optimization area have paid great attentions to it, see

[7,8,10-14]. Deng et al. [4] made some changes in the common ratio (1.3) by resetting the rule

as follows:

ρ̂k =

max
0≤j≤mk

f(xk−j)− f(xk + dk)

φk(0)− φk(dk)
. (1.5)

The ratio (1.5) which assesses the agreement between the quadratic model and the objective

function in trust region methods is the most common nonmonotone ratio, some researchers

showed that the nonmonotone method can improve both the possibility of finding the global

optimum and the rate of convergence when a monotone scheme is forced to creep along the

bottom of a narrow curved valley (see [4, 9, 17]).

Although the nonmonotone technique (1.4) has many advantages, Zhang and Hager [18]

proposed a new nonmonotone line search algorithm, which had the same general form as the

scheme of Grippo et al. [5], except that their “max” was replaced by an average of function

values. The nonmonotone line search found a step length β to satisfy the following inequality:

f(xk + βdk) ≤ Ck + δβ∇f(xk)
T dk, (1.6)

where

Ck =

{

f(xk), k = 0,
(

ηk−1Qk−1Ck−1 + f(xk)
)

/Qk, k ≥ 1,
(1.7)

Qk =

{

1, k = 0,

ηk−1Qk−1 + 1, k ≥ 1,
(1.8)

ηk−1 ∈ [ηmin, ηmax], where ηmin ∈ [0, 1) and ηmax ∈ [ηmin, 1] are two chosen parameters. Numer-

ical results showed that the new nonmonotone can improve the efficiency of the nonmonotone

trust region methods.
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Observing that Ck+1 is a convex combination between Ck and f(xk+1). Since C0 = f(x0),

we see that Ck is a convex combination of the function values f(x0), f(x1), · · · , f(xk) from

(1.7), the degree of nonmonotonicity and (1.8) depend on the choice ηk. If ηk = 0 for each k,

then the line search is the usual Armijo line search. If ηk = 1 for each k, then Ck = Ak, where

Ak =
1

k + 1

k
∑

i=0

fi, fi = f(xi),

is the average function value.

However, it becomes an encumbrance to update ηk and Qk at each k in practice. Recently

Gu and Mo [6] developed an algorithm that combining a new nonmonotone technique and trust

region method for unconstrained optimization problems. The new nonmonotone line search is

as follows:

f(xk + βdk) ≤ Dk + δβ∇f(xk)
Tdk, (1.9)

where the parameter η ∈ (0, 1) or a variable ηk and

Dk =

{

f(xk), k = 0,

ηDk−1 + (1− η)f(xk), k ≥ 1,
(1.10)

is a simple convex combination of the previous Dk−1 and fk.

In this paper, we develop an algorithm by resetting the ratio ρk in the trust region method for

unconstrained optimization problems. The algorithm does not restrict monotonically decreasing

of the objective function values at each iteration. Under suitable assumptions, we establish the

global and superlinear convergence of the new algorithm. Numerical experiments show that

our algorithm is quite effective.

Our paper is organized as follows: In Section 2, a new nonmonotone trust region algorithm

is described. Under certain conditions, the global and superlinear convergence of the algorithm

are proved in Sections 3 and 4, respectively. Numerical results are provided in Section 5 which

showed that the new method is quite effective for unconstrained optimization problems. Finally,

some concluding remarks are given in Section 6.

2. New Nonmonotone Trust Region Algorithm

For convenience, we denote f(xk) by fk and g(xk) by gk, where g(xk) ∈ ℜn is the gradient

of f evaluated at xk. The trial step dk is obtained by solving the subproblem (1.2) at each

iteration. In this paper, we solve (1.2) such that ‖dk‖ ≤ ∆k and

φk(0)− φk(dk) ≥ τ‖gk‖min{∆k, ‖gk‖/‖Bk‖}, (2.1)

where τ ∈ (0, 1) is a constant.

Obviously if Bk is a symmetric and positive definite diagonal matrix, we can obtained the

solution dk easily. More precisely, if ‖B−1
k gk‖ ≤ ∆k, then dk = −B−1

k gk is the optimal solution

of the subproblem (1.2); otherwise, if ‖B−1
k gk‖ > ∆k, we choose the optimal solution

dk = −
∆k

‖B−1
k gk‖

B−1
k gk.
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In order to decide whether the obtained trial step dk will be accepted or not, and how to

adjust the new trust region radius, we compute the ratio ρk between the actual reduction,

Aredk = Dk − f(xk + dk),

and the predicted reduction as follows:

Predk = φk(0)− φk(dk),

i.e.,

ρk =
Aredk
Predk

=
Dk − f(xk + dk)

φk(0)− φk(dk)
, (2.2)

where Dk is computed by (1.10). If ρk ≥ µ, where µ ∈ (0, 1) is a constant, we accept the

trial step dk, set xk+1 = xk + dk and enlarge the trust region radius ∆k. Otherwise we set

xk+1 = xk, reduce the trust region radius and resolve the subproblem (1.2).

Now, we propose a new nonmonotone trust region algorithm as follows:

Algorithm 2.1. (New nonmonotone trust region algorithm)

Step 0 Choose parameters η ∈ (0, 1), µ ∈ (0, 1), ∆0 > 0, 0 < c1 < 1 < c2. Given an

arbitrary point x0 ∈ ℜn and a symmetric matrix B0 ∈ ℜn×n. Set k := 0.

Step 1 Compute gk. If ‖gk‖ = 0, stop. Otherwise, go to Step 2.

Step 2 Compute an approximate solution dk so that ‖dk‖ ≤ ∆k and (2.1) is satisfied.

Step 3 Compute Dk by (1.10), and ρk by (2.2).

Step 4 Set

xk+1 =

{

xk + dk if ρk ≥ µ,

xk otherwise.
(2.3)

Step 5 Compute ∆k+1 as

∆k+1 =

{

c1‖dk‖ if ρk < µ,

c2‖dk‖ if ρk ≥ µ.
(2.4)

Step 6 Update Bk. Set k := k + 1 and go to Step 1.

3. Global Convergence

In this section, we discuss the global convergence of Algorithm 2.1. Suppose an infinite

sequence of iterations {xk} is obtained from Algorithm 2.1. Some common assumptions are as

follows:

Assumption 3.1. The level set Ω0 = {x ∈ ℜn|f(x) ≤ f(x0)} is bounded.

Assumption 3.2. The gradient function of g(x) is Lipschitz continuous in Ω0.

Assumption 3.3. The matrix sequence {Bk} is uniformly bounded.

For simplicity, we define two index sets as follows:

I = {k | ρk ≥ µ} and J = {k | ρk < µ}.
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Lemma 3.1. Suppose that the sequence {xk} is generated by Algorithm 2.1. Then the following

inequality holds for all k:

fk+1 ≤ Dk+1 ≤ Dk. (3.1)

Proof. Firstly we prove that (3.1) holds for all k ∈ I, i.e.,

fk+1 ≤ Dk+1 ≤ Dk ∀k ∈ I. (3.2)

For k ∈ I, according to ρk ≥ µ, (2.1) and (2.2), we know that

fk+1 ≤ Dk − µτ‖gk‖min{∆k, ‖gk‖/‖Bk‖}. (3.3)

Following from (1.10) and (3.3), we obtain

Dk+1 = ηDk + (1 − η)f(xk+1)

≤ ηDk + (1 − η)Dk − µτ‖gk‖min{∆k, ‖gk‖/‖Bk‖} (3.4)

= Dk − µτ‖gk‖min{∆k, ‖gk‖/‖Bk‖}.

By (1.10), if η 6= 0, we have

Dk+1 −Dk =
(1 − η)(fk+1 −Dk+1)

η
, (3.5)

and if η = 0, we have

Dk+1 = fk+1. (3.6)

Combining (3.4) and (3.6), yields (3.2).

Secondly we prove that (3.1) holds for all k ∈ J . From Step 4 of Algorithm 2.1, we get

xk+1 = xk and fk+1 = fk for all k ∈ J . First we prove that fk+1 ≤ Dk+1. We consider two

cases, respectively.

(i) If k− 1 ∈ I. According to (3.2), we have fk ≤ Dk. Following from (1.10) and fk+1 = fk,

we can deduce that

Dk+1 = ηDk + (1 − η)fk+1 ≥ ηfk+1 + (1− η)fk+1 = fk+1. (3.7)

(ii) If k − 1 ∈ J . In this case, we define a index set F = {i|1 < i ≤ k, k − i ∈ I}. If F = ∅,

by Step 4 of Algorithm 2.1 we get f0 = fk−j = fk+1, j = 0, 1, · · · , k − 1. Following from (1.10)

we get

Dk+1 = Dk = fk+1. (3.8)

Now, we suppose that F 6= ∅. Let s = min{i : i ∈ F}. Then we have

fk+1 = fk = fk−j , j = 0, 1, · · · , s− 1. (3.9)

By (1.10), we know

Dk = ηDk−1 + (1− η)fk, k ≥ 1. (3.10)

Using (3.10) repeatedly, we get

ηDk + (1− η)fk+1 = ηsDk−s+1 +

s−2
∑

i=0

ηi+1(1− η)fk−i + (1− η)fk+1. (3.11)



A New Nonmonotone Trust Region Algorithm 481

According to the definition of F , s and (3.2), we have k − s ∈ I and Dk−s+1 ≥ fk−s+1.

Combining (3.9) and (3.11) together, we can deduce that

ηDk + (1− η)fk+1 ≥ ηsfk−s+1 +
s−2
∑

i=0

ηi+1(1 − η)fk−i + (1 − η)fk+1

=
[

ηs +
s−2
∑

i=0

ηi+1(1− η) + (1 − η)
]

fk+1

= fk+1. (3.12)

Hence, it follows from (1.10) and (3.12) that

Dk+1 = ηDk + (1− η)fk+1 ≥ fk+1. (3.13)

By (3.7), (3.8) and (3.13), we conclude that

fk+1 ≤ Dk+1, ∀k ∈ J. (3.14)

If η 6= 0, by (3.5) and (3.14) we obtain that fk+1 ≤ Dk+1 ≤ Dk.

If η = 0, then, by (1.10) and k ∈ J , we get Dk+1 = fk+1 = fk. Combining k − 1 ∈ J and

(3.14), we obtain that fk ≤ Dk. Thus (3.1) holds for all k ∈ J . The proof is completed. �

Lemma 3.2. Suppose that Assumption 3.1 holds, then the sequence {xk} generated by Algo-

rithm 2.1 is contained in the level set Ω0.

Proof. Following from Lemma 3.1, Assumption 3.1 and D0 = f0, we can easily obtain the

assertion. �

For convenience’s sake, we refer to a successful iteration point xk+1 = xk + dk, and an

unsuccessful iteration point if xk+1 = xk.

Lemma 3.3. ([15]) Suppose that Assumptions 3.2 and 3.3 hold, the sequence {xk} is generated

by Algorithm 2.1, and the following inequality holds for all k:

‖gk‖ ≥ ǫ, (3.15)

where ǫ ∈ (0, 1) is a constant. Then for each k, there is a nonnegative integer m such that

xk+m+1 is a successful iteration point.

Based on the above lemmas, we establish the global convergence of Algorithm 2.1.

Theorem 3.1. Suppose that Assumptions 3.1− 3.3 hold. Then the sequence {xk} generated by

Algorithm 2.1 satisfies

lim inf
k→∞

‖gk‖ = 0. (3.16)

Proof. By contradiction, we suppose that there exists a constant ǫ ∈ (0, 1) such that the

following inequality holds for all k:

‖gk‖ ≥ ǫ. (3.17)

Firstly, we prove that

lim
k→∞,k∈I

∆k = 0. (3.18)



482 J. LIU AND C. MA

From the prove of Lemma 3.3 in [15], we know that I is an infinite set. If k ∈ I, then by (3.4)

and (3.17), we get

Dk+1 ≤ Dk − µτǫ(1 − η)min{∆k, ǫ/‖Bk‖}. (3.19)

From Lemma 3.1, we know that {Dk} is nonincreasing and fk+1 ≤ Dk+1 for all k ≥ 0. By

Assumption 3.1, Lemma 3.2 and the continuity of f , we know that the sequence {fk} is bounded

below, and {Dk} is convergent. By taking limits as k → ∞ and k ∈ I in both sides of (3.19),

we have

lim
k→∞,k∈I

min{∆k, ǫ/‖Bk‖} = 0. (3.20)

By Assumption 3.3 and (3.20) that (3.18) holds.

Next, we prove that

lim
k→∞

∆k = 0. (3.21)

(i) If J is a finite set, then (3.18) holds, which implies that (3.21) holds.

(ii) If J is an infinite set, we define F1 = {ik | k = 0, 1, · · · } which is a subset of J satisfies:

i1 = min{j | j ∈ J},

ik+1 = min{j ∈ J | j − 1 ∈ I, j − 1 > ik}, ∀k ≥ 1.

According to Lemma 3.3, we know that F1 is an infinite set. For k ≥ 1, by the definition of ik
we know that ik − 1 ∈ I. According to Step 5 of Algorithm 2.1, we have

∆ik ≤ c2∆ik−1. (3.22)

The definition of ik+1 implies that there exists at least an integer l such that

ik + l < ik+1 − 1 and ik + l ∈ J. (3.23)

Let lk be the maximum integer satisfies (3.23). It follows from Step 5 of Algorithm 2.1 that

∆ik+l ≥ ∆ik+l+1, l = 0, 1, · · · , lk, (3.24a)

∆ik+l ≤ ∆ik+l+1, l = lk + 1, lk + 2, · · · , ik+1 − ik − 1. (3.24b)

Following from (3.18), we see that ∆ik−1 → 0 as k → ∞. This fact combined with (3.22) and

(3.24) implies that

lim
k→∞,k∈J

∆k = 0. (3.25)

Hence, it follows from (3.18) and (3.25) that (3.21) holds.

Based on the above work, we prove the theorem now. By the Taylor expansion, Assumption

3.2, ‖dk‖ ≤ ∆k and (3.21), we get

∣

∣fk − f(xk + dk)− (φk(0)− φk(dk))
∣

∣

=

∣

∣

∣

∣

1

2
dTkBkdk −

∫ 1

0

[g(xk + ξdk)− gk]
Tdkdξ

∣

∣

∣

∣

≤ O(∆2
k‖Bk‖) + o(∆k). (3.26)

By (2.1), (3.17) and (3.26), it follows that
∣

∣

∣

∣

∣

fk − f(xk + dk)

φk(0)− φk(dk)
− 1

∣

∣

∣

∣

∣

≤
O(∆2

k‖Bk‖) + o(∆k)

τǫmin{∆k, ǫ/‖Bk‖}
.
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Combining the above inequality, (3.21) and Assumption 3.3, we can deduce that

lim
k→∞

fk − f(xk + dk)

φk(0)− φk(dk)
= 1. (3.27)

It follows from (2.2) and (3.1) that

ρk =
Dk − f(xk + dk)

φk(0)− φk(dk)
≥

fk − f(xk + dk)

φk(0)− φk(dk)
. (3.28)

Thus, for k large enough, according to µ ∈ (0, 1), (3.27) and (3.28), we have that

ρk ≥ µ.

From Step 5 of Algorithm 2.1, we know that ∆k+1 ≥ ∆k holds for sufficiently large k, which

contradicts (3.21). The theorem is true. �

4. Local Superlinear Convergence

In this section, we analyze the superlinear convergence for Algorithm 2.1 under suitable

conditions. First we present the following assumptions.

Assumption 4.1. f(x) is twice continuously differentiable.

Assumption 4.2. The matrix Bk is invertible, ‖B−1
k gk‖ ≤ ∆k and Algorithm 2.1 chooses

the step dk = −B−1
k gk for all k.

Theorem 4.1. Suppose that Assumptions 3.1, 3.3, 4.1, and 4.2 hold. Suppose that the sequence

{xk} is generated by Algorithm 2.1 convergence to a point x∗, where ∇2f(x∗) is positive definite

and ∇2f(x) is Lipschitz continuous on a neighborhood of x∗. If

lim
k→∞

‖
(

Bk −∇2f(xk)
)

dk‖

‖dk‖
= 0, (4.1)

then the sequence {xk} converges to x∗ superlinearly.

Proof. According to Assumption 3.2 and Theorem 3.1, we know that there exists a constant

L1 > 0 such that

‖g(xk)− g(x∗)‖ ≤ L1‖xk − x∗‖,

the sequence {xk} is generated by Algorithm 2.1 and converges to a point x∗, it follows that

lim
k→∞

‖g(xk)− g(x∗)‖ ≤ 0.

This implies that

lim
k→∞

‖gk‖ = ‖g(x∗)‖ = 0. (4.2)

Then it means that x∗ is a strict local minimizer. Suppose that Ω = {x
∣

∣‖x− x∗‖ ≤ ∆}, where

∆ > 0 is a sufficiently small constant such that xk ∈ Ω for all k ≥ k0, where k0 is a positive

integer. From Assumption 4.1, we know that there exist two positive constants m and M , such

that

m‖d‖2 ≤ dT∇2f(x)d ≤ M‖d‖2, ∀d ∈ ℜn, (4.3)
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for all x ∈ Ω. For sufficiently large k > k0, from (1.2), it follows that

φk(0)− φk(dk) =
1

2
dTk

(

Bk −∇2f(xk)
)

dk +
1

2
dTk∇

2f(xk)dk. (4.4)

From Assumption 3.3 we have that dk → 0 as k → ∞. Combining dk → 0, (4.1), (4.3) and

(4.4), we know that

lim
k→∞

φk(0)− φk(dk)

‖dk‖2
≤ M.

This implies that

φk(0)− φk(dk) = O(‖dk‖
2). (4.5)

By Mean-value Theorem, it follows that

fk − f(xk + dk)−
(

φk(0)− φk(dk)
)

=
1

2
dTk

(

∇2f(xk)−∇2f(xk + ξdk)
)

dk +
1

2
dTk

(

Bk −∇2f(xk)
)

dk,

where ξ ∈ (0, 1). For large enough k, due to the Lipshitz continuity of ∇2f(x), (4.1) and

dk → 0, it follows that

fk − f(xk + dk)−
(

φk(0)− φk(dk)
)

= o(‖dk‖
2). (4.6)

Combining (4.5) and (4.6), we know that

∣

∣

∣

∣

∣

fk − f(xk + dk)

φk(0)− φk(dk)
− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

fk − f(xk + dk)− φk(0) + φk(dk)

φk(0)− φk(dk)
− 1

∣

∣

∣

∣

∣

≤
o(‖dk‖2)

O(‖dk‖2)
. (4.7)

By (4.7), we know (3.27) holds. Combining (3.27) and (3.28) we know that ρk ≥ µ for sufficiently

large k. Therefore, Algorithm 2.1 reduces to the standard quasi-Newton method when k is

sufficiently large and we can obtain the superlinear convergent result by following from the

stand results of quasi-Newton method. The theorem is true. �

5. Computational Experiments

In this section, we provide some preliminary numerical experiments to show the performance

of our proposed algorithm. The new nonmonotone trust region algorithm is denoted by NNTR

from now on. In Algorithm 2.1, the parameter η has a wide scope. If we take η = 0, then

we can obtain the usual trust region methods described in [4](denoted by UTR). Besides, we

compare Algorithm 2.1 with NTR method proposed by Mo et al. [15].

The mentioned algorithms are coded in Matlab 7.10.0 environment. All numerical compu-

tation were conducted using an Intel(R) Core(TM) 2 Duo CPU 2.20 GHZ computer with 2GB

of RAM. We exploit the parameters of Algorithm 2.1 as follows:

∆0 = 2, µ = 0.25, c1 = 0.25, c2 = 1.25.

In all tests the maximum number of iterations is 300, and the termination condition is

‖gk‖ ≤ 10−6. In all algorithms, Bk is updated by the following BFGS formula:

Bk+1 = Bk +
Bksks

T
k Bk

sTkBksk
+

y∗k(y
∗
k)

T

(y∗k)
T sk

,
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where

y∗k =
yTk sk
|yTk sk|

yk, sk = xk+1 − xk, yk = gk+1 − gk.

For each test, we choose the initial matrix B0 = |f0|E, where E is the unit matrix. For

simplicity, in the tables of test results, “ Iter” denotes the numbers of iterations and “ Dim”

denotes the dimensions of the problems, “ FV”,“ GV” denote the final value of f(xk) and g(xk)

respectively when the algorithm terminates, “ TCPU” represents the CPU time in second for

solving each problem and “ NF”,“ NG” denote the function evaluations and gradient evaluations

in sequence respectively. we choose some test functions from [22] and [23].

Example 5.1. Extended Rosenbrock function. The test function is the 21th example of [22].

Let

f(x) =

n/2
∑

i=1

(

100(x2i − x2
2i−1)

2 + (1 − x2i−1)
2
)

.

The minima of the problem is f(min) = 0, and the standard starting point x0 = (−1.2, 1, · · · ,−1.2, 1)T .

Table 5.1: Numerical results for Example 5.1.

Dim NNTR(η = 0.2) NNTR(η = 0.5)

Iter FV TCPU NF NG Iter FV TCPU NF NG

32 44 2.54e-016 0.0559 89 84 48 5.08e-018 0.0626 97 91

64 46 4.99e-017 0.0891 93 90 46 4.99e-017 0.0924 93 90

128 42 1.64e-016 0.1874 85 83 43 1.11e-018 0.1932 87 84

256 47 3.01e-016 0.7310 95 93 48 2.56e-021 0.7844 97 97

512 45 1.65e-019 3.4084 91 91 45 1.65e-019 3.3937 91 91

Example 5.2. Extended Powell singular function. The test function is the 22th example

of [22]. Let

f(x) =

n/4
∑

i=1

(

(x4i−1 + 10x4i−2)
2 + 5(x4i−2 − x4i)

2 + (x4i−2 − 2x4i−1)
2 + 10(x4i−3 − x4i)

4
)

.

The minima of the problem is f(min) = 0, the standard starting point x0 = (3,−1, 0, 1, · · · , 3,

−1, 0, 1)T .

Table 5.2: Numerical results for Example 5.2.

Dim NNTR(η = 0.2) NNTR(η = 0.5)

Iter FV TCPU NF NG Iter FV TCPU NF NG

32 50 2.60e-011 0.0617 101 101 50 2.60e-011 0.0596 101 101

64 50 5.44e-010 0.0766 101 101 50 5.44e-010 0.0976 101 101

128 62 4.86e-013 0.2241 125 125 62 4.86e-013 0.1811 125 125

256 62 1.43e-010 0.9593 125 125 62 1.43e-010 0.9602 125 125

512 68 1.24e-009 5.0646 137 137 68 1.24e-009 5.0746 137 137
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Example 5.3. Extended Dixon test function. The test function is the Problem 4.5 of [23]. Let

f(x) =

n/10
∑

i=1

(

(1 − x10i−9)
2 + (1− x10i)

2 +

10i−1
∑

j=10i−9

(x2
j − xj+1)

2
)

.

The minima of the problem is f(min) = 0, the standard starting point x0 = (−2,−2, · · · ,−2,−2)T .

Table 5.3: Numerical results for Example 5.3.

Dim NNTR(η = 0.2) NNTR(η = 0.5)

Iter FV TCPU NF NG Iter FV TCPU NF NG

32 80 7.40e-016 0.0475 161 160 82 1.02e-014 0.0819 165 165

64 85 4.38e-016 0.1415 171 171 85 4.38e-014 0.1378 171 171

128 106 1.09e-015 0.3623 213 211 100 2.97e-015 0.3024 201 201

256 114 1.87e-016 1.8159 229 229 114 1.87e-016 1.7932 229 229

512 130 1.38e-015 9.9293 261 261 130 1.38e-015 9.8413 261 261

Example 5.4. Broyden tridiagonal function. The test function is the 30th example of [22].

Let

f(x) =

n
∑

i=1

(

(3− 2xi)xi − xi−1 − 2xi+1 + 1
)2

.

The minima of the problem is f(min) = 0, the standard starting point x0 = (−1,−1, · · · ,−1,−1)T .

Table 5.4: Numerical results for Example 5.4.

Dim NNTR(η = 0.2) NNTR(η = 0.5)

Iter FV TCPU NF NG Iter FV TCPU NF NG

32 33 4.38e-016 0.0182 67 67 33 4.38e-016 0.0572 67 67

64 28 7.47e-015 0.0724 57 57 28 7.47e-015 0.0706 57 57

128 37 8.04e-015 0.1233 75 75 37 8.04e-015 0.1712 75 75

256 55 1.01e-014 0.8374 111 111 55 1.01e-014 0.8589 111 111

512 81 8.00e-015 5.9847 163 163 81 8.00e-015 5.9419 163 163

Example 5.5. Trigonometric function. The test function is the 26th example of [22]. Let

f(x) =
n
∑

i=1

(

n−
n
∑

j=1

cosxj + i(1− cosxi)− sinxi

)2

.

The minima of the problem is f(min) = 0, x0 = (1/2n, 1/2n, · · · , 1/2n)T is the standard

starting point.

In Tables 5.1 to 5.5 we give some test results about five large scale unconstrained optimiza-

tion problems to show that whether the parameter η has impact on Algorithm 2.1, we test the

five problems with two cases, say, η = 0.2 and η = 0.5. The dimensions of the problems are

chosen from 32 to 512. It is shown from the tables that the numbers of iterations, the CPU

time, the function evaluations and gradient evaluations in sequence didn’t appear to be much
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Table 5.5: Numerical results for Example 5.5.

Dim NNTR(η = 0.2) NNTR(η = 0.5)

Iter FV TCPU NF NG Iter FV TCPU NF NG

32 68 4.24e-014 0.0658 137 119 55 1.66e-015 0.0991 111 96

64 86 1.76e-013 0.2987 173 152 74 1.32e-013 0.2884 149 130

128 100 1.24e-014 0.8947 201 179 80 9.20e-015 0.7324 161 142

256 177 5.30e-012 6.7765 355 321 173 5.86e-012 6.6022 347 314

512 183 7.52e-013 30.502 367 332 196 6.30e-013 32.668 393 356

Table 5.6: Numerical comparisons about the mentioned algorithms(1).

Problem Dim UTR NTR NNTR

Iter FV GV Iter FV GV Iter FV GV

32 46 6.39e-017 3.53e-007 44 2.54e-016 7.12e-007 44 2.54e-016 7.12e-007

64 55 2.05e-020 6.24e-009 53 1.53e-023 9.67e-011 46 4.99e-017 9.83e-008

5.1 128 47 5.74e-016 9.35e-007 47 5.74e-016 9.35e-007 42 4.65e-028 5.73e-007

256 49 3.10e-018 6.50e-008 49 6.21e-016 8.77e-007 47 6.78e-028 3.10e-007

512 50 7.29e-017 3.74e-007 50 7.29e-017 3.74e-007 45 2.20e-025 1.65e-008

32 60 8.65e-014 5.14e-007 60 8.65e-014 5.14e-007 50 2.60e-011 4.20e-007

64 57 9.21e-010 9.43e-007 57 9.21e-010 9.43e-007 50 5.44e-010 9.96e-007

5.2 128 69 1.28e-013 2.53e-007 67 4.62e-016 1.34e-007 62 4.86e-013 2.69e-007

256 60 1.03e-009 6.70e-007 60 1.03e-009 6.74e-007 62 1.43e-010 6.92e-007

512 63 6.82e-010 5.24e-007 63 6.82e-010 5.24e-007 68 1.24e-009 6.16e-007

32 90 1.52e-017 1.86e-008 85 2.00e-015 2.28e-007 80 7.40e-016 1.45e-007

64 97 4.81e-015 2.82e-007 97 4.81e-015 2.82e-007 85 4.38e-016 9.04e-007

5.3 128 109 1.41e-016 6.14e-008 109 1.41e-016 6.14e-008 106 1.09e-015 1.15e-007

256 120 1.06e-014 4.27e-007 120 1.06e-014 4.27e-007 114 1.87e-016 6.78e-008

512 124 3.98e-014 8.44e-007 124 3.98e-014 8.44e-007 130 1.38e-015 1.47e-007

32 43 3.36e-015 6.07e-007 33 4.38e-016 1.80e-007 33 4.38e-016 1.80e-007

64 28 7.47e-015 7.18e-009 28 7.47e-015 7.18e-007 28 7.47e-015 7.18e-007

5.4 128 37 8.04e-015 6.75e-007 37 8.04e-015 6.75e-007 37 8.04e-015 6.75e-007

256 55 1.01e-014 9.71e-007 55 1.01e-014 9.71e-007 55 1.01e-014 9.71e-007

512 81 8.00e-015 8.17e-007 81 8.00e-015 8.17e-007 81 8.00e-015 8.17e-007

32 71 8.04e-014 5.67e-007 68 4.24e-014 4.12e-007 68 4.23e-014 4.12e-007

64 121 9.03e-015 1.90e-007 86 1.76e-013 8.40e-007 86 1.76e-013 8.40e-007

5.5 128 231 2.48e-013 9.96e-007 100 1.24e-014 2.23e-007 100 1.24e-014 2.23e-007

256 300 4.26e-010 4.13e-005 177 5.30e-012 6.02e-007 177 5.30e-012 6.02e-007

512 300 2.26e-008 2.94e-004 183 7.52e-013 9.46e-007 183 7.52e-013 9.46e-007

different from η = 0.2 to η = 0.5. The results imply that the parameter values of η have slight

impact on the unconstrained optimization test problems.

We can compute a variable ηk by a formula as follows for further research:

ηk =

{

θη0, k = 1,

θηk−1 + (1 − θ)ηk−2, k ≥ 2,

where η0 = 0.2, 0.5 and 0.8, the parameter θ ∈ (0, 1). Other choice such that ηk = 0.95 for

k ∈ [1, 20], ηk = 0.5 for k ∈ [21, 40], ηk = 0.25 for k ∈ [41, 60] and ηk = 0.01 for k ≥ 61 in [6]

can also be computed. The choice for ηk mentioned above was not used in the numerical results

of this paper.

The Numerical results about the mentioned three algorithms are shown in Tables 5.6 and
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Table 5.7: Numerical comparisons about the mentioned algorithms(2).

Problem Dim UTR NTR NNTR

TCPU NF NG TCPU NF NG TCPU NF NG

32 0.0623 93 86 0.0543 89 84 0.0559 89 84

64 0.0869 111 101 0.0959 107 100 0.0891 93 90

5.1 128 0.1576 95 89 0.1210 95 89 0.1874 85 83

256 0.7269 99 93 0.7406 99 94 0.7310 95 93

512 3.6349 101 96 3.6587 101 96 3.4084 91 91

32 0.0746 121 117 0.0765 121 117 0.0617 101 101

64 0.1006 115 110 0.1045 115 110 0.0766 101 101

5.2 128 0.2784 139 134 0.1979 135 130 0.2241 125 125

256 0.9529 121 116 0.9691 121 116 0.9593 125 125

512 4.7554 127 125 4.8502 127 125 5.0646 137 137

32 0.0784 181 177 0.0786 171 169 0.0475 161 160

64 0.1235 195 192 0.1135 195 192 0.1415 171 171

5.3 128 0.3312 219 214 0.2522 219 214 0.3623 213 211

256 1.8305 241 236 1.9156 241 236 1.8159 229 229

512 9.2297 249 245 9.4650 249 245 9.9293 261 261

32 0.0683 87 75 0.0555 67 67 0.0182 67 67

64 0.0768 57 57 0.0802 57 57 0.0724 57 57

5.4 128 0.1689 75 75 0.1828 75 75 0.1233 75 75

256 0.8796 111 111 0.9228 111 111 0.8374 111 111

512 6.1910 163 163 6.1125 163 163 5.9847 163 163

32 0.0995 143 129 0.1246 137 119 0.0658 137 119

64 0.3913 243 219 0.2644 173 152 0.2987 173 152

5.5 128 2.0889 463 420 0.8881 201 179 0.8947 201 179

256 11.612 601 550 6.8966 355 321 6.7765 355 321

512 51.597 601 550 31.244 367 332 30.502 367 332

5.7, including two nonmonotone trust region methods (NTR and NNTR) and a traditional

monotone trust region method, i.e., the UTR method. Considering that the parameter values

of η have slight impact on the unconstrained optimization test problems, we chosen η = 0.2 for

NNTR method to compare with the other two methods.

Considering that NTR and UTR are two nonmonotone trust region methods without line

search, we compare NNTR with a trust region method with line search, which seems more

convincingly. The nonmonotone trust region algorithm with Armijo line search is denoted by

BLS from now on, i.e., when the direction dk was not accepted, then we choose the step length

to satisfy the Armijo line search rule. The BLS method can regard as the special case of [17].

In our experiments, unless otherwise stated, the other parameters in UTR and NTR methods

were set as the NNTR method.

It is shown from Tables 5.6 and 5.7 that NNTR method performs better than UTR and NTR

method since the new algorithm needs less numbers of iterations, less function and gradient

evaluation in most cases. Besides, NNTR uses the least CPU time for solving almost the test

problems. In Table 5.8 BLS seems perform better than NNTR in most cases. Considering that

trust region with line search can speed up the rate of convergence and NNTR performs better

than BLS sometimes. Therefore, we can deduce that the new nonmonotone algorithm is more

robust than the other mentioned algorithms, which indicates that extending trust region method

from monotone to nonmonotone is meaningful for solving large scale unconstrained optimization
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Table 5.8: Numerical comparisons about the mentioned algorithms.

Example Dim NNTR BLS

Iter FV TCPU NF Iter FV TCPU NF

32 50 2.60e-011 0.0617 101 49 1.33e-015 0.0749 98

64 50 5.44e-010 0.0766 101 50 2.50e-012 0.0498 95

5.2 128 62 4.86e-013 0.2241 125 64 2.22e-010 0.2445 128

256 62 1.43e-010 0.9593 125 57 2.94e-014 0.9663 104

512 68 1.24e-009 5.0646 137 63 3.25e-010 4.4531 119

32 80 7.40e-016 0.0475 161 73 1.33e-015 0.0749 164

64 85 4.38e-016 0.1415 171 81 2.50e-011 0.1498 173

5.3 128 106 1.09e-015 0.3623 213 101 3.35e-012 0.3516 198

256 114 1.87e-016 1.8159 229 109 4.91e-015 1.7621 227

512 130 1.38e-015 9.9293 261 136 5.31e-015 9.9442 273

32 68 4.23e-014 0.0658 137 70 5.63e-016 0.1179 138

64 86 1.76e-013 0.2987 173 78 4.45e-012 0.2382 166

5.5 128 100 1.24e-014 0.8947 201 101 4.52e-016 0.8094 178

256 177 5.30e-012 6.7765 355 170 4.82e-011 6.5065 351

512 183 7.52e-013 30.502 367 189 3.88e-011 32.251 375

problems. In a word, the proposed new algorithm is efficient and robust for solving large scale

unconstrained optimization problems.

6. Conclusions

In this paper, we proposed a new nonmonotone trust region algorithm based on the non-

monotone line search proposed by Gu and Mo [6]. By resetting the ratio ρk for evaluation the

trial step, the new algorithm is developed. Theoretical analysis shows that the new algorithm

inherits the global convergence of the traditional trust region method. Under suitable conditions

the superlinear convergence of the algorithm are proved. Preliminary numerical experiments

indicate that our algorithm is quite effective for large scale unconstrained optimization prob-

lems.
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