- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 35 (2024), pp. 38-69.
Published online: 2024-01
Cited by
- BibTex
- RIS
- TXT
Parametric dynamical systems are widely used to model physical systems, but their numerical simulation can be computationally demanding due to nonlinearity, long-time simulation, and multi-query requirements. Model reduction methods aim to reduce computation complexity and improve simulation efficiency. However, traditional model reduction methods are inefficient for parametric dynamical systems with nonlinear structures. To address this challenge, we propose an adaptive method based on local dynamic mode decomposition (DMD) to construct an efficient and reliable surrogate model. We propose an improved greedy algorithm to generate the atoms set $\Theta$ based on a sequence of relatively small training sets, which could reduce the effect of large training set. At each enrichment step, we construct a local sub-surrogate model using the Taylor expansion and DMD, resulting in the ability to predict the state at any time without solving the original dynamical system. Moreover, our method provides the best approximation almost everywhere over the parameter domain with certain smoothness assumptions, thanks to the gradient information. At last, three concrete examples are presented to illustrate the effectiveness of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0163}, url = {http://global-sci.org/intro/article_detail/cicp/22895.html} }Parametric dynamical systems are widely used to model physical systems, but their numerical simulation can be computationally demanding due to nonlinearity, long-time simulation, and multi-query requirements. Model reduction methods aim to reduce computation complexity and improve simulation efficiency. However, traditional model reduction methods are inefficient for parametric dynamical systems with nonlinear structures. To address this challenge, we propose an adaptive method based on local dynamic mode decomposition (DMD) to construct an efficient and reliable surrogate model. We propose an improved greedy algorithm to generate the atoms set $\Theta$ based on a sequence of relatively small training sets, which could reduce the effect of large training set. At each enrichment step, we construct a local sub-surrogate model using the Taylor expansion and DMD, resulting in the ability to predict the state at any time without solving the original dynamical system. Moreover, our method provides the best approximation almost everywhere over the parameter domain with certain smoothness assumptions, thanks to the gradient information. At last, three concrete examples are presented to illustrate the effectiveness of the proposed method.