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Abstract. In this paper, we devote ourselves to the research of numerical methods
for American option pricing problems under the Black-Scholes model. The optimal
exercise boundary which satisfies a nonlinear Volterra integral equation is resolved by
a high-order collocationmethod based on gradedmeshes. For the other spatial domain
boundary, an artificial boundary condition is applied to the pricing problem for the
effective truncation of the semi-infinite domain. Then, the front-fixing and stretching
transformations are employed to change the truncated problem in an irregular domain
into a one-dimensional parabolic problem in [−1,1]. The Chebyshev spectral method
coupledwith fourth-order Runge-Kutta method is proposed for the resulting parabolic
problem related to the options. The stability of the semi-discrete numerical method is
established for the parabolic problem transformed from the original model. Numerical
experiments are conducted to verify the performance of the proposed methods and
compare them with some existing methods.
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1 Introduction

Options as a kind of important financial derivatives have a wide range of applications.
The option pricing problem, especially the American option pricing problem, attracts the
attention of more andmore financial practitioners. The distinctive feature of an American
option is its early exercise privilege, that is, the holder is endowed with the additional
right to exercise the option at any time prior to the date of expiration, which makes an
American option worth more than its European counterpart. Because of its early exercise
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privilege, American option pricing problem exists an optimal exercise boundary [3, 26],
which makes American pricing problem a nonlinear problem, and no analytical solution
exists comparing to that of European options.

The researches of American option pricing problems have been extensively devel-
oped in recent decades. Traditionally, there are two ways—the analytical method and the
numerical method. For analytical results, we refer to [1,9,10,13,25,33]. They managed to
present the solutions in a closed form depending on the optimal exercise boundary, then
the option value was determined as long as the optimal exercise boundary was given.
However it was not known actually in practice. For numerical aspects, it can be divided
into two categories in general, one is based on Monte Carlo approach [11, 28, 30], the
other is based on partial differential equation (PDE) approach [2, 3, 19, 20, 22]. We would
like to further adopt the PDE approach in this paper, since Monte Carlo method requires
demanding computational resource due to its slow convergence.

The Black-Scholes equation is one of the most effective PDE models [5, 21]. And nu-
merical methods are of popular use and frequently resorted for the Black-Scholes model
among financial practitioners. For example, lattice tree methods, finite difference meth-
ods and finite element methods have been developed and extensively studied in recent
decades. Cox, Ross and Rubinstein firstly introduced the binomial model to price Ameri-
can options in their seminal paper [15]. Later, Amin and Khanna showed the convergence
of the binomial method in [4]. Finite difference methods have been developed and dis-
cussed for a long time for American option pricing problem [8,19]. One may refer to [22]
for the convergence analysis. Recently, finite element methods [3,20] have attracted more
interest in this field for its solid theoretical framework, in particularly its efficiency and
variability. Interested readers may refer to [26] and the references therein for a complete
survey. In this paper, we discuss the Chebyshev spectral method to the same problem,
which turns to be efficient and comparable to finite element method.

There exist four main challenges for the numerical treatment of the American option
pricing problem:

• The optimal exercise boundary is unknown, which satisfies a highly nonlinear equa-
tion, so it is not easy to get a fine resolution of optimal exercise boundary.

• For the other boundary, since we cannot adopt numerical methods directly to un-
bounded domain, how to truncate the unbounded domain and control the trun-
cated errors are the key issues.

• The solving domain is an irregular domain, and the partition has to be recon-
structed for each time order in order to resolve the option values exactly.

• The last one is how to choose an efficient numerical method to solve the problem
fast and accurately.

About the first challenge, Cox [15, 23] has proved that the optimal exercise boundary
satisfied a nonlinear Volterra integral equation, and Ma et al. [29] have solved the same
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nonlinear Volterra integral equation by a high-order collocation method and presented
numerical results. We shall follow the idea of [29] to deal with the first difficulty. For the
second challenge, Holmes and Yang have introduced an artificial boundary condition to
truncate the unbounded problem related to American call options in [20], we will use
this method to deal with the put options. For the third challenge, front-fixing transfor-
mation technique [19, 20, 26, 27, 34], a very effective method for free boundary problems,
is applied to convert the irregular domain into a regular one. Then the truncated prob-
lem can be transformed into a one-dimensional parabolic problem in [−1,1] by stretching
transformation.

The numerical method for solving the one-dimensional parabolic problem in [−1,1]
is our main task. To our knowledge, there are no pervious efforts about the spectral
method applied to the American option pricing problems. Here, the Chebyshev spec-
tral method [16, 32] with fourth-order Runge-Kutta method [31] is adopted to solve the
parabolic problem related to option values. Numerical simulations verify the effective-
ness of our algorithms and appear to be more accurate and efficient than the finite ele-
ment method. Then the problem can be solved quickly by the spectral method achieving
the same accuracy.

The rest of the paper is organized as follows. In Section 2, we shall describe the Black-
Scholes model for American put option, and present a high-order collocation method
to solve the optimal exercise boundary. Artificial boundary condition, front-fixing and
stretching transformations are employed to formulate a one-dimensional parabolic prob-
lem in [−1,1] to replace the original problem in the unbounded domain In section 3. In
section 4, the Chebyshev spectral method is applied to the one-dimensional parabolic
problem in [−1,1], and the stability of the method is also presented in this section. In Sec-
tion 5, numerical simulations are implemented to test the performance of the proposed
method and compare with some existing methods. Some concluded remark is collected
in Section 6.

2 The optimal exercise boundary

In this section, we mainly introduce the optimal exercise boundary of American options.
A derivation of this part can be found in [35]. For completeness, we outline the main pro-
cess as follows. Assume that S and t are the underlying asset price and time respectively,
then the put option value P=P(S,t) satisfies the following free boundary problem





Pt+
σ2

2 S
2PSS+(r−d)SPS−rP=0, B(t)<S<+∞, 0≤ t<T,

P(S,T)=(K−S)+, B(T)≤S<+∞,

P(B(t),t)=K−B(t), 0≤ t≤T,

PS(B(t),t)=−1, 0≤ t≤T,

lim
S→+∞

P(S,t)=0, 0≤ t≤T,

(2.1)
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where r, σ, d, K and T are the interest rate, volatility, dividend rate, exercise price and
maturity date. B(t) is the optimal exercise boundary and F+=max(F ,0). In [15], Cox,
Ross, and Rubinstein proved that the optimal exercise boundary satisfied the following
nonlinear Volterra integral equation [23, 29]:

B(t)=K+B(t)e−d(T−t)N

(
− lnB(t)−lnK+β2(T−t)

σ
√
T−t

)
(2.2)

−Ke−r(T−t)N

(
− lnB(t)−lnK+β1(T−t)

σ
√
T−t

)

−Kr
∫ T

t
e−r(η−t)

[
1−N

(
lnB(t)−lnB(η)+β1(η−t)

σ
√

η−t

)]
dη

+qB(t)
∫ T

t
e−d(η−t)

[
1−N

(
lnB(t)−lnB(η)+β2(η−t)

σ
√

η−t

)]
dη,

with

B(T)=min

(
K,

rK

d

)
, N(x)=

1√
2π

∫ x

−∞
e−

s2

2 ds, β1= r−d− σ2

2
, β2= r−d+

σ2

2
.

In order to simplify the equation, let t=T−τ, y(τ)=lnB̃(τ)=lnB(T−τ), and combine
with 1−N(x)=N(−x), we obtain

ey(τ)=K+ey(τ)e−dτN

(
−y(τ)−lnK+β2τ

σ
√

τ

)
−Ke−rτN

(
−y(τ)−lnK+β1τ

σ
√

τ

)

−Kr
∫ τ

0
e−r(τ−η)N

(
−y(τ)−y(η)+β1(τ−η)

σ
√

τ−η

)
dη

+dey(τ)
∫ τ

0
e−d(τ−η)N

(
−y(τ)−y(η)+β2(τ−η)

σ
√

τ−η

)
dη. (2.3)

Lemma 2.1. (see [18,26]) The asymptotic expansion of optimal exercise boundary B̃(τ) as τ→0+

has the following analytic representation

rK
d − B̃(τ)

rK
d

≈ σ√
2

λ
√

τ, r<d;

K− B̃(τ)

K
≈
√
2σ
√

τ|lnτ|, r=d;

K− B̃(τ)

K
≈σ
√

τ|lnτ|, r>d.

Here, λ is a constant that satisfies the following transcendental equation

λ3e
λ2

4

∫ ∞

λ
e−

x2

4 dx=2(2−λ2).



H. Song, R. Zhang and W. Tian / J. Math. Study, 47 (2014), pp. 47-64 51

Because of the singularity of the derivative of B̃(τ) at τ = 0 by Lemma 2.1, standard
numerical methods (such as collocation method) on uniform mesh for (2.3) can not guar-
antee the convergence. Fortunately, there exists a powerful and popular tool, named the
graded meshes [6,7] which confirms sufficiently accurate approximation B̃(τi) to B̃(τ) on
some small initial interval [0,τ∗].

Next, we present a high-order collocationmethod on gradedmeshes for solving equa-
tion (2.3). Let Iτ = {τm = T( m

M )2, m= 0,1,.. .,M} be the graded meshes on [0,T] and set
km := (τm,τm+1], m= 0,.. .,M−1. We will be concerned with the collocation solution Yτ

lying in the piecewise polynomial space

S
(−1)
J (Iτ)={v,v|km ∈PJ(km), 0≤m≤M−1},

where the superscript (−1) in S
(−1)
J (Iτ) means discontinuous and PJ denotes the set of

polynomials of degree not exceeding J. The dimension of the space S
(−1)
J (Iτ) equals to

M(J+1), and it is natural to choose the set of collocation points as

Tτ :={τm,j=τm+cj(τm+1−τm) : 0< c1< ···< cJ+1≤1,m=0,··· ,M−1},

since its cardinality is also M(J+1). Here, {cj = j
J+1}

J+1
j=1 is a given set of collocation

parameters in (0,1].

The collocation method is given as: Find Yτ ∈S
(−1)
J (Iτ) satisfying Eq. (2.3) exactly at

the collocation points τm,j∈Tτ, that is

eYτ(τm,j)=K+eYτ(τm,j)e−dτm,jN

(
−Yτ(τm,j)−lnK+β2τm,j

σ
√

τm,j

)
(2.4)

−Ke−rτm,jN

(
−Yτ(τm,j)−lnK+β1τm,j

σ
√

τm,j

)

−Kr
∫ τm,j

0
e−r(τm,j−η)N

(
−Yτ(τm,j)−Yτ(η)+β1(τm,j−η)

σ
√

τm,j−η

)
dη

+deYτ(τm,j)
∫ τm,j

0
e−d(τm,j−η)N

(
−Yτ(τm,j)−Yτ(η)+β2(τm,j−η)

σ
√

τm,j−η

)
dη.

Setting Ym,j=Yτ(τm+cj(τm+1−τm)) (j=1,.. ., J+1), we can express Ym
τ (the restriction

of Yτ on interval km) by interpolation

Yτ|km =Ym
τ (τ)=Yτ(τm+s(τm+1−τm))=

l+1

∑
j=1

Ym,jLj(s), 0< s≤1, (2.5)

with Lagrange interpolation polynomials

Lj(s)=
l+1

∏
k=1,k 6=j

s−ck
cj−ck

, 0< s≤1, j=1,··· , J+1. (2.6)
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Therefore, the global collocation solution Yτ on [0,T] is given by

Yτ =
M−1

∑
m=0

Φm(τ)Ym
τ (τ),

where Φm(τ) is the characteristic function on km.
Substituting Yτ into (2.3), we can derive the following block nonlinear systems

Fm,j(Ym,1,Ym,2,··· ,Ym,J+1)=0, j=1,2,··· , J+1, (2.7)

for each m=0,1,.. .,M−1, where Fm,j are given by

Fm,j=eYm,j−K−eYm,j−dτm,jN(ε2)+Ke−rτm,jN(ε1)

−deYm,j

∫ τm,j

0
e−d(τm,j−η)N(η2)dη+rK

∫ τm,j

0
e−r(τm,j−η)N(η1)dη

with

ε2=−Ym,j−lnK+β2τm,j

σ
√

τm,j
, ε1=−Ym,j−lnK+β1τm,j

σ
√

τm,j
,

η2=−Ym,j−Y(η)+β2(τm,j−η)

σ
√

τm,j−η
, η1=−Ym,j−Y(η)+β1(τm,j−η)

σ
√

τm,j−η
.

Here, we adopt simplified Newton’s method to solve the nonlinear systems (2.7), where
the Jacobian is calculated as follows:

∂Fm,j

∂Ym,j
≈eYm,j−eYm,j−dτm,jN(ε2)+

eYm,j−dτm,j−
ε22
2 −Ke−rτm,j−

ε21
2

σ
√

2πτm,j

−deYm,j

∫ τm,j

0
e−d(τm,j−η)N(η2)dη+deYm,j

∫ τm

0

e−d(τm,j−η)− η22
2

σ
√

2π(τm,j−η)
dη

−rK
∫ τm

0

e−r(τm,j−η)− η21
2

σ
√

2π(τm,j−η)
dη,

∂Fm,j

∂Ym,k
≈0, for k 6= j.

Set Ym=(Ym,1,Ym,2,. . .,Ym,J+1)
T and let Z (k)

m =(Z (k)
m,1,Z

(k)
m,2,. . .,Z

(k)
m,J+1)

T be the m-th in-
terval and k-th step iterative solution of simplified Newton’s method, which is given by

Z (k+1)
m,j =Z (k)

m,j−
Fm,j(Z (k)

m )

λ
(k)
m

, j=1,2,··· , J+1, m=0,1,··· ,M−1, (2.8)
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where

λ
(k)
m = max

1≤j≤J+1

∂Fm,j

∂Ym,j
, Z (0)

0 =Y0 and Z (0)
m =Z (mk)

m−1 , m=1,··· ,M−1.

Here, mk is the maximum integer index of the iterative solution by the simplified New-

ton’s method under a given tolerance, that is ‖Z (k+1)
m −Z (k)

m ‖2≤ Tol.

3 Pricing models via transformation and truncation

With the optimal exercise boundary computed in Section 2, American put option pricing
problem (2.1) becomes a parabolic problem on a known unbounded domain. In this sec-
tion, artificial boundary condition and front-fixing transformation will be discussed for
the Black-Scholes equation to reduce the unbounded domain to the desired rectangular
bounded computational domain.

3.1 Artificial boundary condition

In this subsection, we shall present an artificial boundary condition [14, 24], which can
truncate the infinite domain problem into a compact one and ensure the accuracy of cal-
culation.

Observing equation (2.1), we can find that it is a backward equation with variational
coefficients. Using the standard variable transforms [26]

P(S,t)=Ke−αy−βτφ(y,τ), T−t=τ, S=Key, (3.1)

where α and β are constants to be determined, the Black-Scholes equation (2.1) with
Dirichlet boundary conditions can be rewritten as a forward diffusion problem with con-
stant coefficients in some variable domain





φτ−γφyy+νφy+µφ=0, b(τ)<y<+∞, 0<τ≤T,
φ(y,0)= g(y,0), b(0)≤y<+∞,
φ(b(τ),τ)= g(b(τ),τ), 0≤τ≤T,
lim

y→+∞
e−αy−βτφ(y,τ)=0, 0≤τ≤T,

(3.2)

where the constants, the right hand function and the free boundary after transformation
read as follows

γ=
σ2

2
, ν=γ(1+2α)+d−r, µ= r+α(r−d)−γα(1+α)−β,

g(y,τ)= eαy+βτ(1−ey)+, b(τ)= ln(B(T−τ)/K).
(3.3)

In the following, we collect some important facts about the optimal exercise boundary
before and after the change of variables.
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Lemma 3.1 (Property of the optimal exercise boundary, see [23,26]). The free boundary B(t)
is a nondecreasing and bounded function with

BP
∞ ≤B(t)≤BP

T ,

where BP
∞ =KX is the price of Permanent American put options, and

X=
d−r+γ−

√
(d−r+γ)2+4rγ

d−r−γ−
√
(d−r+γ)2+4rγ

, B
p
T=B(T)=min

(
rK

d
,K

)
.

Let B= ln(BP
∞/K)= ln(X), then we get B≤b(τ)≤0, τ∈ [0,T].

Next, we introduce the far field estimate, which plays a pivotal role to show the effec-
tiveness of numerically solving the option pricing Eq. (2.1) on some truncated domains.
The first result is due to Holmes and Yang [20], who have shown the estimate for Amer-
ican call options. For other numerical methods to truncate the unbounded domain we
refer to [3] and [19].

Lemma 3.2 (see [20]). For a given positive number ε∈ (0,1), we have

P(S,t)≤ ε, ∀ S≥KeY, 0≤ t≤T,

where

Y=−2.5γTα0+0.5

√
25γ2T2α2

0−20γT log(ε/
√
5K), α0=

r−d

σ2
− 1

2
.

Define

L :=Y−log(X), a(τ) :=b(τ)+L (3.4)

and due to Lemma 3.1 and 3.2, we can easily see that

P(S,t)≤ ε, ∀ S≥Kea(T−t), 0≤ t≤T. (3.5)

Given some sufficiently small threshold ε, we can derive corresponding upper bound Y
for S (or equivalently a(τ) for y) from (3.5). In such a way, the bounded variable domain
approximating problem (3.2) can be reformulated by





ψτ−γψyy+νψy+µψ=0, b(τ)<y< a(τ), 0<τ≤T,
ψ(y,0)= g(y,0), b(0)≤y≤ a(0),
ψ(b(τ),τ)= g(b(τ),τ), 0≤τ≤T,
ψ(a(τ),τ)=0, 0≤τ≤T.

(3.6)

Note that two parallel free boundaries are introduced in (3.6).
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3.2 Front-fixing transformation

In this subsection, we will firstly introduce the front-fixing method, which can transform
the variable domain problem (3.6) into a rectangular bounded domain problem. And
then, by some standard transformations, we can get a heat equation with homogeneous
boundary conditions in [−1,1].

By using the front-fixing transforms [34]

x=y−b(τ), ϕ(x,τ)=ψ(x+b(τ),τ), (3.7)

we can reformulate variable domain problem (3.6) into the following problem in a rect-
angular domain:





ϕτ−γϕxx+(ν−b′(τ))ϕx+µϕ=0, 0< x<L, 0<τ≤T,
ϕ(x,0)= g(b(0)+x,0), 0≤ x≤L,
ϕ(0,τ)= g(b(τ),τ), 0≤τ≤T,
ϕ(L,τ)=0, 0≤τ≤T .

(3.8)

Next, using the standard variable transforms

z=
2x

L
−1, u(z,τ)= ϕ

(
(1+z)L

2
,τ

)
− 1−z

2
g(b(τ),τ), (3.9)

problem (3.8) can be rewritten as the following equations with the spatial variable in
[−1,1]:





uτ− 4γ
L2
uzz+

2(ν−b′(τ))
L uz+µu= f (z,τ), −1< z<1, 0<τ≤T,

u(z,0)= g(b(0)+ (1+z)L
2 ,0)− 1−z

2 g(b(0),0), −1≤ z≤1,
u(−1,τ)=0, 0≤τ≤T,
u(1,τ)=0, 0≤τ≤T,

(3.10)

where

f (z,τ)=
z−1

2

dg(b(τ),τ)

dτ
+

(
ν−b′(τ)

L
+
(z−1)µ

2

)
g(b(τ),τ).

We can see that problem (3.10) is a heat equation with homogeneous boundary con-
ditions in [−1,1], which can be solved with high accuracy by numerical methods.

4 Spectral methods

In this section, numerical methods will be presented for pricing American options. In
spatial direction, the Chebyshev spectral method [32] will be used to approximate equa-
tion (3.10), and a fourth-order Runge-Kutta method [31] will be presented in temporal
direction. In additional, the stability of the semi-discrete spectral numerical scheme is
established.
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4.1 Notations

Before designing the spectral method for equation (3.10), we introduce some definitions,
and recall some basic results to be used in the sequel.

First of all, we review the Chebyshev polynomials and their special properties. Tn(z)=
cos(ncos−1(z)), n=0,1,.. .,N, are the Chebyshev polynomials, which satisfy the following
three-term recurrence relation

Tn+1(z)=2zTn(z)−Tn−1(z), n≥1,
T0(z)=1, T1(z)= z,

(4.1)

and the special property related to their derivatives

2Tn(z)=
1

n+1T
′
n+1(z)− 1

n−1T
′
n−1(z), n≥2,

T0(z)=T′
1(z), 2T1(z)=

1
2T

′
2(z).

(4.2)

Setting ω(z)=(1−z2)−1/2 as the Chebyshevweight function, we introduce theweighted
inner product are weighted norm, respectively

(u,v)ω =
∫ 1

−1
uvωdz, ‖u‖2ω =(u,u)ω.

And the weighted Sobolev spaces are defined by

L2ω :={v : [−1,1]→R | ‖v‖ω <∞},
Hk

ω :={v∈L2ω | Dαv∈L2ω, 0<α≤ k},
Hk

ω,0 :={v∈Hk
ω | v(−1)=v(1)=0}.

4.2 Chebyshev spectral method

In this subsection, we mainly describe the Chebyshev spectral method for solving the
equation (3.10) and prove the stability of this method.

Firstly, we approximate the unknown function u(z,τ) by Chebyshev polynomials

U(z,τ)=
N

∑
n=0

an(τ)Tn(z). (4.3)

Then the Chebyshev spectral method for problem (3.10) is to find U∈PN
0 such that

(Uτ,V)ω+A(U,V)=( f ,V)ω, ∀ V∈PN
0 , a.e., 0<τ≤T, (4.4)

where the bilinear form is defined as

A(U,V) :=
4γ

L2

(
Uz,

(Vω)z
ω

)

ω

+
2(ν−b′(τ))

L
(Uz,V)ω+µ(U,V)ω,

and PN
0 ⊂H1

ω,0 is the space consisting of polynomials with degree not exceeding N and
vanish at the boundary.
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Theorem 4.1. Assume b∈H1([0,T]), then the Chebyshev spectral method (4.4) is stable, i.e.

‖U(·,τ)‖ω ≤C
(
‖U(·,0)‖ω+

∫ τ

0
‖ f (·,s)‖ωds

)
.

where C is a constant depending on T.

Proof. Let V=U in equation (4.4), we have

(Uτ,U)ω+
4γ

L2

(
Uz,

(Uω)z
ω

)

ω

+
2(ν−b′(τ))

L
(Uz,U)ω+µ(U,U)ω =( f ,U)ω. (4.5)

In [12], the following estimates
(
Uz,

(Uω)z
ω

)

ω

≥ 1

4
‖Uz‖2ω, (4.6)

holds and there exists a constant δ>0 such that
∥∥∥∥
(Uω)z

ω

∥∥∥∥
ω

≤δ‖Uz‖ω. (4.7)

Then we have the upper bound for the third term on the left hand side of (4.5) by (4.7)
and Cauchy inequality with ε (Page 706 in [17]), as follows

∣∣∣∣
2(ν−b′(τ))

L
(Uz,U)ω

∣∣∣∣=
∣∣∣∣
2(ν−b′(τ))

L

(
U,

(Uω)z
ω

)

ω

∣∣∣∣

≤
∣∣∣∣
2(ν−b′(τ))

L

∣∣∣∣‖U‖ω

∥∥∥∥
(Uω)z

ω

∥∥∥∥
ω

≤
∣∣∣∣
2δ(ν−b′(τ))

L

∣∣∣∣‖U‖ω‖Uz‖ω (4.8)

≤δ2(ν−b′(τ))2

γ
‖U‖2ω+

γ

L2
‖Uz‖2ω.

Substituting (4.6) and (4.8) into (4.5), it obtains

1

2

d‖U‖2ω
dτ

≤ δ2(ν−b′(τ))2

γ
‖U‖2ω+|µ|‖U‖2ω+‖ f ‖ω‖U‖ω.

For simplicity, we let C(τ)= δ2(ν−b′(τ))2

γ +|µ|, the above inequality is simplified as

d‖U‖ω

dτ
≤C(τ)‖U‖ω+‖ f ‖ω.

From the assumption on function b, it indicates that C(τ) is integrable over (0,T]. Then
using Gronwall inequality, we see that

‖U(·,τ)‖ω ≤ e
∫ τ
0 C(s)ds

(
‖U(·,0)‖ω+

∫ τ

0
‖ f (·,s)‖ωds

)
,

which obtains the conclusion.
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4.3 Implementation procedure

In this subsection, we mainly describe the implementation procedure of Chebyshev spec-
tral method [31, 32] for solving equation (3.10).

Let zn be the Chebyshev-Gauss-Lobatto points zn= cos(πn/N), 0≤n≤N, and τm=
mT/M, 0≤m≤ M be the temporal partition grids. Notice that {amn = an(τm)} can be
expressed explicitly by {Um(zn)=U(xn,τm)} from (4.3), that is

amn =
2

Ncn

N

∑
i=0

c−1
i Um(zi)cos(πin/N), 0≤n≤N, (4.9)

where c0, cN=2 and cn=1, for 0<n<N.
The first order derivative of the unknown function u(z,τm) can be approximated by

dUm(z)

dz
=

N−1

∑
n=0

a
(m,1)
n Tn(z). (4.10)

Using the property (4.2) of Chebyshev polynomials, we obtain

dUm(z)

dz
=

N−1

∑
n=0

a
(m,1)
n Tn(z)

= a
(m,1)
0 T′

1(z)+
1

4
a
(m,1)
1 T′

2(z)+
1

2

N

∑
n=2

a
(m,1)
n

[
1

n+1
T′
n+1(z)−

1

n−1
T′
n−1(z)

]

= a
(m,1)
0 T′

1(z)+
N

∑
n=2

1

2n
a
(m,1)
n−1 T′

n(z)−
N−1

∑
n=1

1

2n
a
(m,1)
n+1 T′

n(z)

=
N

∑
n=1

1

2n

(
cn−1a

(m,1)
n−1 −a

(m,1)
n+1

)
T′
n(z), (4.11)

where a
(m,1)
N = a

(m,1)
N+1 =0. From Eq. (4.3), we know that

dUm(z)

dz
=

N

∑
n=1

amn T
′
n(z). (4.12)

By comparing the coefficients of (4.11) and (4.12), we obtain

cna
(m,1)
n = a

(m,1)
n+2 +2(n+1)amn+1, n=N−1,··· ,0.

In a similar way, we get the second-order derivatives in the following form

d2Um(z)

dz2
=

N−1

∑
n=0

a
(m,2)
n Tn(z), (4.13)
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then we have

cna
(m,2)
n = a

(m,2)
n+2 +2(n+1)a

(m,1)
n+1 , n=N−2,··· ,0

a
(m,2)
N+1 = a

(m,2)
N = a

(m,2)
N−1 =0.

Therefore, replacing the unknown function and its derivatives by their correspond-
ing approximations (4.3), (4.11) and (4.13) in the equation (3.10) produces a ODE systems
about an(τ). And the fourth-order Runge-Kutta (RK4) method [31] is utilized with equa-
tion (4.9) to solve the resulting ODEs problem as follows





Um+1=Um+ ∆τ
6 (K1+2K2+2K3+K4),

K1=F(Um,z,τm), K2=F(Um+ ∆τ
2 K1,z,τm+

∆τ
2 ),

K3=F(Um+ ∆τ
2 K2,z,τm+

∆τ
2 ), K4=F(Um+∆τK3,z,τm+1),

(4.14)

where Um=(Um(z1),. . .,U
m(zN)) and

F(u,z,τ)= 4γ
L2
uzz− 2(ν−b′(τ))

L uz−µu+ f (z,τ).

5 Numerical experiments

In this section, we present numerical simulations to verify the theoretic analysis in Sec-
tion 2 and Section 4, and check the efficiency of the collocation method and spectral
method for American option pricing problems.

Here, we consider the model of one-year (T= 1) American put options, set σ = 0.2,
K=10 in equation (2.1), and vary parameters r and d for following three cases

• Case I: r<d with r=0.005 and d=0.01;

• Case II: r=d with r=d=0.01;

• Case III: r>d with r=0.05 and d=0.01.

Before verifying the efficiency of our constructive method, we firstly declare that
ε=10−6 is chosen in Theorem 3.2, then take the solution obtained by binomial method [23]
with 40000 points in temporal direction as the numerical approximation of the exact so-
lution.

In the following examples, we show the efficiency of the collocation method for solv-
ing the optimal exercise boundary.

Example 5.1. The Eq. (2.2) which satisfied by the optimal exercise boundary with above
three cases is considered. We take J=3 and Tol=10−6 in Eq. (2.8), and let M=25 in tem-
poral direction. Then the approximation of optimal exercise boundary can be obtained
by

B(tm,j)=B(T−τm,j)= eY(τm,j), j=1,2,··· , J+1, m=0,1,··· ,M−1.
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Figure 1: The optimal exercise boundary computed by collocation method with M=25 and the binomial method
with 40000 points for three cases. Case I: r<d (left); Case II: r=d (middle); Case III: r>d (right).

Table 1: L2 error and time cost about optimal exercise boundary computed by collocation method (CM) with
M=25 and binomial method (BM) with M=10000 for three cases.

Case Method M Error/10−4 Time/s

r<d CM 25 3.579464 6.037314

BM 10000 4.690713 63.972481

r=d CM 25 6.811391 6.316974

BM 10000 9.707295 48.909902

r>d CM 25 6.566997 5.792954

BM 10000 8.645543 25.168727

The results of the collocation method for these three cases are shown in Fig. 1 with
notation ”+”, and the solid lines represent the optimal exercise boundary computed by
the binomial method with 40000 points in temporal direction. From Fig. 1, we can see
that the optimal exercise boundary computed by the collocation method approximates
the exact solution well. We also give a comparison between the collocation method and
binomial method in Table 5.1, from which, we can find that the collocation method is
much faster than binomial method in the same accuracy. The numerical results confirm
the general fact that binomial method needs more computational cost to guarantee the
accuracy.

With the optimal exercise boundary obtained by the collocation method, the free
boundary problem (2.1) is converted into a regular parabolic problem (3.10), which will
be solved by Chebyshev spectral method.

Example 5.2. We consider to solve Eq. (3.10) by using spectral method for the three cases
r< d, r= d and r> d. In spatial direction approximations, N=43, N=33 and N=15 are
taken as the highest degrees of Chebyshev polynomials, respectively. And in temporal
direction, we choose M= 10000, and use RK4 to solve (3.10). Then we can obtain the
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Figure 2: The option values computed by the Chebyshev spectral method. Case I: r< d (left); Case II: r= d
(middle); Case III: r>d (right).

approximations of the option values by

P(Sn,τm)=Ke−α(b(τm)+
L(1+zn)

2 )−βτm(u(zn,τm)+
1−zn
2

g(b(τm),τm)),

Sn=Keb(τm)+
L(1+zn)

2 , n=0,1,··· ,N+1, m=1,··· ,M+1,

where α=α0, β=γα2+r.

Fig. 2 lists the results of the spectral method for these three cases. From the numerical
simulations, we can see that the option values computed by the spectral method is a
good approximation of the exact solution. The comparison between the spectral method
and finite element method is also made in Table 5.2, from which, we can notice that the
spectral method is faster than finite element method with the same accuracy, especially
the case of r> d. The results about option values in Table 5.2 also show that the bigger
ratio r/d is, the less time consuming and the more accurate option values are simulated
by spectral method. This observation confirms with the truth that the spectral method
works more effectively for smoother functions, in fact, with r/d being bigger, the initial
value becomes smoother. In general, we can conclude that spectral method is an effective
method for American option pricing problems.

6 Conclusions

In this paper, we introduce a collocation method based on the graded meshes for solv-
ing the nonlinear Volterra integral equation, which is derived for the optimal exercise
boundary arising in pricing American option. With this boundary, we reformulated the
Black-Scholes equation into a one-dimensional parabolic problem in [−1,1] by the artifi-
cial boundary condition truncation, front-fixing and the stretching transformations. The
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Table 2: L2 error, L∞ error and time cost about option values computed by spectral method (SM) and finite
element method (FEM) at t=0 for three cases.

r<d Method N L2 Error/10
−2 L∞ Error/10−2 Time/s

SM 43 1.413937 1.284660 12.634272

FEM 800 1.414865 1.284730 12.739317

r=d Method N L2 Error/10
−3 L∞ Error/10−3 Time/s

SM 33 5.173144 5.576551 9.060907

FEM 600 5.175996 5.582139 10.933538

r>d Method N L2 Error/10
−4 L∞ Error/10−4 Time/s

SM 15 1.809718 3.464621 4.363159

FEM 400 1.901018 3.623287 8.393993

resulting problem for the valuation of American option is solved by spectral method cou-
pled with Runge-Kutta method. We also give the stability analysis of spectral method,
and numerical simulations are provided to verify the efficiency of these numerical algo-
rithms.
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