- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 547-582.
Published online: 2022-08
Cited by
- BibTex
- RIS
- TXT
In this paper, we present a Runge-Kutta Discontinuous Galerkin (RKDG) method for solving the two-dimensional ideal compressible magnetohydrodynamics (MHD) equations under the Lagrangian framework. The fluid part of the ideal MHD equations along with $z$-component of the magnetic induction equation are discretized using a DG method based on linear Taylor expansions. By using the magnetic flux-freezing principle which is the integral form of the magnetic induction equation of the ideal MHD, an exactly divergence-free numerical magnetic field can be obtained. The nodal velocities and the corresponding numerical fluxes are explicitly calculated by solving multidirectional approximate Riemann problems. Two kinds of limiter are proposed to inhibit the non-physical oscillation around the shock wave, and the second limiter can eliminate the phenomenon of mesh tangling in the simulations of the rotor problems. This Lagrangian RKDG method conserves mass, momentum, and total energy. Several numerical tests are presented to demonstrate the accuracy and robustness of the proposed scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0130}, url = {http://global-sci.org/intro/article_detail/cicp/20868.html} }In this paper, we present a Runge-Kutta Discontinuous Galerkin (RKDG) method for solving the two-dimensional ideal compressible magnetohydrodynamics (MHD) equations under the Lagrangian framework. The fluid part of the ideal MHD equations along with $z$-component of the magnetic induction equation are discretized using a DG method based on linear Taylor expansions. By using the magnetic flux-freezing principle which is the integral form of the magnetic induction equation of the ideal MHD, an exactly divergence-free numerical magnetic field can be obtained. The nodal velocities and the corresponding numerical fluxes are explicitly calculated by solving multidirectional approximate Riemann problems. Two kinds of limiter are proposed to inhibit the non-physical oscillation around the shock wave, and the second limiter can eliminate the phenomenon of mesh tangling in the simulations of the rotor problems. This Lagrangian RKDG method conserves mass, momentum, and total energy. Several numerical tests are presented to demonstrate the accuracy and robustness of the proposed scheme.